51
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
52
|
Abstract
Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.
Collapse
Affiliation(s)
- Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77054
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, IA 52245
| |
Collapse
|
53
|
Chen L, Li Y, Yue Q, Loksztejn A, Yokoyama K, Felix EA, Liu X, Zhang N, An Z, Bills GF. Engineering of New Pneumocandin Side-Chain Analogues from Glarea lozoyensis by Mutasynthesis and Evaluation of Their Antifungal Activity. ACS Chem Biol 2016; 11:2724-2733. [PMID: 27494047 DOI: 10.1021/acschembio.6b00604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pneumocandins are lipohexapeptides of the echinocandin family that inhibit fungal 1,3-β-glucan synthase. Most of the pathway steps have been identified previously. However, the lipoinitiation reaction has not yet been experimentally verified. Herein, we investigate the lipoinitiation step of pneumocandin biosynthesis in Glarea lozoyensis and demonstrate that the gene product, GLligase, catalyzes this step. Disruption of GLHYD, a gene encoding a putative type II thioesterase and sitting upstream of the pneumocandin acyl side chain synthase gene, GLPKS4, revealed that GLHYD was necessary for optimal function of GLPKS4 and to attain normal levels of pneumocandin production. Double disruption of GLHYD and GLPKS4 did not affect residual function of the GLligase or GLNRPS4. Mutasynthesis experiments with a gene disruption mutant of GLPKS4 afforded us an opportunity to test the substrate specificity of GLligase in the absence of its native polyketide side chain to diversify pneumocandins with substituted side chains. Feeding alternative side chain precursors yielded acrophiarin and four new pneumocandin congeners with straight C14, C15, and C16 side chains. A comprehensive biological evaluation showed that one compound, pneumocandin I (5), has elevated antifungal activity and similar hemolytic activity compared to pneumocandin B0, the starting molecule for caspofungin. This study demonstrates that the lipoinitiation mechanism in pneumocandin biosynthesis involves interaction among a highly reducing PKS, a putative type II thioesterase, and an acyl AMP-ligase. A comparison of the SAR among pneumocandins with different-length acyl side chains demonstrated the potential for using GLligase for future engineering of new echinocandin analogues.
Collapse
Affiliation(s)
- Li Chen
- Texas
Therapeutics Institute, The Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Yan Li
- Texas
Therapeutics Institute, The Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Qun Yue
- Texas
Therapeutics Institute, The Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Anna Loksztejn
- Department
of Biochemistry, Duke University School of Medicine, Nanaline
H. Duke Building, Box 3711, Durham, North Carolina 27710, United States
| | - Kenichi Yokoyama
- Department
of Biochemistry, Duke University School of Medicine, Nanaline
H. Duke Building, Box 3711, Durham, North Carolina 27710, United States
| | - Edd A. Felix
- Phamaceutical
Science Facility, Institute of Applied Cancer Science, The M. D. Anderson Cancer Center, Houston, Texas 77054, United States
| | - Xingzhong Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Ningyan Zhang
- Texas
Therapeutics Institute, The Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Zhiqiang An
- Texas
Therapeutics Institute, The Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Gerald F. Bills
- Texas
Therapeutics Institute, The Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| |
Collapse
|
54
|
Hüttel W, Youssar L, Grüning BA, Günther S, Hugentobler KG. Echinocandin B biosynthesis: a biosynthetic cluster from Aspergillus nidulans NRRL 8112 and reassembly of the subclusters Ecd and Hty from Aspergillus pachycristatus NRRL 11440 reveals a single coherent gene cluster. BMC Genomics 2016; 17:570. [PMID: 27502607 PMCID: PMC4977696 DOI: 10.1186/s12864-016-2885-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Echinocandins are nonribosomal lipopeptides produced by ascommycete fungi. Due to their strong inhibitory effect on fungal cell wall biosynthesis and lack of human toxicity, they have been developed to an important class of antifungal drugs. Since 2012, the biosynthetic gene clusters of most of the main echinocandin variants have been characterized. Especially the comparison of the clusters allows a deeper insight for the biosynthesis of these complex structures. Results In the genome of the echinocandin B producer Aspergillus nidulans NRRL 8112 we have identified a gene cluster (Ani) that encodes echinocandin biosynthesis. Sequence analyses showed that Ani is clearly delimited from the genomic context and forms a monophyletic lineage with the other echinocandin gene clusters. Importantly, we found that the disjunct genomic location of the echinocandin B gene cluster in A. pachycristatus NRRL 11440 on two separate subclusters, Ecd and Hty, at two loci was likely an artifact of genome misassembly in the absence of a reference sequence. We show that both sequences can be aligned resulting a single cluster with a gene arrangement collinear compared to other clusters of Aspergillus section Nidulantes. The reassembled gene cluster (Ecd/Hty) is identical to a putative gene cluster (AE) that was previously deposited at the NCBI as a sequence from A. delacroxii NRRL 3860. PCR amplification of a part of the gene cluster resulted a sequence that was very similar (97 % identity), but not identical to that of AE. Conclusions The Echinocandin B biosynthetic cluster from A. nidulans NRRL 8112 (Ani) is particularly similar to that of A. pachycristatus NRRL 11440 (Ecd/Hty). Ecd/Hty was originally reported as two disjunct sub-clusters Ecd and Hty, but is in fact a continuous sequence with the same gene order as in Ani. According to sequences of PCR products amplified from genomic DNA, the echinocandin B producer A. delacroxii NRRL 3860 is closely related to A. pachycristatus NRRL 11440. A PCR-product from the gene cluster was very similar, but clearly distinct from the sequence published for A. delacroxii NRRL 3860 at the NCBI (No. AB720074). As the NCBI entry is virtually identical with the re-assembled Ecd/Hty cluster, it is likely that it originates from A. pachycristatus NRRL 11440 rather than A. delacroxii NRRL 3860. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| | - Loubna Youssar
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.,Present address: Institute for Environmental Health Sciences and Hospital Infection Control Medical Center, University of Freiburg, Breisacher Strasse 115b, 79106, Freiburg, Germany
| | - Björn A Grüning
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104, Freiburg, Germany.,Present address: Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104, Freiburg, Germany
| | - Katharina G Hugentobler
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| |
Collapse
|
55
|
Wu LF, Meng S, Tang GL. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:453-70. [DOI: 10.1016/j.bbapap.2016.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
|
56
|
Li Y, Chen L, Yue Q, Liu X, An Z, Bills GF. Genetic Manipulation of the Pneumocandin Biosynthetic Pathway for Generation of Analogues and Evaluation of Their Antifungal Activity. ACS Chem Biol 2015; 10:1702-10. [PMID: 25879325 DOI: 10.1021/acschembio.5b00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pneumocandins are lipohexapeptides of the echinocandin family that potently interrupt fungal cell wall biogenesis by noncompetitive inhibition of 1,3-β-glucan synthase. The pneumocandin biosynthetic gene cluster was previously elucidated by whole genome sequencing. In addition to the core nonribosomal peptide synthetase and polyketide synthase (GLNRPS4 and GLPKS4), the pneumocandin biosynthetic cluster includes two P450-type hemeprotein monooxygenase genes (GLP450-1 and GLP450-2) and four nonheme mononuclear iron oxygenase genes (GLOXY1, GLOXY2, GLOXY3, and GLOXY4), which function to biosynthesize and create the unusual sequence of hydroxylated amino acids of the mature pneumocandin peptide. Insertional inactivation of three of these genes (GLP450-1, GLP450-2, and GLOXY1) generated 13 different pneumocandin analogues that lack one, two, three, or four hydroxyl groups on 4R,5R-dihydroxy-ornithine and 3S,4S-dihydroxy-homotyrosine of the parent hexapeptide. Among them, seven analogues are previously unreported genetically engineered pneumocandins whose structures were established by NMR experiments. These new pneumocandins afforded a unique opportunity for side-by-side exploration of the effects of hydroxylation on pneumocandin antifungal activity. All of these cyclic lipopeptides showed potent antifungal activities, and two new metabolites pneumocandins F (3) and G (4) were more potent in vitro against Candida species and Aspergillus fumigatus than the principal fermentation products, pneumocandins A0 and B0.
Collapse
Affiliation(s)
- Yan Li
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Li Chen
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Qun Yue
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Xingzhong Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Zhiqiang An
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Gerald F. Bills
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| |
Collapse
|
57
|
Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites. EUKARYOTIC CELL 2015; 14:698-718. [PMID: 26024901 DOI: 10.1128/ec.00076-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/19/2015] [Indexed: 11/20/2022]
Abstract
The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities.
Collapse
|
58
|
Cacho RA, Tang Y, Chooi YH. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 2015; 5:774. [PMID: 25642215 PMCID: PMC4294208 DOI: 10.3389/fmicb.2014.00774] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022] Open
Abstract
Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.
Collapse
Affiliation(s)
- Ralph A Cacho
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, CA, USA ; Chemistry and Biochemistry Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Yit-Heng Chooi
- Plant Sciences Division, Research School of Biology, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
59
|
Engineering of Glarea lozoyensis for exclusive production of the pneumocandin B0 precursor of the antifungal drug caspofungin acetate. Appl Environ Microbiol 2014; 81:1550-8. [PMID: 25527531 DOI: 10.1128/aem.03256-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pneumocandins produced by the fungus Glarea lozoyensis are acylated cyclic hexapeptides of the echinocandin family. Pneumocandin B0 is the starting molecule for the first semisynthetic echinocandin antifungal drug, caspofungin acetate. In the wild-type strain, pneumocandin B0 is a minor fermentation product, and its industrial production was achieved by a combination of extensive mutation and medium optimization. The pneumocandin biosynthetic gene cluster was previously elucidated by a whole-genome sequencing approach. Knowledge of the biosynthetic cluster suggested an alternative way to produce exclusively pneumocandin B0. Disruption of GLOXY4, encoding a nonheme, α-ketoglutarate-dependent oxygenase, confirmed its involvement in l-leucine cyclization to form 4S-methyl-l-proline. The absence of 4S-methyl-l-proline abolishes pneumocandin A0 production, and 3S-hydroxyl-l-proline occupies the hexapeptide core's position 6, resulting in exclusive production of pneumocandin B0. Retrospective analysis of the GLOXY4 gene in a previously isolated pneumocandin B0-exclusive mutant (ATCC 74030) indicated that chemical mutagenesis disrupted the GLOXY4 gene function by introducing two amino acid mutations in GLOXY4. This one-step genetic manipulation can rationally engineer a high-yield production strain.
Collapse
|
60
|
Bills G, Li Y, Chen L, Yue Q, Niu XM, An Z. New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep 2014; 31:1348-75. [PMID: 25156669 DOI: 10.1039/c4np00046c] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are a primary modality for fungal peptidic natural product assembly and are responsible for some of the best known, most useful, and most destructive fungal metabolites. Through genome sequencing and computer-assisted recognition of modular motifs of catalytic domains, one can now confidently identify most NRPS biosynthetic genes of a fungal strain. The biosynthetic gene clusters responsible for two of the most important classes of NRP fungal derived drugs, cyclosporine and the echinocandins, have been recently characterized by genomic sequencing and annotation. Complete biosynthetic gene clusters for the pneumocandins and echinocandins have been mapped at the genetic level and functionally characterized to some extent. Genomic sequencing of representative strains of most of the variants in the echinocandin family, including the wild-type of the three fungal strains employed for industrial-scale production of caspofungin, micafungin and anidulofungin, has enabled characterization of the basic architecture of the echinocandin NRPS pathways. A comparative analysis of how pathway genes cause variations in lipoinitiation, biosynthesis of the non-proteinogenic amino acids, amino acid substitutions, and hydroxylations and sulfonations of the core peptide and contribute to the molecular diversity of the family is presented. We also review new information on the natural functions of NRPs, the differences between fungal and bacterial NRPSs, and functional characterization of selected NRPS gene clusters. Continuing discovery of the new fungal nonribosomal peptides has contributed new structural diversity and potential insights into their biological functions among other natural peptides and peptaibiotics. We therefore provide an update on new peptides, depsipeptides and peptaibols discovered in the Fungi since 2009.
Collapse
Affiliation(s)
- Gerald Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Centre at Houston, Houston, Texas 77054, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
To date approximately 100 000 fungal species are known although far more than one million are expected. The variety of species and the diversity of their habitats, some of them less exploited, allow the conclusion that fungi continue to be a rich source of new metabolites. Besides the conventional fungal isolates, an increasing interest in endophytic and in marine-derived fungi has been noticed. In addition new screening strategies based on innovative chemical, biological, and genetic approaches have led to novel fungal metabolites in recent years. The present review focuses on new fungal natural products published from 2009 to 2013 highlighting the originality of the structures and their biological potential. Furthermore synthetic products based on fungal metabolites as well as new developments in the uses or the biological activity of known compounds or new derivatives are discussed.
Collapse
Affiliation(s)
- Anja Schueffler
- Institut für Biotechnologie und Wirkstoff-Forschung (Institute of Biotechnology and Drug Research), Erwin-Schroedinger-Str. 56, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
62
|
Houwaart S, Youssar L, Hüttel W. Pneumocandin biosynthesis: involvement of a trans-selective proline hydroxylase. Chembiochem 2014; 15:2365-9. [PMID: 25270390 DOI: 10.1002/cbic.201402175] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 11/09/2022]
Abstract
Echinocandins are cyclic nonribosomal hexapeptides based mostly on nonproteinogenic amino acids and displaying strong antifungal activity. Despite previous studies on their biosynthesis by fungi, the origin of three amino acids, trans-4- and trans-3-hydroxyproline, as well as trans-3-hydroxy-4-methylproline, is still unknown. Here we describe the identification, overexpression, and characterization of GloF, the first eukaryotic α-ketoglutarate/Fe(II) -dependent proline hydroxylase from the pneumocandin biosynthesis cluster of the fungus Glarea lozoyensis ATCC 74030. In in vitro transformations with L-proline, GloF generates trans-4- and trans-3-hydroxyproline simultaneously in a ratio of 8:1; the latter reaction was previously unknown for proline hydroxylase catalysis. trans-4-Methyl-L-proline is converted into the corresponding trans-3-hydroxyproline. All three hydroxyprolines required for the biosynthesis of the echinocandins pneumocandins A0 and B0 in G. lozoyensis are thus provided by GloF. Sequence analyses revealed that GloF is not related to bacterial proline hydroxylases, and none of the putative proteins with high sequence similarity in the databases has been characterized so far.
Collapse
Affiliation(s)
- Stefanie Houwaart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg (Germany)
| | | | | |
Collapse
|
63
|
Du Y, Wang Y, Huang T, Tao M, Deng Z, Lin S. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer. BMC Microbiol 2014; 14:30. [PMID: 24506891 PMCID: PMC3943440 DOI: 10.1186/1471-2180-14-30] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C₁₅ acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. RESULTS A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. CONCLUSIONS The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
64
|
Liu W, Xue Y, Ma M, Wang S, Liu N, Chen Y. Multiple Oxidative Routes towards the Maturation of Nosiheptide. Chembiochem 2013; 14:1544-7. [PMID: 23939763 DOI: 10.1002/cbic.201300427] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Indexed: 11/11/2022]
|
65
|
Chen L, Yue Q, Zhang X, Xiang M, Wang C, Li S, Che Y, Ortiz-López FJ, Bills GF, Liu X, An Z. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genomics 2013; 14:339. [PMID: 23688303 PMCID: PMC3672099 DOI: 10.1186/1471-2164-14-339] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/09/2013] [Indexed: 11/15/2022] Open
Abstract
Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Messik F, Oberthür M. Totalsynthese des antifungalen Wirkstoffs Echinocandin C. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
67
|
Messik F, Oberthür M. Total synthesis of the antifungal agent echinocandin C. Angew Chem Int Ed Engl 2013; 52:5871-5. [PMID: 23609992 DOI: 10.1002/anie.201301262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Frauke Messik
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|