51
|
Maxwell BA, Xu C, Suo Z. Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Förster resonance energy transfer. Biochemistry 2014; 53:1768-78. [PMID: 24568554 PMCID: PMC3985488 DOI: 10.1021/bi5000146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Numerous kinetic, structural, and
theoretical studies have established
that DNA polymerases adjust their domain structures to enclose nucleotides
in their active sites and then rearrange critical active site residues
and substrates for catalysis, with the latter conformational change
acting to kinetically limit the correct nucleotide incorporation rate.
Additionally, structural studies have revealed a large conformational
change between the apoprotein and the DNA–protein binary state
for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell,
B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance
energy transfer (FRET) method was developed to monitor the global
conformational transitions of DNA polymerase IV from Sulfolobus
solfataricus (Dpo4), a prototype Y-family enzyme, during
nucleotide binding and incorporation by measuring changes in distance
between locations on the enzyme and the DNA substrate. To elucidate
further details of the conformational transitions of Dpo4 during substrate
binding and catalysis, in this study, the real-time FRET technique
was used to monitor changes in distance between various pairs of locations
in the protein itself. In addition to providing new insight into the
conformational changes as revealed in previous studies, the results
here show that the previously described conformational change between
the apo and DNA-bound states of Dpo4 occurs in a mechanistic step
distinct from initial formation or dissociation of the binary complex
of Dpo4 and DNA.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
52
|
Farooq S, Fijen C, Hohlbein J. Studying DNA-protein interactions with single-molecule Förster resonance energy transfer. PROTOPLASMA 2014; 251:317-32. [PMID: 24374460 DOI: 10.1007/s00709-013-0596-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has emerged as a powerful tool for elucidating biological structure and mechanisms on the molecular level. Here, we focus on applications of smFRET to study interactions between DNA and enzymes such as DNA and RNA polymerases. SmFRET, used as a nanoscopic ruler, allows for the detection and precise characterisation of dynamic and rarely occurring events, which are otherwise averaged out in ensemble-based experiments. In this review, we will highlight some recent developments that provide new means of studying complex biological systems either by combining smFRET with force-based techniques or by using data obtained from smFRET experiments as constrains for computer-aided modelling.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands
| | | | | |
Collapse
|
53
|
Hohlbein J, Aigrain L, Craggs TD, Bermek O, Potapova O, Shoolizadeh P, Grindley NDF, Joyce CM, Kapanidis AN. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nat Commun 2014; 4:2131. [PMID: 23831915 PMCID: PMC3715850 DOI: 10.1038/ncomms3131] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 06/11/2013] [Indexed: 01/04/2023] Open
Abstract
The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides before phosphoryl transfer. Here, we combine single-molecule FRET with the use of DNA polymerase I and various fidelity mutants to highlight mechanisms by which active-site side chains influence the conformational transitions and free-energy landscape that underlie fidelity decisions in DNA synthesis. Ternary complexes of high fidelity derivatives with complementary dNTPs adopt mainly a fully closed conformation, whereas a conformation with a FRET value between those of open and closed is sparsely populated. This intermediate-FRET state, which we attribute to a partially closed conformation, is also predominant in ternary complexes with incorrect nucleotides and, strikingly, in most ternary complexes of low-fidelity derivatives for both correct and incorrect nucleotides. The mutator phenotype of the low-fidelity derivatives correlates well with reduced affinity for complementary dNTPs and highlights the partially closed conformation as a primary checkpoint for nucleotide selection. The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides. Here, by using an intramolecular single-molecule FRET assay, the authors establish and characterize the partially closed conformation as a crucial fidelity checkpoint.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Biological Physics Research Group, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Romesberg FE, Marx A. Structural insights into DNA replication without hydrogen bonds. J Am Chem Soc 2013; 135:18637-43. [PMID: 24283923 PMCID: PMC3982147 DOI: 10.1021/ja409609j] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genetic alphabet is composed of two base pairs, and the development of a third, unnatural base pair would increase the genetic and chemical potential of DNA. d5SICS-dNaM is one of the most efficiently replicated unnatural base pairs identified to date, but its pairing is mediated by only hydrophobic and packing forces, and in free duplex DNA it forms a cross-strand intercalated structure that makes its efficient replication difficult to understand. Recent studies of the KlenTaq DNA polymerase revealed that the insertion of d5SICSTP opposite dNaM proceeds via a mutually induced-fit mechanism, where the presence of the triphosphate induces the polymerase to form the catalytically competent closed structure, which in turn induces the pairing nucleotides of the developing unnatural base pair to adopt a planar Watson-Crick-like structure. To understand the remaining steps of replication, we now report the characterization of the prechemistry complexes corresponding to the insertion of dNaMTP opposite d5SICS, as well as multiple postchemistry complexes in which the already formed unnatural base pair is positioned at the postinsertion site. Unlike with the insertion of d5SICSTP opposite dNaM, addition of dNaMTP does not fully induce the formation of the catalytically competent closed state. The data also reveal that once synthesized and translocated to the postinsertion position, the unnatural nucleobases again intercalate. Two modes of intercalation are observed, depending on the nature of the flanking nucleotides, and are each stabilized by different interactions with the polymerase, and each appear to reduce the affinity with which the next correct triphosphate binds. Thus, continued primer extension is limited by deintercalation and rearrangements with the polymerase active site that are required to populate the catalytically active, triphosphate bound conformation.
Collapse
Affiliation(s)
- Karin Betz
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Denis A. Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Thomas Lavergne
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Wolfram Welte
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Kay Diederichs
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Andreas Marx
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| |
Collapse
|
55
|
Bermek O, Grindley NDF, Joyce CM. Prechemistry nucleotide selection checkpoints in the reaction pathway of DNA polymerase I and roles of glu710 and tyr766. Biochemistry 2013; 52:6258-74. [PMID: 23937394 PMCID: PMC3770053 DOI: 10.1021/bi400837k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The accuracy of high-fidelity DNA
polymerases such as DNA polymerase
I (Klenow fragment) is governed by conformational changes early in
the reaction pathway that serve as fidelity checkpoints, identifying
inappropriate template–nucleotide pairings. The fingers-closing
transition (detected by a fluorescence resonance energy transfer-based
assay) is the unique outcome of binding a correct incoming nucleotide,
both complementary to the templating base and with a deoxyribose (rather
than ribose) sugar structure. Complexes with mispaired dNTPs or complementary
rNTPs are arrested at an earlier stage, corresponding to a partially
closed fingers conformation, in which weak binding of DNA and nucleotide
promote dissociation and resampling of the substrate pool. A 2-aminopurine
fluorescence probe on the DNA template provides further information
about the steps preceding fingers closing. A characteristic 2-aminopurine
signal is observed on binding a complementary nucleotide, regardless
of whether the sugar is deoxyribose or ribose. However, mispaired
dNTPs show entirely different behavior. Thus, a fidelity checkpoint
ahead of fingers closing is responsible for distinguishing complementary
from noncomplementary nucleotides and routing them toward different
outcomes. The E710A mutator polymerase has a defect in the early fidelity
checkpoint such that some complementary dNTPs are treated as if they
were mispaired. In the Y766A mutant, the early checkpoint functions
normally, but some correctly paired dNTPs do not efficiently undergo
fingers closing. Thus, both mutator alleles cause a blurring of the
distinction between correct and incorrect base pairs and result in
a larger fraction of errors passing through the prechemistry fidelity
checkpoints.
Collapse
Affiliation(s)
- Oya Bermek
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
56
|
Xia S, Wood M, Bradley MJ, De La Cruz EM, Konigsberg WH. Alteration in the cavity size adjacent to the active site of RB69 DNA polymerase changes its conformational dynamics. Nucleic Acids Res 2013; 41:9077-89. [PMID: 23921641 PMCID: PMC3799440 DOI: 10.1093/nar/gkt674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Internal cavities are a common feature of many proteins, often having profound effects on the dynamics of their interactions with substrate and binding partners. RB69 DNA polymerase (pol) has a hydrophobic cavity right below the nucleotide binding pocket at the tip of highly conserved L415 side chain. Replacement of this residue with Gly or Met in other B family pols resulted in higher mutation rates. When similar substitutions for L415 were introduced into RB69pol, only L415A and L415G had dramatic effects on pre-steady-state kinetic parameters, reducing base selectivity by several hundred fold. On the other hand, the L415M variant behaved like the wild-type. Using a novel tCo-tCnitro Förster Resonance Energy Transfer (FRET) assay, we were able to show that the partition of the primer terminus between pol and exonuclease (exo) domains was compromised with the L415A and L415G mutants, but not with the L415M variant. These results could be rationalized by changes in their structures as determined by high resolution X-ray crystallography.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
57
|
Olsen TJ, Choi Y, Sims PC, Gul OT, Corso BL, Dong C, Brown WA, Collins PG, Weiss GA. Electronic measurements of single-molecule processing by DNA polymerase I (Klenow fragment). J Am Chem Soc 2013; 135:7855-60. [PMID: 23631761 DOI: 10.1021/ja311603r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioconjugating single molecules of the Klenow fragment of DNA polymerase I into electronic nanocircuits allowed electrical recordings of enzymatic function and dynamic variability with the resolution of individual nucleotide incorporation events. Continuous recordings of DNA polymerase processing multiple homopolymeric DNA templates extended over 600 s and through >10,000 bond-forming events. An enzymatic processivity of 42 nucleotides for a template of the same length was directly observed. Statistical analysis determined key kinetic parameters for the enzyme's open and closed conformations. Consistent with these nanocircuit-based observations, the enzyme's closed complex forms a phosphodiester bond in a highly efficient process >99.8% of the time, with a mean duration of only 0.3 ms for all four dNTPs. The rate-limiting step for catalysis occurs during the enzyme's open state, but with a nearly 2-fold longer duration for dATP or dTTP incorporation than for dCTP or dGTP into complementary, homopolymeric DNA templates. Taken together, the results provide a wealth of new information complementing prior work on the mechanism and dynamics of DNA polymerase I.
Collapse
Affiliation(s)
- Tivoli J Olsen
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Rothwell PJ, Allen WJ, Sisamakis E, Kalinin S, Felekyan S, Widengren J, Waksman G, Seidel CAM. dNTP-dependent conformational transitions in the fingers subdomain of Klentaq1 DNA polymerase: insights into the role of the "nucleotide-binding" state. J Biol Chem 2013; 288:13575-91. [PMID: 23525110 DOI: 10.1074/jbc.m112.432690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Conformational selection plays a key role in the polymerase cycle. RESULTS Klentaq1 exists in conformational equilibrium between three states (open, closed, and “nucleotide-binding”) whose level of occupancy is determined by the bound substrate. CONCLUSION The “nucleotide-binding” state plays a pivotal role in the reaction pathway. SIGNIFICANCE Direct evidence is provided for the role of a conformationally distinct “nucleotide-binding” state during dNTP incorporation. DNA polymerases are responsible for the accurate replication of DNA. Kinetic, single-molecule, and x-ray studies show that multiple conformational states are important for DNA polymerase fidelity. Using high precision FRET measurements, we show that Klentaq1 (the Klenow fragment of Thermus aquaticus DNA polymerase 1) is in equilibrium between three structurally distinct states. In the absence of nucleotide, the enzyme is mostly open, whereas in the presence of DNA and a correctly base-pairing dNTP, it re-equilibrates to a closed state. In the presence of a dNTP alone, with DNA and an incorrect dNTP, or in elevated MgCl2 concentrations, an intermediate state termed the "nucleotide-binding" state predominates. Photon distribution and hidden Markov modeling revealed fast dynamic and slow conformational processes occurring between all three states in a complex energy landscape suggesting a mechanism in which dNTP delivery is mediated by the nucleotide-binding state. After nucleotide binding, correct dNTPs are transported to the closed state, whereas incorrect dNTPs are delivered to the open state.
Collapse
Affiliation(s)
- Paul J Rothwell
- Chair for Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Lamichhane R, Berezhna SY, Gill JP, Van der Schans E, Millar DP. Dynamics of site switching in DNA polymerase. J Am Chem Soc 2013; 135:4735-42. [PMID: 23409810 DOI: 10.1021/ja311641b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerases replicate DNA by catalyzing the template-directed polymerization of deoxynucleoside triphosphate (dNTP) substrates onto the 3' end of a growing DNA primer strand. Many DNA polymerases also possess a separate 3'-5' exonuclease activity that is used to remove misincorporated nucleotides from the nascent DNA (proofreading). The polymerase (pol) and exonuclease (exo) activities are spatially separated in different enzyme domains, indicating that a mechanism must exist to transfer the growing primer terminus from one site to the other. Here we report a single-molecule Förster resonance energy transfer (smFRET) system that directly monitors the movement of a DNA substrate between the pol and exo sites of DNA polymerase I Klenow fragment (KF). FRET trajectories recorded during the encounter between single polymerase and DNA molecules reveal that DNA can channel between the pol and exo sites in both directions while remaining closely associated with the enzyme (intramolecular transfer). In addition, it is evident from the trajectories that DNA can also dissociate from one site and subsequently rebind at the other (intermolecular transfer). Rate constants for each pathway have been determined by dwell-time analysis, revealing that intramolecular transfer is the faster of the two pathways. Unexpectedly, a mispaired primer terminus accesses the exo site more frequently when dNTP substrates are also present in solution, which is expected to enhance proofreading. Together, these results explain how the separate pol and exo activities of KF are physically coordinated to achieve efficient proofreading.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
60
|
Maxwell BA, Suo Z. Single-molecule investigation of substrate binding kinetics and protein conformational dynamics of a B-family replicative DNA polymerase. J Biol Chem 2013; 288:11590-600. [PMID: 23463511 DOI: 10.1074/jbc.m113.459982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative DNA polymerases use a complex, multistep mechanism for efficient and accurate DNA replication as uncovered by intense kinetic and structural studies. Recently, single-molecule fluorescence spectroscopy has provided new insights into real time conformational dynamics utilized by DNA polymerases during substrate binding and nucleotide incorporation. We have used single-molecule Förster resonance energy transfer techniques to investigate the kinetics and conformational dynamics of Sulfolobus solfataricus DNA polymerase B1 (PolB1) during DNA and nucleotide binding. Our experiments demonstrate that this replicative polymerase can bind to DNA in at least three conformations, corresponding to an open and closed conformation of the finger domain as well as a conformation with the DNA substrate bound to the exonuclease active site of PolB1. Additionally, our results show that PolB1 can transition between these conformations without dissociating from a primer-template DNA substrate. Furthermore, we show that the closed conformation is promoted by a matched incoming dNTP but not by a mismatched dNTP and that mismatches at the primer-template terminus lead to an increase in the binding of the DNA to the exonuclease site. Our analysis has also revealed new details of the biphasic dissociation kinetics of the polymerase-DNA binary complex. Notably, comparison of the results obtained in this study with PolB1 with those from similar single-molecule studies with an A-family DNA polymerase suggests mechanistic differences between these polymerases. In summary, our findings provide novel mechanistic insights into protein conformational dynamics and substrate binding kinetics of a high fidelity B-family DNA polymerase.
Collapse
Affiliation(s)
- Brian A Maxwell
- Biophysics Program and the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
61
|
Marko RA, Liu HW, Ablenas CJ, Ehteshami M, Götte M, Cosa G. Binding kinetics and affinities of heterodimeric versus homodimeric HIV-1 reverse transcriptase on DNA-DNA substrates at the single-molecule level. J Phys Chem B 2013; 117:4560-7. [PMID: 23305243 DOI: 10.1021/jp308674g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During viral replication, HIV-1 reverse transcriptase (RT) plays a pivotal role in converting genomic RNA into proviral DNA. While the biologically relevant form of RT is the p66-p51 heterodimer, two recombinant homodimer forms of RT, p66-p66 and p51-p51, are also catalytically active. Here we investigate the binding of the three RT isoforms to a fluorescently labeled 19/50-nucleotide primer/template DNA duplex by exploiting single-molecule protein-induced fluorescence enhancement (SM-PIFE). PIFE, which does not require labeling of the protein, allows us to directly visualize the binding/unbinding of RT to a double-stranded DNA substrate. We provide values for the association and dissociation rate constants of the RT homodimers p66-p66 and p51-p51 with a double-stranded DNA substrate and compare those to the values recorded for the RT heterodimer p66-p51. We also report values for the equilibrium dissociation constant for the three isoforms. Our data reveal great similarities in the intrinsic binding affinities of p66-p51 and p66-p66, with characteristic Kd values in the nanomolar range, much smaller (50-100-fold) than that of p51-p51. Our data also show discrepancies in the association/dissociation dynamics among the three dimeric RT isoforms. Our results further show that the apparent binding affinity of p51-p51 for its DNA substrate is to a great extent time-dependent when compared to that of p66-p66 and p66-p51, and is more likely determined by the dimer dissociation into its constituent monomers rather than the intrinsic binding affinity of dimeric RT.
Collapse
Affiliation(s)
- Ryan A Marko
- Department of Chemistry and Center for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Lieberman KR, Dahl JM, Mai AH, Akeson M, Wang H. Dynamics of the translocation step measured in individual DNA polymerase complexes. J Am Chem Soc 2012; 134:18816-23. [PMID: 23101437 DOI: 10.1021/ja3090302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complexes formed between the bacteriophage phi29 DNA polymerase (DNAP) and DNA fluctuate between the pre-translocation and post-translocation states on the millisecond time scale. These fluctuations can be directly observed with single-nucleotide precision in real-time ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an applied electric field. We recently quantified the equilibrium across the translocation step as a function of applied force (voltage), active-site proximal DNA sequences, and the binding of complementary dNTP. To gain insight into the mechanism of this step in the DNAP catalytic cycle, in this study, we have examined the stochastic dynamics of the translocation step. The survival probability of complexes in each of the two states decayed at a single exponential rate, indicating that the observed fluctuations are between two discrete states. We used a robust mathematical formulation based on the autocorrelation function to extract the forward and reverse rates of the transitions between the pre-translocation state and the post-translocation state from ionic current traces of captured phi29 DNAP-DNA binary complexes. We evaluated each transition rate as a function of applied voltage to examine the energy landscape of the phi29 DNAP translocation step. The analysis reveals that active-site proximal DNA sequences influence the depth of the pre-translocation and post-translocation state energy wells and affect the location of the transition state along the direction of the translocation.
Collapse
Affiliation(s)
- Kate R Lieberman
- Biomolecular Engineering, University of California, Santa Cruz, 95064, United States.
| | | | | | | | | |
Collapse
|