51
|
Esposito N, Ovchinnikova O, Barone A, Zoina A, Holst O, Evidente A. Host and Non-Host Plant Response to Bacterial Wilt in Potato: Role of the Lipopolysaccharide Isolated fromRalstonia solanacearumand Molecular Analysis of Plant-Pathogen Interaction. Chem Biodivers 2008; 5:2662-75. [DOI: 10.1002/cbdv.200890220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
52
|
Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:867-80. [PMID: 18694460 DOI: 10.1111/j.1365-313x.2008.03646.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ATAF1 is a member of a largely uncharacterized plant-specific gene family encoding NAC transcription factors, and is induced in response to various abiotic and biotic stimuli in Arabidopsis thaliana. Previously, we showed that a mutant allele of ATAF1 compromises penetration resistance in Arabidopsis with respect to the non-host biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we have used genome-wide transcript profiling to characterize signalling perturbations in ataf1 plants following Bgh inoculation. Comparative transcriptomic analyses identified an over-representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner, and that the ABA biosynthetic mutant aao3 showed increased penetration resistance to Bgh compared to wild-type plants. Furthermore, we show that ataf1 plants show ABA-hyposensitive phenotypes during seedling development and germination. Our data support a negative correlation between ABA levels and penetration resistance, and identify ATAF1 as a new stimuli-dependent attenuator of ABA signalling for the mediation of efficient penetration resistance in Arabidopsis upon Bgh attack.
Collapse
Affiliation(s)
- Michael K Jensen
- Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
53
|
Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas. PLoS One 2008; 3:e3828. [PMID: 19043590 PMCID: PMC2585010 DOI: 10.1371/journal.pone.0003828] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/03/2008] [Indexed: 01/30/2023] Open
Abstract
Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates.
Collapse
Affiliation(s)
- Hong Lu
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Prabhu Patil
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Marie-Anne Van Sluys
- Departamento de Botânica, IB-USP, Sao Paulo, Sao Paulo, Brazil
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Robert P. Ryan
- BIOMERIT Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - J. Maxwell Dow
- BIOMERIT Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Pablo Rabinowicz
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Steven L. Salzberg
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ramesh Sonti
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Volker Brendel
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
54
|
Aslam SN, Newman MA, Erbs G, Morrissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Ierano T, Molinaro A, Jackson RW, Knight MR, Cooper RM. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 2008; 18:1078-83. [PMID: 18639458 DOI: 10.1016/j.cub.2008.06.061] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.
Collapse
Affiliation(s)
- Shazia N Aslam
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Silipo A, Ierano T, Lanzetta R, Molinaro A, Parrilli M. The Structure of the O-Chain Polysaccharide from the Gram-Negative Endophytic BacteriumBurkholderia phytofirmans Strain PsJN. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
56
|
Peptidoglycan and Muropeptides from Pathogens Agrobacterium and Xanthomonas Elicit Plant Innate Immunity: Structure and Activity. ACTA ACUST UNITED AC 2008; 15:438-48. [DOI: 10.1016/j.chembiol.2008.03.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/26/2008] [Accepted: 03/28/2008] [Indexed: 12/20/2022]
|
57
|
Silipo A, Sturiale L, Garozzo D, Erbs G, Jensen TT, Lanzetta R, Dow JM, Parrilli M, Newman MA, Molinaro A. The Acylation and Phosphorylation Pattern of Lipid A fromXanthomonas Campestris Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis. Chembiochem 2008; 9:896-904. [DOI: 10.1002/cbic.200700693] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
58
|
Comegna D, Bedini E, Parrilli M. A new, improved synthesis of the trisaccharide repeating unit of the O-antigen from Xanthomonas campestris pv. campestris 8004. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.01.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Erbs G, Jensen TT, Silipo A, Grant W, Dow JM, Molinaro A, Parrilli M, Newman MA. An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana. Microbes Infect 2008; 10:571-4. [PMID: 18403233 DOI: 10.1016/j.micinf.2008.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/11/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
Abstract
Lipopolysaccharides, the ubiquitous part of the outer membrane of Gram-negative bacteria, and their derivatives are recognised by plants to trigger or potentiate particular defence responses such as induction of genes encoding pathogenesis-related proteins. The molecular mechanisms of LPS perception that underpin these effects in plants are, however, unknown. Here, lipid A from Halomonas magadiensis, which is an antagonist of lipid A action in human cells, was used to investigate lipid A action in plants. Our findings offer an insight into the different structural requirements for direct induction and potentiation of plant defences by lipid A.
Collapse
Affiliation(s)
- Gitte Erbs
- Faculty of Life Sciences, Department of Plant Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. PLANT MOLECULAR BIOLOGY 2007; 65:137-50. [PMID: 17619150 DOI: 10.1007/s11103-007-9204-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/15/2007] [Indexed: 05/16/2023]
Abstract
Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells towards virulent Bgh. Complementing the effect of HvNAC6 gene silencing, transient overexpression of HvNAC6 increases the occurrence of penetration resistant cells towards Bgh attack. Quantitative RT-PCR shows the early and transient induction of HvNAC6 in barley epidermis upon Bgh infection. Additionally, our results show that the Arabidopsis HvNAC6 homologue ATAF1 is also induced by Bgh and the ataf1-1 mutant line shows decreased penetration resistance to this non-host pathogen. Collectively, these data suggest a conserved role of HvNAC6 and ATAF1 in the regulation of penetration resistance in monocots and dicots, respectively.
Collapse
Affiliation(s)
- Michael Krogh Jensen
- Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 2007; 282:32338-48. [PMID: 17761682 DOI: 10.1074/jbc.m704886200] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity constitutes the primary plant immune response that has evolved to recognize invariant structures of microbial surfaces. Here we show that Gram-positive bacteria-derived peptidoglycan (PGN) constitutes a novel PAMP of immune responses in Arabidopsis thaliana. Treatment with PGN from Staphylococcus aureus results in the activation of plant responses, such as medium alkalinization, elevation of cytoplasmic calcium concentrations, nitric oxide, and camalexin production and the post-translational induction of MAPK activities. Microarray analysis performed with RNA prepared from PGN-treated Arabidopsis leaves revealed enhanced transcript levels for 236 genes, many of which are also altered upon administration of flagellin. Comparison of cellular responses after treatment with bacteria-derived PGN and structurally related fungal chitin indicated that both PAMPs are perceived via different perception systems. PGN-mediated immune stimulation in Arabidopsis is based upon recognition of the PGN sugar backbone, while muramyl dipeptide, which is inactive in this plant, triggers immunity-associated responses in animals. PGN adds to the list of PAMPs that induce innate immune programs in both plants and animals. However, we propose that PGN perception systems arose independently in both lineages and are the result of convergent evolution.
Collapse
Affiliation(s)
- Andrea A Gust
- Center for Plant Molecular Biology, Plant Biochemistry, and Microbial Genetics, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. PLANT & CELL PHYSIOLOGY 2006; 47:1530-40. [PMID: 17018557 DOI: 10.1093/pcp/pcl019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PAMP (pathogen-associated molecular pattern) recognition plays an important role during the innate immune response in both plants and animals. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are representative of typical PAMP molecules and have been reported to induce defense-related responses, including the suppression of the hypersensitive response, the expression of defense genes and systemic resistance in plants. However, the details regarding the precise molecular mechanisms underlying these cellular responses, such as the molecular machinery involved in the perception and transduction of LPS molecules, remain largely unknown. Furthermore, the biological activities of LPS on plants have so far been reported only in dicots and no information is thus available regarding their functions in monocots. In our current study, we report that LPS preparations for various becteria, including plant pathogens and non-pathogens, can induce defense responses in rice cells, including reactive oxygen generation and defense gene expression. In addition, global analysis of gene expression induced by two PAMPs, LPS and chitin oligosaccharide, also reveals a close correlation between the gene responses induced by these factors. This indicates that there is a convergence of signaling cascades downstream of their corresponding receptors. Furthermore, we show that the defense responses induced by LPS in the rice cells are associated with programmed cell death (PCD), which is a finding that has not been previously reported for the functional role of these molecules in plant cells. Interestingly, PCD induction by the LPS was not detected in cultured Arabidopsis thaliana cells.
Collapse
Affiliation(s)
- Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Synthetic oligorhamnans related to the most common O-chain backbone from phytopathogenic bacteria. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
64
|
Desender S, Klarzynski O, Potin P, Barzic MR, Andrivon D, Val F. Lipopolysaccharides of Pectobacterium atrosepticum and Pseudomonas corrugata induce different defence response patterns in tobacco, tomato, and potato. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:636-45. [PMID: 16755465 DOI: 10.1055/s-2006-924102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lipopolysaccharides (LPS), ubiquitous cell surface components of Gram-negative bacteria, are directly implicated in plant/pathogen interactions. However, their perception by the plant, the subsequent signal transduction in both compatible and incompatible interactions, as well as the defence reactions induced in compatible interactions are as yet poorly understood. We focused on biochemical and physiological reactions induced in cell suspensions of three Solanaceae species (tobacco, tomato, and potato) by purified lipopolysaccharides from PECTOBACTERIUM ATROSEPTICUM (PA), a pathogen of potato, and PSEUDOMONAS CORRUGATA (PSC), a pathogen of tomato. LPS PA and LPS PSC caused a significant acidification of potato, tomato, and tobacco extracellular media, whereas laminarin (a linear beta-1,3 oligosaccharide elicitor) induced an alkalinisation in tobacco and tomato, but not in potato cell suspensions. None of the two LPS induced the formation of active oxygen species in any of the hosts, while laminarin induced H (2)O (2) production in cells of tobacco but not of tomato and potato. In tomato cells, LPS PA and LPS PSC induced a strong but transitory stimulation of lipoxygenase activity, whereas laminarin induced a stable or slightly increasing LOX activity over the first 24 h of contact. In tobacco, LOX activity was not triggered by either LPS, but significantly increased following treatment with laminarin. In potato, neither LPS nor laminarin induced LOX activity, in contrast with concentrated culture filtrate of PHYTOPHTHORA INFESTANS (CCF). These results demonstrate that LPS, as well as laminarin, are perceived in different ways by SOLANACEAE species, and possibly cultivars. They also suggest that defence responses modulated by LPS depend on plant genotypes rather than on the type of interaction.
Collapse
Affiliation(s)
- S Desender
- UMR BiO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, INRA-Agrocampus Rennes, 65 Rue de Saint Brieuc, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
65
|
De Castro C, Carannante A, Lanzetta R, Liparoti V, Molinaro A, Parrilli M. Core oligosaccharide structure from the highly phytopathogenic Agrobacterium tumefaciens TT111 and conformational analysis of the putative rhamnan epitope. Glycobiology 2006; 16:1272-80. [PMID: 16877750 DOI: 10.1093/glycob/cwl033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure of the complex mixture of the core oligosaccharide components of the lipooligosaccharide (LOS) fraction of Agrobacterium tumefaciens strain TT111 was determined directly on the deacetylated products by means of spectroscopical methods. The rhamnan oligosaccharide elongating the inner Kdo residue shares structural features with other polysaccharides from well-known plant pathogenic bacteria. Its conformation was determined through extensive molecular dynamic (MD) analysis and presents an epitope similar to that recognized from the plant defense system.
Collapse
Affiliation(s)
- Cristina De Castro
- Department of Organic Chemistry and Biochemistry, University of Naples, Complesso Universitario Monte Sant' Angelo, Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
66
|
Crich D, Bowers AA. 4,6-O-[1-cyano-2-(2-iodophenyl)ethylidene] acetals. improved second-generation acetals for the stereoselective formation of beta-D-mannopyranosides and regioselective reductive radical fragmentation to beta-D-rhamnopyranosides. scope and limitations. J Org Chem 2006; 71:3452-63. [PMID: 16626126 PMCID: PMC4664482 DOI: 10.1021/jo0526688] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [1-cyano-2-(2-iodophenyl)]ethylidene group is introduced as an acetal-protecting group for carbohydrate thioglycoside donors. The group is easily introduced under mild conditions, over short reaction times, and in the presence of a wide variety of other protecting groups by the reaction of the 4,6-diol with triethyl (2-iodophenyl)orthoacetate and camphorsulfonic acid, followed by trimethylsilyl cyanide and boron trifluoride etherate. The new protecting group conveys strong beta-selectivity with thiomannoside donors and undergoes a tin-mediated radical fragmentation to provide high yields of the synthetically challenging beta-rhamnopyranosides. The method is also applicable to the glucopyranosides when high alpha-selectivity is observed in the coupling reaction and alpha-quinovosides are formed selectively in the radical fragmentation step. In the galactopyranoside series, beta-glycosides are formed selectively on coupling to donors protected by the new system, but the radical fragmentation is unselective and gives mixtures of the 4- and 6-deoxy products. Variable-temperature NMR studies for the glycosylation step, which helped define an optimal protocol, are described.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
67
|
Zipfel C, Felix G. Plants and animals: a different taste for microbes? CURRENT OPINION IN PLANT BIOLOGY 2005; 8:353-60. [PMID: 15922649 DOI: 10.1016/j.pbi.2005.05.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/17/2005] [Indexed: 05/02/2023]
Abstract
Plants and animals can recognize potential pathogens by detecting pathogen-associated molecular patterns (PAMPs). Significant advances over the past few years have begun to unveil the molecular basis of PAMP perception by pattern recognition receptors (PRRs). Although these discoveries highlight common recognition strategies among higher eukaryotes, they also show differences with respect to the nature of the receptors involved and the exact molecular patterns recognized. This suggests a convergent evolution of microbe sensing by the innate immune systems of these various organisms.
Collapse
Affiliation(s)
- Cyril Zipfel
- Botanical Institute, Zurich-Basel Plant Science Centre, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
68
|
Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 2005; 280:33660-8. [PMID: 16048996 DOI: 10.1074/jbc.m506254200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharides (LPSs) and lipooligosaccharides (LOSs) are major components of the cell surface of Gram-negative bacteria with diverse roles in bacterial pathogenesis of animals and plants that include elicitation of host defenses. Little is known about the mechanisms of perception of these molecules by plants and about the associated signal transduction pathways that trigger plant immunity. Here we address the issue of the molecular basis of elicitation of plant defenses through the structural determination of the LOS of the plant pathogen Xanthomonas campestris pv. campestris strain 8004 and examination of the effects of LOS and fragments obtained by chemical treatments on the immune response in Arabidopsis thaliana. The structure shows a strong accumulation of negatively charged groups in the lipid A-inner core region and has a number of novel features, including a galacturonyl phosphate attached at a 3-deoxy-D-manno-oct-2-ulosonic acid residue and a unique phosphoramide group in the inner core region. Intact LOS and the lipid A and core oligosaccharides derived from it were all able to induce the defense-related genes PR1 and PR2 in Arabidopsis and to prevent the hypersensitive response caused by avirulent bacteria. Although LOS induced defense-related gene transcription in two temporal phases, the core oligosaccharide induced only the earlier phase, and lipid A induced only the later phase. These findings suggest that plant cells can recognize lipid A and core oligosaccharide structures within LOS to trigger defensive cellular responses and that this may occur via two distinct recognition events.
Collapse
Affiliation(s)
- Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Complesso Universitario Monte Sant' Angelo, Via Cintia 4, 80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Bedini E, Carabellese A, Schiattarella M, Parrilli M. First synthesis of an α-d-Fucp3NAc containing oligosaccharide: a study on d-Fucp3NAc glycosylation. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|