51
|
Ranieri A, Bortolotti CA, Battistuzzi G, Borsari M, Paltrinieri L, Di Rocco G, Sola M. Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met–His/His ligation switch. Metallomics 2014; 6:874-84. [DOI: 10.1039/c3mt00311f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
52
|
Bao WJ, Yan ZD, Wang M, Zhao Y, Li J, Wang K, Xia XH, Wang ZL. Distance-determined sensitivity in attenuated total reflection-surface enhanced infrared absorption spectroscopy: aptamer–antigen compared to antibody–antigen. Chem Commun (Camb) 2014; 50:7787-9. [DOI: 10.1039/c4cc01920b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
53
|
Kuzume A, Zhumaev U, Li J, Fu Y, Füeg M, Estévez M, Borjas Z, Wandlowski T, Esteve-Nuñez A. An in situ surface electrochemistry approach towards whole-cell studies: the structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces. Phys Chem Chem Phys 2014; 16:22229-36. [DOI: 10.1039/c4cp03357d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Characterisation of direct electron transfer processes between Geobacter sulfurreducens and the Au(111) surface was performed under electrochemical control.
Collapse
Affiliation(s)
- Akiyoshi Kuzume
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Ulmas Zhumaev
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Jianfeng Li
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Yongchun Fu
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Michael Füeg
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Marta Estévez
- Department of Chemical Engineering
- University of Alcalá
- 28871 Alcalá de Heranes, Spain
| | - Zulema Borjas
- Department of Chemical Engineering
- University of Alcalá
- 28871 Alcalá de Heranes, Spain
- IMDEA WATER
- Parque Tecnológico de Alcalá
| | - Thomas Wandlowski
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Abraham Esteve-Nuñez
- Department of Chemical Engineering
- University of Alcalá
- 28871 Alcalá de Heranes, Spain
- IMDEA WATER
- Parque Tecnológico de Alcalá
| |
Collapse
|
54
|
Kuzume A, Zhumaev U, Li J, Fu Y, Füeg M, Esteve-Nuñez A, Wandlowski T. An in-situ surface electrochemistry approach toward whole-cell studies: Charge transfer between Geobacter sulfurreducens and electrified metal/electrolyte interfaces through linker molecules. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Capdevila DA, Marmisollé WA, Williams FJ, Murgida DH. Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study. Phys Chem Chem Phys 2013; 15:5386-94. [PMID: 23000972 DOI: 10.1039/c2cp42044a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of proteins immobilized on biomimetic or biocompatible electrodes represents an active field of research as it pursues both fundamental and technological interests. In this context, adsorption and redox properties of cytochrome c (Cyt) on different electrode surfaces have been extensively reported, although in some cases with contradictory results. Here we report a SERR spectroelectrochemical study of the adsorption and electron transfer behaviour of the basic protein Cyt on electrodes coated with amino-terminated monolayers. The obtained results show that inorganic phosphate (Pi) and ATP anions are able to mediate high affinity binding of the protein with preservation of the native structure and rendering an average orientation that guarantees efficient pathways for direct electron transfer. These findings aid the design of Cyt-based bioelectronic devices and understanding the modulation by Pi and ATP of physiological functions of Cyt.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
56
|
Zou C, Larisika M, Nagy G, Srajer J, Oostenbrink C, Chen X, Knoll W, Liedberg B, Nowak C. Two-dimensional heterospectral correlation analysis of the redox-induced conformational transition in cytochrome c using surface-enhanced Raman and infrared absorption spectroscopies on a two-layer gold surface. J Phys Chem B 2013; 117:9606-14. [PMID: 23930980 PMCID: PMC3753128 DOI: 10.1021/jp404573q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
heme protein cytochrome c adsorbed to a two-layer
gold surface modified with a self-assembled monolayer of 2-mercaptoethanol
was analyzed using a two-dimensional (2D) heterospectral correlation
analysis that combined surface-enhanced infrared absorption spectroscopy
(SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise
increasing electric potentials were applied to alter the redox state
of the protein and to induce conformational changes within the protein
backbone. We demonstrate herein that 2D heterospectral correlation
analysis is a particularly suitable and useful technique for the study
of heme-containing proteins as the two spectroscopies address different
portions of the protein. Thus, by correlating SERS and SEIRAS data
in a 2D plot, we can obtain a deeper understanding of the conformational
changes occurring at the redox center and in the supporting protein
backbone during the electron transfer process. The correlation analyses
are complemented by molecular dynamics calculations to explore the
intramolecular interactions.
Collapse
Affiliation(s)
- Changji Zou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ataka K, Stripp ST, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2283-93. [PMID: 23816441 DOI: 10.1016/j.bbamem.2013.04.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/05/2013] [Accepted: 04/28/2013] [Indexed: 12/15/2022]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Kenichi Ataka
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|
58
|
Structural changes of the KcsA potassium channel upon application of the electrode potential studied by surface-enhanced IR absorption spectroscopy. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Alizadeh V, Mehrgardi MA, Fazlollah Mousavi M. Electrochemical Investigation of Cytochrome c Immobilized onto Self-Assembled Monolayer of Captopril. ELECTROANAL 2013. [DOI: 10.1002/elan.201300036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
60
|
Amdursky N, Pecht I, Sheves M, Cahen D. Electron Transport via Cytochrome C on Si–H Surfaces: Roles of Fe and Heme. J Am Chem Soc 2013; 135:6300-6. [DOI: 10.1021/ja4015474] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nadav Amdursky
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Israel Pecht
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
61
|
Wang GX, Wang M, Wu ZQ, Bao WJ, Zhou Y, Xia XH. Dependence of the direct electron transfer activity and adsorption kinetics of cytochrome c on interfacial charge properties. Analyst 2013; 138:5777-82. [DOI: 10.1039/c3an01042b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
62
|
Xu JY, Chen TW, Bao WJ, Wang K, Xia XH. Label-free strategy for in-situ analysis of protein binding interaction based on attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17564-17570. [PMID: 23163643 DOI: 10.1021/la303054w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A versatile ATR-SEIRAS methodology is described herein for highly sensitive analysis of immunoglobulin (IgG) recognition. This strategy allows in situ tracking of specific protein binding at the liquid-solid interface. Most importantly, interferential signal from environmental molecules (e.g., water, nonspecific binding molecules, and bulk molecules) can be eliminated to negligible levels by using the ATR analysis mode, and the sensitive IR structural information of target proteins is obtained simultaneously. A simplified numerical model has been established to quantitatively describe the kinetics and thermodynamics of protein recognition processes at surfaces. Compared with conventional label-free methods for protein binding study, experimental results obtained from IR spectroscopic information are more reliable. The presented ATR-SEIRAS method is powerful in studying surface limited protein binding reactions.
Collapse
Affiliation(s)
- Jian-Yun Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
63
|
Fabrication of an amperometric tyramine biosensor based on immobilization of tyramine oxidase on AgNPs/l-Cys-modified Au electrode. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1828-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
64
|
WANG LX, JIANG XE. Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60556-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
65
|
Jin B, Bao WJ, Wu ZQ, Xia XH. In situ monitoring of protein adsorption on a nanoparticulated gold film by attenuated total reflection surface-enhanced infrared absorption spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9460-9465. [PMID: 22624668 DOI: 10.1021/la300819u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In situ surface enhanced infrared absorption spectroscopy (SEIRAS) with an attenuated total reflection (ATR) configuration has been used to monitor the adsorption kinetics of bovine hemoglobin (BHb) on a Au nanoparticle (NP) film. The IR absorbance for BHb molecules on a gold nanoparticle film deposited on a Si hemispherical optical window is about 58 times higher than that on a bare Si optical window and the detection sensitivity has been improved by 3 orders of magnitude. From the IR signal as a function of adsorption time, the adsorption kinetics and thermodynamics can be explored in situ. It is found that both the electrostatic interaction and the coordination bonds between BHb residues and Au NP film surface affect the adsorption kinetics. The maximum adsorption can be obtained in solution pH 7.0 (close to the isoelectric point of the protein) due to the electrostatic interaction among proteins. In addition, the isotherm of BHb adsorption follows well the Freundlich adsorption model.
Collapse
Affiliation(s)
- Bo Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | | | | | | |
Collapse
|
66
|
Wang T, Bai J, Jiang X, Nienhaus GU. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS NANO 2012; 6:1251-9. [PMID: 22250809 DOI: 10.1021/nn203892h] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
It is well-known that nanomaterials are capable of entering living cells, often by utilizing the cells' endocytic mechanisms. Passive penetration of the lipid bilayer may, however, occur as an alternative process. Here we have focused on the passive transport of small nanoparticles across the plasma membranes of red blood cells, which are incapable of endocytosis. By using fluorescence microscopy, we have observed that zwitterionic quantum dots penetrate through the cell membranes so that they can be found inside the cells. The penetration-induced structural changes of the lipid bilayer were explored by surface-enhanced infrared absorption spectroscopy and electrochemistry studies of model membranes prepared on solid supports with lipid compositions identical to those of red blood cell membranes. A detailed analysis of the infrared spectra revealed a markedly enhanced flexibility of the lipid bilayers in the presence of nanoparticles. The electrochemistry data showed that the overall membrane structure remained intact; however, no persistent holes were formed in the bilayers.
Collapse
Affiliation(s)
- Tiantian Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | |
Collapse
|
67
|
Khoa Ly H, Wisitruangsakul N, Sezer M, Feng JJ, Kranich A, Weidinger IM, Zebger I, Murgida DH, Hildebrandt P. Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
68
|
Krassen H, Stripp ST, Böhm N, Berkessel A, Happe T, Ataka K, Heberle J. Tailor-Made Modification of a Gold Surface for the Chemical Binding of a High-Activity [FeFe] Hydrogenase. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
69
|
Larmour IA, Graham D. Surface enhanced optical spectroscopies for bioanalysis. Analyst 2011; 136:3831-53. [DOI: 10.1039/c1an15452d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Waldeck DH, Khoshtariya DE. Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
71
|
Healy AJ, Reeve HA, Vincent KA. Development of an infrared spectroscopic approach for studying metalloenzyme active site chemistry under direct electrochemical control. Faraday Discuss 2011; 148:345-57; discussion 421-41. [DOI: 10.1039/c004274a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Ohta N, Nomura K, Yagi I. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18097-18104. [PMID: 21043469 DOI: 10.1021/la102970r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA)-active Au/Ti bilayer films sputter deposited on Si substrates have been prepared by an electrochemical annealing (ECA) treatment for the first time. The application of Au/Ti bilayer films on Si substrates to the spectroscopic technique is a promising alternative to the conventional technique using directly deposited Au films on Si substrates, offering excellent adhesive durability of the deposited metal films. However, Au/Ti bilayer films have never been selected for the spectroscopy technique because the films in the as-prepared state exhibit relatively smooth surface morphology: the excitation of the localized surface plasmon is vital to achieving SEIRA enhancements but could hardly be observed on the smooth morphology. It is shown by ex situ scanning tunneling microscopy measurements that the unfavorable smooth morphology of the as-prepared Au/Ti bilayer films can be modified by the ECA treatment to a reasonably rough, island-structure morphology similar to that of the conventional SEIRA-active Au films. In situ infrared absorption spectroscopy of adsorbed sulfate anions has been conducted on the Au/Ti bilayer film both before and after ECA treatment. The spectroscopy measurements demonstrate that the SEIRA activity of the film after being subjected to the treatment is significantly improved so that the technique could detect adsorbates on the film electrodes even with the submonolayer coverage. As an additional benefit, the ECA treatment has brought about a substantial increase in the fraction of Au(111) domains on the polycrystalline Au film surfaces. Accordingly, this approach enables us to prepare SEIRA-active Au films having sufficient adhesion to the Si substrates as well as the highly preferred (111) orientation.
Collapse
Affiliation(s)
- Narumi Ohta
- Catalyst Research Group, Fuel Cell Cutting-Edge Center Technology Research Association (FC-Cubic TRA), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | |
Collapse
|
73
|
Vincent KA. Triggered infrared spectroscopy for investigating metalloprotein chemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:3713-3731. [PMID: 20603378 DOI: 10.1098/rsta.2010.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent developments in infrared (IR) spectroscopic time resolution, sensitivity and sample manipulation make this technique a powerful addition to the suite of complementary approaches for the study of time-resolved chemistry at metal centres within proteins. Application of IR spectroscopy to proteins has often targeted the amide bands as probes for gross structural change. This article focuses on the possibilities arising from recent IR technical developments for studies that monitor localized vibrational oscillators in proteins--native or exogenous ligands such as NO, CO, SCN(-) or CN(-), or genetically or chemically introduced probes with IR-active vibrations. These report on the electronic and coordination state of metals, the kinetics, intermediates and reaction pathways of ligand release, hydrogen-bonding interactions between the protein and IR probe, and the electrostatic character of sites in a protein. Metalloprotein reactions can be triggered by light/dark transitions, an electrochemical step, a change in solute composition or equilibration with a new gas atmosphere, and spectra can be obtained over a range of time domains as far as the sub-picosecond level. We can expect to see IR spectroscopy exploited, alongside other spectroscopies, and crystallography, to elucidate reactions of a wide range of metalloprotein chemistry with relevance to cell metabolism, health and energy catalysis.
Collapse
Affiliation(s)
- Kylie A Vincent
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| |
Collapse
|
74
|
Jiang X, Engelhard M, Ataka K, Heberle J. Molecular Impact of the Membrane Potential on the Regulatory Mechanism of Proton Transfer in Sensory Rhodopsin II. J Am Chem Soc 2010; 132:10808-15. [DOI: 10.1021/ja102295g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiue Jiang
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| | - Martin Engelhard
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| | - Kenichi Ataka
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| | - Joachim Heberle
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| |
Collapse
|
75
|
Ataka K, Kottke T, Heberle J. Thinner, Smaller, Faster: IR Techniques To Probe the Functionality of Biological and Biomimetic Systems. Angew Chem Int Ed Engl 2010; 49:5416-24. [DOI: 10.1002/anie.200907114] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
76
|
Ataka K, Kottke T, Heberle J. Dünner, kleiner, schneller - wie die IR-Spektroskopie zur Aufklärung des Funktionsmechanismus biologischer und biomimetischer Systeme beiträgt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
77
|
Lee CY, Bond AM. A comparison of the higher order harmonic components derived from large-amplitude Fourier transformed ac voltammetry of myoglobin and heme in DDAB films at a pyrolytic graphite electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5243-5253. [PMID: 20232815 DOI: 10.1021/la903387n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A debate as to whether heme remains bound or is released in myoglobin molecules incorporated into a didodecyldimethylammonium bromide (DDAB) film adhered to a pyrolytic graphite electrode has prompted a comparison of their electrochemistry by the highly sensitive large-amplitude Fourier transformed ac voltammetric method. The accessibility of third, fourth, and higher harmonic components that are devoid of background current and the enhanced resolution relative to that available in dc voltammetry have allowed a detailed comparison of the Fe(III)/Fe(II) and Fe(II)/Fe(I) redox processes of myoglobin and heme molecules to be undertaken as a function of buffer composition and pH and in the presence and absence of NaBr in the buffer and/or film. Under most conditions examined, only very subtle differences, in the Fe(III)/Fe(II) process were found, implying this process cannot be used to indicate the intactness or otherwise of myoglobin in myoglobin-DDAB films. In contrast, higher order ac harmonics obtained from myoglobin-DDAB and heme-DDAB films reveal pH dependent differences with respect to the Fe(II)/Fe(I) couple. Analysis of the ac harmonics, and with the hypothesis that the Fe(II)/Fe(I) process reflects the myoglobin state, suggests that the majority of the iron heme is released from myoglobin-DDAB (pH 5.0, no NaBr) films in contact with pH 5.0 (0.1 M sodium acetate) buffer solution devoid of or containing NaBr. However, myoglobin films prepared with pH 5.0 buffer containing NaBr shows significant difference in the higher harmonic shapes and midpoint potentials in the Fe(II)/Fe(I) process relative to the case when heme molecules are used, although as noted in other studies, a significant fraction of the Mb is rendered electroinactive in the presence of NaBr. The voltammetric responses of myoglobin and heme-DDAB (pH 5.0) films in contact with pH 7.0 (0.1 M) phosphate buffer solution also exhibit significant differences in the Fe(II)/Fe(I) redox couple in the higher harmonics in contrast to a report [de Groot, M.T.; Merkx, M.; Koper, M. T. M. J. Am. Chem. Soc. 2005, 127, 16224] that claimed identical midpoint potentials apply to both films under conditions of dc cyclic voltammetry. The FT-ac voltammetric data therefore suggest that a substantial fraction of myoglobin in myoglobin-DDAB (pH 5.0) films in contact with pH 7.0 phosphate buffer solution remains intact. No evidence of a catalytic effect that enhanced the released of heme from myoglobin was found at the pyrolytic graphite electrode surface. In summary, higher harmonic ac voltammetric data indicate that the Fe(II)/Fe(I) process but not the Fe(III)/Fe(II) reflects the state of myoglobin in DDAB films. On this basis, films prepared at pH 5.0 should include NaBr, or else films should be prepared at neutral pH to achieve films with myoglobin remains in its intact near native state when a myoglobin-DDAB film is confined to a graphite electrode surface. Otherwise, the release of heme in myoglobin molecules incorporated into a DDAB film is likely to be a dominant reaction pathway.
Collapse
Affiliation(s)
- Chong-Yong Lee
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
78
|
Alvarez-Paggi D, Martín DF, DeBiase PM, Hildebrandt P, Martí MA, Murgida DH. Molecular Basis of Coupled Protein and Electron Transfer Dynamics of Cytochrome c in Biomimetic Complexes. J Am Chem Soc 2010; 132:5769-78. [DOI: 10.1021/ja910707r] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina, and Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Diego F. Martín
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina, and Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Pablo M. DeBiase
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina, and Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Peter Hildebrandt
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina, and Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina, and Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Daniel H. Murgida
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina, and Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| |
Collapse
|
79
|
Kudelski A. Raman Characterization of Monolayers Formed from Mixtures of Sodium 2-Mercaptoethanesulfonate and Various Aromatic Mercapto-Derivative Bases. J Phys Chem B 2010; 114:5180-9. [DOI: 10.1021/jp100196x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, PL-02-093 Warsaw, Poland
| |
Collapse
|
80
|
Murata K, Kajiya K, Nukaga M, Suga Y, Watanabe T, Nakamura N, Ohno H. A Simple Fabrication Method for Three-Dimensional Gold Nanoparticle Electrodes and Their Application to the Study of the Direct Electrochemistry of Cytochromec. ELECTROANAL 2010. [DOI: 10.1002/elan.200900323] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
81
|
El Kirat K, Morandat S. Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges. Chem Phys Lipids 2009; 162:17-24. [DOI: 10.1016/j.chemphyslip.2009.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/05/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
|
82
|
Millo D, Pandelia ME, Utesch T, Wisitruangsakul N, Mroginski MA, Lubitz W, Hildebrandt P, Zebger I. Spectroelectrochemical Study of the [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F in Solution and Immobilized on Biocompatible Gold Surfaces. J Phys Chem B 2009; 113:15344-51. [DOI: 10.1021/jp906575r] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Diego Millo
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Maria-Eirini Pandelia
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Tillmann Utesch
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Nattawadee Wisitruangsakul
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Maria A. Mroginski
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Wolfgang Lubitz
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni 135, Sekr. PC14, D-10623 Berlin, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
83
|
Nowak C, Luening C, Knoll W, Naumann RLC. A two-layer gold surface with improved surface enhancement for spectro-electrochemistry using surface-enhanced infrared absorption spectroscopy. APPLIED SPECTROSCOPY 2009; 63:1068-1074. [PMID: 19796491 DOI: 10.1366/000370209789379330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A two-layer gold surface is developed for use with surface-enhanced infrared absorption spectroscopy (SEIRAS) consisting of a conducting underlayer onto which Au nanoparticles (AuNPs) are grown by self-catalyzed electroless deposition. AuNPs are grown on protruding substructures of the 25 nm thin underlayer. The enhancement factor of the two-layer gold surface is controlled by the growth conditions. Cytochrome c adsorbed to a self-assembled monolayer of mercaptoethanol is used as a reference system. Under optimum conditions the absorbance of the amide I band is increased by a factor of 5 versus the classical SEIRAS surface. Reversible reduction/oxidation of cytochrome c on the two-layer gold surface is shown to take place by cyclic voltammetry.
Collapse
Affiliation(s)
- C Nowak
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
84
|
Balland V, Lecomte S, Limoges B. Characterization of the electron transfer of a ferrocene redox probe and a histidine-tagged hemoprotein specifically bound to a nitrilotriacetic-terminated self-assembled monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6532-6542. [PMID: 19419181 DOI: 10.1021/la900062y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the selective, controlled binding of a model redox probe, 1,1'-bis(N-imidazolylmethyl)ferrocene (Fc-Im2), and a small redox hemoprotein, histidine-tagged recombinant human neuroglobin (hNb), at the surface of metal electrodes (gold and SER-active silver) modified by a self-assembled monolayer (SAM) of a nitrilotriacetic (NTA)-terminated thiol. The resulting SAMs were characterized by cyclic voltammetry and surface-enhanced resonance Raman (SERR) spectroscopy coupled to electrochemistry. Once specifically bounded to the Ni(II)-NTA-modified gold electrode, nearly ideal cyclic voltammetric behavior with relatively fast electron-transfer (ET) communication through the SAM was determined for the Fc-Im2 redox probe. However, no direct electron transfer could be evidenced for the hNb redox protein under the same conditions. This outcome was different from the result obtained during SERR experiments coupled to electrochemistry in which a direct electrochemical conversion of hNb immobilized on a Ni(II)-NTA-modified SER-active Ag electrode was observed. The SERR spectra of the immobilized hNb was the same as the resonance Raman spectra of the protein in homogeneous solution, allowing us to conclude that the native structure of hNb was retained upon immobilization and that the direct ET was not the result of some partial or complete protein denaturation. The long-range ET rate constant (kET) through the SAM was determined by time-resolved SERR spectroscopy. A value of kET=0.12 s(-1) was obtained, which is within the predicted range of a fully nonadiabatic ET through a SAM thickness of approximately 26 A and close to the values previously determined for analogous small redox proteins at similar long-range ET distances. A SERR spectroelectrochemical titration of the immobilized hNb was also carried out, showing both an apparent standard potential (E0') negatively shifted by 100 mV compared with hNb in solution and a gentle slope in the titration curve. These results suggest a range of chemical environments in the surroundings of the redox protein and a variety of interactions with the NTA-terminated SAM. The influence of protein immobilization on E0' is discussed together with the long-range ET rate constant and molecular orientation of the surface-immobilized hNb.
Collapse
Affiliation(s)
- Véronique Balland
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, UMR CNRS 7591, Paris Cedex 13, France.
| | | | | |
Collapse
|
85
|
Spectroscopy at Electrochemical Interfaces. SURF INTERFACE ANAL 2009. [DOI: 10.1007/978-3-540-49829-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
86
|
Stripp ST, Happe T. How algae produce hydrogen—news from the photosynthetic hydrogenase. Dalton Trans 2009:9960-9. [DOI: 10.1039/b916246a] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Zuo P, Albrecht T, Barker PD, Murgida DH, Hildebrandt P. Interfacial redox processes of cytochrome b562. Phys Chem Chem Phys 2009; 11:7430-6. [DOI: 10.1039/b904926f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
88
|
Chen Y, Jin B, Guo LR, Yang XJ, Chen W, Gu G, Zheng LM, Xia XH. Hemoglobin on Phosphonic Acid Terminated Self-Assembled Monolayers at a Gold Electrode: Immobilization, Direct Electrochemistry, and Electrocatalysis. Chemistry 2008; 14:10727-34. [DOI: 10.1002/chem.200801503] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
89
|
Bioenergetics at the gold surface: SEIRAS probes photosynthetic and respiratory reactions at the monolayer level. Biochem Soc Trans 2008; 36:986-91. [DOI: 10.1042/bst0360986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study surveys a novel approach to studies of membrane proteins whose catalytic action is driven by the redox potential or by the membrane potential. We introduce SEIRAS (surface-enhanced IR absorption spectroscopy) to probe a monolayer of membrane protein adhered to the surface of a gold electrode. SEIRAS renders high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude. It is demonstrated that reaction-induced spectroscopy is applicable by recording IR differences of cytochrome c after stimulation by the electrical potential. The impact of the membrane potential on the function of a membrane protein is demonstrated by performing light-induced difference spectroscopy on a microbial rhodopsin (sensory rhodopsin II) under voltage-clamp conditions. The methodology presented opens new avenues to study the mechanism of electron-triggered and voltage-gated proteins at the level of single bonds. As many of these catalytic reactions are of vectorial nature, control on the orientation of the membrane protein is mandatory. Approaches are presented on how to specifically adhere photosynthetic and respiratory proteins to the electrode surface and reconstitute these membrane proteins in the lipid bilayer. Functionality of such biomimetic systems is assessed in situ by spectro-electrochemical methods.
Collapse
|
90
|
Busalmen JP, Esteve-Núñez A, Berná A, Feliu JM. C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Ed Engl 2008; 47:4874-7. [PMID: 18504730 DOI: 10.1002/anie.200801310] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan P Busalmen
- Instituto de Electroquímica, Universidad de Alicante, Apartado de correos 99, 03080 Alicante, Spain.
| | | | | | | |
Collapse
|
91
|
Busalmen J, Esteve-Núñez A, Berná A, Feliu JM. C-Type Cytochromes Wire Electricity-Producing Bacteria to Electrodes. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801310] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
92
|
|
93
|
Wang G, Wang W, Wu J, Liu H, Jiao S, Fang B. Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0050-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
94
|
Osawa M. In‐situ Surface‐Enhanced Infrared Spectroscopy of the Electrode/Solution Interface. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527616817.ch8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
95
|
Kim HJ, Lee KS, Won MS, Shim YB. Characterization of protein-attached conducting polymer monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1087-1093. [PMID: 18166065 DOI: 10.1021/la701689f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cytochrome c (cyt c)-immobilized monolayers and multiple monolayers of a conducting polymer [poly(terthiophene-3-carboxylic acid) polymer (poly-TTCA)] were prepared, where the monolayer of monomer precursor was fabricated with the Langmuir-Blogett technique. Covalent immobilization of cyt c was achieved by the formation of an amide bond between the carboxylic groups of the conducting polymer and amines groups of lysine in cyt c. The monolayer of poly-TTCA and poly-TTCA/cyt c was characterized by cyclic voltammetry, XPS, EQCM, Auger electron spectra (AES), and atomic force microscopy (AFM). The immobilization of cyt c on the polymer layer reveals the direct electron-transfer processes of cyt c. Cyclic voltammetry of the poly-TTCA/cyt c-modified electrode showed a pair of reversible peaks at approximately +212/+201 mV (Epa/Epc) versus Ag/AgCl in a 0.2 M phosphate buffer solution (pH 7.0). The peak separation and the redox peak current of the poly-TTCA/cyt c-modified electrodes were gradually increased by increasing the number of poly-TTCA/cyt c layers on the electrode. The heterogeneous electron-transfer rate constant (ks) of cyt c at the poly-TTCA/cyt c-monolayer-modified electrode was estimated to be 0.874 s(-1). The method provides a novel route for the fabrication of protein (cyt c)-immobilized and/or lipid (palmitoyloleoylphosphatidic acid)-immobilized monolayers and multiple monolayers of a conducting polymer. Cyt c bonded on the conductive polymer layers was applied for bioelectronic devices with unique functionality.
Collapse
Affiliation(s)
- Hwa-Jeong Kim
- Department of Chemistry, Pusan National University, Busan 609-735, South Korea
| | | | | | | |
Collapse
|
96
|
Jacobsen K, Risse T. On the origin of the polar order of T4 lysozyme on planar model surfaces. J Phys Chem B 2008; 112:967-72. [PMID: 18171040 DOI: 10.1021/jp075375m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site directed spin labeling is used to investigate the origin of the macroscopic alignment of T4 lysozyme vectorially tethered to planar biomimetic surfaces. T4 lysozyme was adsorbed to a quartz-supported dioleoylphosphatidylcholine (DOPC) bilayer by selective binding of the histidine-tagged protein to functionalized headgroups (1,2-dioleoyl-sn-glycero-3-[[N(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl], DOGS NTA) of the bilayer. This results in a polar oriented ensemble of proteins on the surface, which gives rise to angular-dependent electron paramagnetic resonance (EPR) spectra. In order to reveal the mechanism of the protein alignment, the influence of protein coverage on the order of the molecules was addressed. Along the lines described previously for a full monolayer (Jacobsen, et al. Biophys. J. 2005, 88, 4351), the polar orientation of the molecules was inferred from an analysis of the EPR line shape using the stochastic Liouville equation (SLE) approach developed by Freed and co-workers. The simulations reveal that the orientation of the protein is strongly determined by lateral protein-protein interactions. In comparison to the lipid bilayer, a fusion protein of T4 lysozyme (T4L) with Annexin XII was investigated, where the two-dimensional crystallization of Annexin XII on a dioleoylphosphatidylserine (DOPS) bilayer provides a surface layer of regularly anchored T4L molecules. For this system, it is found that the interaction between T4L and Annexin plays a more important role for understanding the structure in the adsorbed state.
Collapse
Affiliation(s)
- Kerstin Jacobsen
- Fritz Haber Institute of Max Planck Society, Department of Chemical Physics, Faradayweg 4-6, 14195 Berlin, Germany
| | | |
Collapse
|
97
|
Jiang X, Zuber A, Heberle J, Ataka K. In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 2008; 10:6381-7. [DOI: 10.1039/b805296b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
Wisitruangsakul N, Zebger I, Ly KH, Murgida DH, Ekgasit S, Hildebrandt P. Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 2008; 10:5276-86. [DOI: 10.1039/b806528d] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Bonifacio A, Millo D, Keizers PHJ, Boegschoten R, Commandeur JNM, Vermeulen NPE, Gooijer C, van der Zwan G. Active-site structure, binding and redox activity of the heme-thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study. J Biol Inorg Chem 2008; 13:85-96. [PMID: 17899220 PMCID: PMC2099460 DOI: 10.1007/s00775-007-0303-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/08/2007] [Indexed: 11/28/2022]
Abstract
Surface-enhance resonance Raman scattering spectra of the heme-thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme's active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme-imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme's ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6.
Collapse
Affiliation(s)
- Alois Bonifacio
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Diego Millo
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Roald Boegschoten
- Mechanical Workshop, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Cees Gooijer
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Gert van der Zwan
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
100
|
Takahashi I, Inomata T, Funahashi Y, Ozawa T, Masuda H. Electron-Transfer Reactions through the Associated Interaction between Cytochromec and Self-Assembled Monolayers of Optically Active Cobalt(III) Complexes: Molecular Recognition Ability Induced by the Chirality of the Cobalt(III) Units. Chemistry 2007; 13:8007-17. [PMID: 17616958 DOI: 10.1002/chem.200700155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Self-assembled monolayers (SAMs) of optically active Co(III) complexes ((S)-2/(R)-2) that contain (S)- or (R)-phenylalanine derivatives as a molecular recognition site were constructed on Au electrodes ((S)-2-Au/(R)-2-Au). Molecular recognition characteristics induced by the S and R configurations were investigated by measurements of electron-transfer reactions with horse heart cytochrome c (cyt c). The electrochemical studies indicate that the maximum current of cyt c reduction is obtained when the Au electrode is modified by 2 with a moderate coverage of approximately 4.0 x 10(-11) mol cm(-2). Since the Au electrode is not densely packed with the Co(III) units at this concentration, we conclude that the penetrative association process between cyt c and the Co(III) unit plays an important role in this electron-transfer system. The differences in the electron-transfer rates of (S)-2-Au and (R)-2-Au increase with increasing scan rates, a result indicating that the chiral ligand has an influence on the rate of association of the complexes with cyt c. 3-Au has a mixed monolayer composed of 2 and hexanethiol and exhibits electron-transfer behavior comparable to 2-Au. The difference in the association rates of (S)-3-Au and (R)-3-Au is larger than that between (S)-2-Au and (R)-2-Au, which indicates that the molecular recognition ability of 3-Au has been enhanced by filling the gap between molecules of 2 with hexanethiols. The differences in the oxidation rates of cyt c(II) between (S)-2-Au and (R)-2-Au and between (S)-3-Au and (R)-3-Au were larger than the differences in the rates of the reduction of cyt c(III); this suggests that the size of the heme crevice varies according to the oxidation state of cyt c.
Collapse
Affiliation(s)
- Isao Takahashi
- Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|