51
|
Resetca D, Wilson DJ. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry. FEBS J 2013; 280:5616-25. [DOI: 10.1111/febs.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Diana Resetca
- Department of Chemistry; York University; Toronto Ontario Canada
| | - Derek J. Wilson
- Department of Chemistry; York University; Toronto Ontario Canada
- Center for Research in Mass Spectrometry; Department of Chemistry; York University; Toronto Ontario Canada
| |
Collapse
|
52
|
Yu HD, Ahn S, Kim B. Protein Structural Characterization by Hydrogen/Deuterium Exchange Mass Spectrometry with Top-down Electron Capture Dissociation. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.5.1401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Kaltashov IA, Bobst CE, Abzalimov RR. Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci 2013; 22:530-44. [PMID: 23436701 DOI: 10.1002/pro.2238] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Abstract
Mass spectrometry is now an indispensable tool in the armamentarium of molecular biophysics, where it is used for tasks ranging from protein sequencing and mapping of post-translational modifications to studies of higher order structure, conformational dynamics, and interactions of proteins with small molecule ligands and other biopolymers. This mini-review highlights several popular mass spectrometry-based tools that are now commonly used for structural studies of proteins beyond their covalent structure with a particular emphasis on hydrogen exchange and direct electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
54
|
Pan J, Borchers CH. Top-down structural analysis of posttranslationally modified proteins by Fourier transform ion cyclotron resonance-MS with hydrogen/deuterium exchange and electron capture dissociation. Proteomics 2013; 13:974-81. [PMID: 23319428 DOI: 10.1002/pmic.201200246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 11/08/2022]
Abstract
High-resolution structural characterization of posttranslationally modified proteins represents a challenge for traditional structural biology methods such as crystallography and NMR. In this study, we have used top-down hydrogen/deuterium exchange MS (HDX-MS) with precursor ion selection and electron capture dissociation to determine the impact of oxidative modification on calmodulin (CaM) at an average resolution of 2.5 residues, with complete sequence coverage. The amide deuteration status of native CaM determined by this method correlates well with previously reported crystallographic and NMR data. In contrast, methionine oxidation caused almost complete deuteration of all residues in the protein in 10 s. The oxidative-modification-induced secondary and tertiary structure loss can be largely recovered upon calcium ligation, which also resulted in a substantial increase of amide protection in three of the four calcium-binding loops in oxidatively modified CaM (CaMox ). However, the structure of α-helix VI is not restored by cofactor binding. These results are discussed in terms of different target binding and activation capabilities displayed by CaM and CaMox . The isoform-specific top-down HDX structural analysis strategy demonstrated in this study should be readily applicable to other oxidatively modified proteins and other types of PTMs, and may help decipher the structure and function of specific protein isoforms.
Collapse
Affiliation(s)
- Jingxi Pan
- UVic-Genome BC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
55
|
Cassou CA, Sterling HJ, Susa AC, Williams ER. Electrothermal supercharging in mass spectrometry and tandem mass spectrometry of native proteins. Anal Chem 2012. [PMID: 23194134 DOI: 10.1021/ac302256d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrothermal supercharging of protein ions formed by electrospray ionization from buffered aqueous solutions results in significant increases to both the maximum and average charge states compared to native mass spectrometry in which ions are formed from the same solutions but with lower spray potentials. For eight of the nine proteins investigated, the maximum charge states of protonated ions formed from native solutions with electrothermal supercharging is greater than those obtained from conventional denaturing solutions consisting of water/methanol/acid, although the average charging is slightly lower owing to contributions of small populations of more folded low charge-state structures. Under these conditions, electrothermal supercharging is slightly less effective for anions than for cations. Equivalent sequence coverage (80%) is obtained with electron transfer dissociation of the same high charge-state ion of cytochrome c formed by electrothermal supercharging from native solutions and from denaturing solutions. Electrothermal supercharging should be advantageous for combining structural studies of proteins in native environments with mass spectrometers that have limited high m/z capabilities and for significantly improving tandem mass spectrometry performance for protein ions formed from solutions in which the molecules have native structures and activities.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California, Berkeley, 94720-1460, United States
| | | | | | | |
Collapse
|
56
|
Burns KM, Rey M, Baker CAH, Schriemer DC. Platform dependencies in bottom-up hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 2012. [PMID: 23197788 DOI: 10.1074/mcp.m112.023770] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen-deuterium exchange mass spectrometry is an important method for protein structure-function analysis. The bottom-up approach uses protein digestion to localize deuteration to higher resolution, and the essential measurement involves centroid mass determinations on a very large set of peptides. In the course of evaluating systems for various projects, we established two (HDX-MS) platforms that consisted of a FT-MS and a high-resolution QTOF mass spectrometer, each with matched front-end fluidic systems. Digests of proteins spanning a 20-110 kDa range were deuterated to equilibrium, and figures-of-merit for a typical bottom-up (HDX-MS) experiment were compared for each platform. The Orbitrap Velos identified 64% more peptides than the 5600 QTOF, with a 42% overlap between the two systems, independent of protein size. Precision in deuterium measurements using the Orbitrap marginally exceeded that of the QTOF, depending on the Orbitrap resolution setting. However, the unique nature of FT-MS data generates situations where deuteration measurements can be inaccurate, because of destructive interference arising from mismatches in elemental mass defects. This is shown through the analysis of the peptides common to both platforms, where deuteration values can be as low as 35% of the expected values, depending on FT-MS resolution, peptide length and charge state. These findings are supported by simulations of Orbitrap transients, and highlight that caution should be exercised in deriving centroid mass values from FT transients that do not support baseline separation of the full isotopic composition.
Collapse
Affiliation(s)
- Kyle M Burns
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
57
|
Liuni P, Jeganathan A, Wilson DJ. Conformer selection and intensified dynamics during catalytic turnover in chymotrypsin. Angew Chem Int Ed Engl 2012; 51:9666-9. [PMID: 22936643 DOI: 10.1002/anie.201204903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/31/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Liuni
- Chemistry, York University, 4700 Keele St., Toronto, ON, Canada
| | | | | |
Collapse
|
58
|
Liuni P, Jeganathan A, Wilson DJ. Conformer Selection and Intensified Dynamics During Catalytic Turnover in Chymotrypsin. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
59
|
Amon S, Trelle MB, Jensen ON, Jørgensen TJD. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Chem 2012; 84:4467-73. [PMID: 22536891 DOI: 10.1021/ac300268r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mass spectrometry has become a valuable method for studying structural dynamics of proteins in solution by measuring their backbone amide hydrogen/deuterium exchange (HDX) kinetics. In a typical exchange experiment one or more proteins are incubated in deuterated buffer at physiological conditions. After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example, only 4% and 6% deuterium loss for fully deuterated ubiquitin and β(2)-microglobulin were observed after 10 min of back-exchange. The practical value of our subzero-cooled setup for top-down fragmentation HDX analyses is demonstrated by electron-transfer dissociation of ubiquitin ions under carefully optimized mass spectrometric conditions where gas-phase hydrogen scrambling is negligible. Our results show that the known dynamic behavior of ubiquitin in solution is accurately reflected in the deuterium contents of the fragment ions.
Collapse
Affiliation(s)
- Sabine Amon
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
60
|
The Application and Perspective of Extractive Electrospray Ionization on The Protein Analysis*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 2012; 25:114-24. [DOI: 10.1002/jmr.1169] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
62
|
Rand KD, Pringle SD, Morris M, Brown JM. Site-Specific Analysis of Gas-Phase Hydrogen/Deuterium Exchange of Peptides and Proteins by Electron Transfer Dissociation. Anal Chem 2012; 84:1931-40. [DOI: 10.1021/ac202918j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kasper D. Rand
- The Department of
Pharmaceutics
and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Steven D. Pringle
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| | - Michael Morris
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| | - Jeffery M. Brown
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| |
Collapse
|
63
|
Serpa JJ, Parker CE, Petrotchenko EV, Han J, Pan J, Borchers CH. Mass spectrometry-based structural proteomics. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:251-267. [PMID: 22641729 DOI: 10.1255/ejms.1178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Structural proteomics is the application of protein chemistry and modern mass spectrometric techniques to problems such as the characterization of protein structures and assemblies and the detailed determination of protein-protein interactions. The techniques used in structural proteomics include crosslinking, photoaffinity labeling, limited proteolysis, chemical protein modification and hydrogen/deuterium exchange, all followed by mass spectrometric analysis. None of these methods alone can provide complete structural information, but a "combination" of these complementary approaches can be used to provide enough information for answering important biological questions. Structural proteomics can help to determine, for example, the detailed structure of the interfaces between proteins that may be important drug targets and the interactions between proteins and ligands. In this review, we have tried to provide a brief overview of structural proteomics methodologies, illustrated with examples from our laboratory and from the literature.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | | | | | | | | | | |
Collapse
|
64
|
Rand KD, Bache N, Nedertoft MM, Jørgensen TJD. Spatially Resolved Protein Hydrogen Exchange Measured by Matrix-Assisted Laser Desorption Ionization In-Source Decay. Anal Chem 2011; 83:8859-62. [DOI: 10.1021/ac202468v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kasper D. Rand
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nicolai Bache
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Morten M. Nedertoft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
65
|
Fragmentation methods on the balance: unambiguous top–down mass spectrometric characterization of oxaliplatin–ubiquitin binding sites. Anal Bioanal Chem 2011; 402:2655-62. [DOI: 10.1007/s00216-011-5523-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
66
|
Cui W, Rohrs HW, Gross ML. Top-down mass spectrometry: recent developments, applications and perspectives. Analyst 2011; 136:3854-64. [PMID: 21826297 PMCID: PMC3505190 DOI: 10.1039/c1an15286f] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Top-down mass spectrometry is an emerging approach for the analysis of intact proteins. The term was coined as a contrast with the better-established, bottom-up strategy for analysis of peptide fragments derived from digestion, either enzymatically or chemically, of intact proteins. Although the term top-down originates from proteomics, it can also be applied to mass spectrometric analysis of intact large biomolecules that are constituents of protein assemblies or complexes. Traditionally, mass spectrometry has usually started with intact molecules, and in this regard, top-down approaches reflect the spirit of mass spectrometry. This article provides an overview of the methodologies in top-down mass spectrometry and then reviews applications covering protein posttranslational modifications, protein biophysics, DNAs/RNAs, and protein assemblies. Finally, challenges and future directions are discussed.
Collapse
Affiliation(s)
- Weidong Cui
- NIH NCRR Center for Biomedical and Bio-Organic Mass Spectrometry, Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
67
|
Rand KD, Pringle SD, Morris M, Engen JR, Brown JM. ETD in a traveling wave ion guide at tuned Z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1784-93. [PMID: 21952892 PMCID: PMC3438897 DOI: 10.1007/s13361-011-0196-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/27/2011] [Accepted: 06/14/2011] [Indexed: 05/11/2023]
Abstract
The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry.
Collapse
Affiliation(s)
- Kasper D Rand
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
68
|
Pan J, Han J, Borchers CH, Konermann L. Characterizing short-lived protein folding intermediates by top-down hydrogen exchange mass spectrometry. Anal Chem 2011; 82:8591-7. [PMID: 20849085 DOI: 10.1021/ac101679j] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work combines pulsed hydrogen/deuterium exchange (HDX) and top-down mass spectrometry for the structural characterization of short-lived protein folding intermediates. A custom-built flow device with three sequential mixing steps is used for (i) triggering protein folding, (ii) pulsed D(2)O labeling, and (iii) acid quenching. The earliest folding time point that can be studied with this system is 10 ms. The mixing device was coupled online to the electrospray source of a Fourier transform mass spectrometer, where intact protein ions are fragmented by electron capture dissociation (ECD). The viability of this experimental strategy is demonstrated by applying it to the refolding of horse apo-myoglobin (aMb), a reaction known to involve a transient intermediate. Cooling of the mixing device to 0 °C reduces the reaction rate such that the folding process occurs within the experimentally accessible time window. Top-down ECD provides an average spatial resolution of ca. 2 residues, surpassing the resolution typically achieved in traditional proteolytic digestion/HDX studies. Amide back exchange is virtually eliminated by the short (∼1 s) duration of the acid quenching step. The aMb folding intermediate exhibits HDX protection in helices G and H, whereas the remainder of the protein is largely unfolded. Marginal protection is seen for helix A. Overall, the top-down ECD approach used here offers insights into the sequence of events leading from the unfolded state to the native conformation, with envisioned future applications in the areas of protein misfolding and aggregation. The time-resolved experiments reported herein represent an extension of our previous work, where HDX/MS with top-down ECD was employed for monitoring "static" protein structures under equilibrium conditions (Pan et al. J. Am. Chem. Soc. 2009, 131, 12801).
Collapse
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
69
|
Han J, Borchers CH. Top-down analysis of recombinant histone H3 and its methylated analogs by ESI/FT-ICR mass spectrometry. Proteomics 2011; 10:3621-30. [PMID: 20486121 DOI: 10.1002/pmic.201000157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Detailed characterization of the amino acid (aa) compositions of recombinant histone H3 (Xenopus laevis) and its Lys-9 mono-, di-, and trimethylated isoforms was carried out by ESI/FT-ICR-MS. The measured molecular masses of these four proteins did not agree with those predicted from the published wild-type histone H3 sequence. Using MS/MS with both collision-activated dissociation and electron capture dissociation, three aa substitutions (Gly102Ala, Cys110Ala, and Gly111Ala) were unambiguously identified in each protein by protein database searching and de novo peptide tag sequencing. In addition, it was determined through accurate mass measurement and elemental composition generation that Lys-9, to which the methyl groups are attached, is not in fact a lysine. Instead, it was identified as a chemical analog of lysine--aminoethylcysteine--in the methylated proteins. After incorporation of these three aa substitutions and the aminoethylcysteine into the protein sequences, the re-calculated molecular masses of four proteins were completely consistent with the measured values within 1 ppm. This work demonstrates the power of top-down MS for a detailed structural confirmation of recombinant proteins, even without prior information on aa substitutions or modifications.
Collapse
Affiliation(s)
- Jun Han
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
70
|
Coales SJ, E SY, Lee JE, Ma A, Morrow JA, Hamuro Y. Expansion of time window for mass spectrometric measurement of amide hydrogen/deuterium exchange reactions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3585-3592. [PMID: 21108306 DOI: 10.1002/rcm.4814] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Backbone amide hydrogen exchange rates can be used to describe the dynamic properties of a protein. Amide hydrogen exchange rates in a native protein may vary from milliseconds (ms) to several years. Ideally, the rates of all amide hydrogens of the analyte protein can be determined individually. To achieve this goal, monitoring of a wider time window is critical, in addition to high sequence coverage and high sequence resolution. Significant improvements have been made to hydrogen/deuterium exchange mass spectrometry methods in the past decade for better sequence coverage and higher sequence resolution. On the other hand, little effort has been made to expand the experimental time window to accurately determine exchange rates of amide hydrogens. Many fast exchanging amide hydrogens are completely exchanged before completion of a typical short exchange time point (10-30 s) and many slow exchanging amide hydrogens do not start exchanging before a typical long exchanging time point (1-3 h). Here various experimental conditions, as well as a quenched-flow apparatus, are utilized to monitor cytochrome c amide hydrogen exchange behaviors over more than eight orders of magnitude (0.0044-1 000 000 s), when converted into the standard exchange condition (pH 7 and 23°C).
Collapse
Affiliation(s)
- Stephen J Coales
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | | | | | | | | | | |
Collapse
|
71
|
Sterling HJ, Williams ER. Real-time hydrogen/deuterium exchange kinetics via supercharged electrospray ionization tandem mass spectrometry. Anal Chem 2010; 82:9050-7. [PMID: 20942406 PMCID: PMC3049191 DOI: 10.1021/ac101957x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amide hydrogen/deuterium exchange (HDX) rate constants of bovine ubiquitin in an ammonium acetate solution containing 1% of the electrospray ionization (ESI) "supercharging" reagent m-nitrobenzyl alcohol (m-NBA) were obtained using top-down, electron transfer dissociation (ETD) tandem mass spectrometry (MS). The supercharging reagent replaces the acid and temperature "quench" step in the conventional MS approach to HDX experiments by causing rapid protein denaturation to occur in the ESI droplet. The higher charge state ions that are produced with m-NBA are more unfolded, as measured by ion mobility, and result in higher fragmentation efficiency and higher sequence coverage with ETD. Single amino acid resolution was obtained for 44 of 72 exchangeable amide sites, and summed kinetic data were obtained for regions of the protein where adjacent fragment ions were not observed, resulting in an overall spatial resolution of 1.3 residues. Comparison of these results with previous values from NMR indicates that the supercharging reagent does not cause significant structural changes to the protein in the initial ESI solution and that scrambling or back-exchange is minimal. This new method for top-down HDX-MS enables real-time kinetic data measurements under physiological conditions, similar to those obtained using NMR, with comparable spatial resolution and significantly better sensitivity.
Collapse
Affiliation(s)
- Harry J. Sterling
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
72
|
Rand KD, Zehl M, Jensen ON, Jørgensen TJD. Loss of Ammonia during Electron-Transfer Dissociation of Deuterated Peptides as an Inherent Gauge of Gas-Phase Hydrogen Scrambling. Anal Chem 2010; 82:9755-62. [DOI: 10.1021/ac101889b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kasper D. Rand
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martin Zehl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
73
|
Sterling HJ, Daly MP, Feld GK, Thoren KL, Kintzer AF, Krantz BA, Williams ER. Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1762-74. [PMID: 20673639 PMCID: PMC3141049 DOI: 10.1016/j.jasms.2010.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 05/10/2023]
Abstract
The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25°C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.
Collapse
Affiliation(s)
- Harry J. Sterling
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | | | - Geoffrey K. Feld
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Katie L. Thoren
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Alexander F. Kintzer
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Bryan A. Krantz
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
74
|
Carulla N, Zhou M, Giralt E, Robinson CV, Dobson CM. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Acc Chem Res 2010; 43:1072-9. [PMID: 20557067 DOI: 10.1021/ar9002784] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aggregation of proteins into amyloid fibrils is a complex and fascinating process associated with debilitating clinical disorders such as Alzheimer's and Parkinson's diseases. The process of aggregation involves a series of steps during which many intermediate aggregation states are populated. Recent evidence points to these intermediate states as the toxic moieties primarily responsible for cell damage or cell death, which are critical steps in the origin and progression of these disorders. To understand the molecular basis of these diseases, it is crucial to investigate and define the details of the aggregation process, and to achieve this objective, researchers need the tools to characterize the structure and kinetics of interconversion of the various species present during amyloid fibril formation. Hydrogen-deuterium (HD) exchange experiments are based on solvent accessibilities and provide one means by which this kind of information may be acquired. In this Account, we describe research based on HD exchange processes that is directed toward better understanding the dynamics and structural reorganizations involved in the formation of amyloid fibrils. Amide hydrogens that normally undergo rapid exchange with solvent hydrogens experience much slower exchange when involved in H-bonded structures or when sterically inaccessible to the solvent. The rates of exchange can be monitored by replacing some hydrogens with deuterons. When peptide and protein molecules assemble into amyloid fibrils, the fibrils contain a core region based on repetitive arrays of beta-sheets oriented parallel to the fibril axis. HD experiments have been applied extensively to map such structures in different amyloid fibril systems. By an extension of this approach, we have observed that HD exchange can be governed by a mechanism through which molecules making up the fibrils are continuously dissolving and reforming, revealing that amyloid fibrils are not static but dynamic structures. Under such circumstances, the kinetic parameters that define this "recycling" behavior can be determined, and they contain information that could be of significant value in the design of therapeutic strategies directed against amyloid-related diseases. More recently, to gain insights into the variety of intermediates that are thought to be involved in the aggregation process, we have applied a kinetic pulse labeling HD experiment that is able to characterize such species even if they are only transiently populated. Using this approach, we have been able to obtain structural insights into the different aggregates populated during the process of amyloid fibril formation as well as kinetic and mechanistic information on the structural reorganizations that take place during aggregation. HD exchange experiments, when carefully designed, constitute powerful tools for mapping the core structures of amyloid fibrils, for investigating the recycling of fibril components, and for characterizing the various types of structural reorganization that occur during aggregation. Such information is invaluable for understanding and addressing the molecular origins of the increasingly common and highly debilitating diseases associated with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Natàlia Carulla
- ICREA Researcher at Institut de Recerca Biomèdica, Baldiri Reixac 10−12, Barcelona 08028, Spain
| | - Min Zhou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, United Kingdom
| | - Ernest Giralt
- Institut de Recerca Biomèdica, Baldiri Reixac 10−12, Barcelona 08028, Spain
- Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX13QZ, United Kingdom
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, United Kingdom
| |
Collapse
|
75
|
Fabris D, Yu ET. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:841-60. [PMID: 20648672 PMCID: PMC3432860 DOI: 10.1002/jms.1762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA.
| | | |
Collapse
|
76
|
Konermann L, Stocks BB, Pan Y, Tong X. Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. MASS SPECTROMETRY REVIEWS 2010; 29:651-667. [PMID: 19672951 DOI: 10.1002/mas.20256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review discusses various mass spectrometry (MS)-based approaches for exploring structural aspects of proteins in solution. Electrospray ionization (ESI)-MS, in particular, has found fascinating applications in this area. For example, when used in conjunction with solution-phase hydrogen/deuterium exchange (HDX), ESI-MS is a highly sensitive tool for probing conformational dynamics. The main focus of this article is a technique that is complementary to HDX, that is, the covalent labeling of proteins by hydroxyl radicals. The reactivity of individual amino acid side chains with *OH is strongly affected by their degree of solvent exposure. Thus, analysis of the oxidative labeling pattern by peptide mapping and tandem mass spectrometry provides detailed structural information. A convenient method for *OH production is the photolysis of H(2)O(2) by a pulsed UV laser, resulting in oxidative labeling on the microsecond time scale. Selected examples demonstrate the use of this technique for structural studies on membrane proteins, and the combination with rapid mixing devices for characterizing the properties of short-lived protein (un)folding intermediates.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | | | | | |
Collapse
|
77
|
Abzalimov RR, Kaltashov IA. Controlling hydrogen scrambling in multiply charged protein ions during collisional activation: implications for top-down hydrogen/deuterium exchange MS utilizing collisional activation in the gas phase. Anal Chem 2010; 82:942-50. [PMID: 20055445 DOI: 10.1021/ac9021874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen exchange in solution combined with ion fragmentation in the gas phase followed by MS detection emerged in recent years as a powerful tool to study higher order protein structure and dynamics. However, a certain type of ion chemistry in the gas phase, namely, internal rearrangement of labile hydrogen atoms (the so-called hydrogen scrambling), is often cited as a factor limiting the utility of this experimental technique. Although several studies have been carried out to elucidate the roles played by various factors in the occurrence and the extent of hydrogen scrambling, there is still no consensus as to what experimental protocol should be followed to avoid or minimize it. In this study we employ fragmentation of mass-selected subpopulations of protein ions to assess the extent of internal proton mobility prior to dissociation. A unique advantage of tandem MS is that it not only provides a means to map the deuterium content of protein ions whose overall levels of isotope incorporation can be precisely defined by controlling the mass selection window, but also correlates this spatial isotope distribution with such global characteristic as the protein ion charge state. Hydrogen scrambling does not occur when the charge state of the precursor protein ions selected for fragmentation is high. Fragment ions derived from both N- and C-terminal parts of the protein are equally unaffected by scrambling. However, spatial distribution of deuterium atoms obtained by fragmenting low-charge-density protein ions is consistent with a very high degree of scrambling prior to the dissociation events. The extent of hydrogen scrambling is also high when multistage fragmentation is used to probe deuterium incorporation locally. Taken together, the experimental results provide a coherent picture of intramolecular processes occurring prior to the dissociation event and provide guidance for the design of experiments whose outcome is unaffected by hydrogen scrambling.
Collapse
Affiliation(s)
- Rinat R Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
78
|
Pan Y, Konermann L. Membrane protein structural insights from chemical labeling and mass spectrometry. Analyst 2010; 135:1191-200. [DOI: 10.1039/b924805f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
79
|
Pan J, Han J, Borchers CH, Konermann L. Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 2009; 131:12801-8. [PMID: 19670873 DOI: 10.1021/ja904379w] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amide H/D exchange (HDX) mass spectrometry (MS) is widely used for protein structural studies. Traditionally, this technique involves protein labeling in D(2)O, followed by acid quenching, proteolytic digestion, and analysis of peptide deuteration levels by HPLC/MS. There is great interest in the development of alternative HDX approaches involving the top-down fragmentation of electrosprayed protein ions, instead of relying on enzymatic cleavage and solution-phase separations. A number of recent studies have demonstrated that electron capture dissociation (ECD) results in fragmentation of gaseous protein ions with little or no H/D scrambling. However, the successful application of this approach for in-depth protein conformational studies has not yet been demonstrated. The current work uses horse myoglobin as a model system for assessing the suitability of HDX-MS with top-down ECD for experiments of this kind. It is found that ECD can pinpoint the locations of protected amides with an average resolution of less than two residues for this 17 kDa protein. Native holo-myoglobin (hMb) shows considerable protection from exchange in all of its helices, whereas loops are extensively deuterated. Fraying is observable at some helix termini. Removal of the prosthetic heme group from hMb produces apo-myoglobin (aMb). Both hMb and aMb share virtually the same HDX protection pattern in helices A-E, whereas helix F is unfolded in aMb. In addition, destabilization is evident for some residues close to the beginning of helix G, the end of helix H, and the C-terminus of the protein. The structural changes reported herein are largely consistent with earlier NMR data for sperm whale myoglobin, although small differences between the two systems are evident. Our findings demonstrate that the level of structural information obtainable with top-down ECD for small to medium-sized proteins considerably surpasses that of traditional HDX-MS experiments, while at the same time greatly reducing undesired amide back exchange.
Collapse
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | | | |
Collapse
|
80
|
Rand KD, Pringle SD, Murphy JP, Fadgen KE, Brown J, Engen JR. Gas-phase hydrogen/deuterium exchange in a traveling wave ion guide for the examination of protein conformations. Anal Chem 2009; 81:10019-28. [PMID: 19921790 PMCID: PMC2794942 DOI: 10.1021/ac901897x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that solution-phase conformations of small globular proteins and large molecular protein assemblies can be preserved for milliseconds after electrospray ionization. Thus, the study of proteins in the gas phase on this time scale is highly desirable. Here we demonstrate that a traveling wave ion guide (TWIG) of a Synapt mass spectrometer offers a highly suitable environment for rapid and efficient gas-phase hydrogen/deuterium exchange (HDX). Gaseous ND(3) was introduced into either the source TWIG or the TWIG located just after the ion mobility cell, such that ions underwent HDX as they passed through the ND(3) on the way to the time-of-flight analyzer. The extent of deuterium labeling could be controlled by varying the quantity of ND(3) or the speed of the traveling wave. The gas-phase HDX of model peptides corresponded to labeling of primarily fast exchanging sites due to the short labeling times (ranging from 0.1 to 10 ms). In addition to peptides, gas-phase HDX of ubiquitin, cytochrome c, lysozyme, and apomyoglobin were examined. We conclude that HDX of protein ions in a TWIG is highly sensitive to protein conformation, enables the detection of conformers present on submilliseconds time scales, and can readily be combined with ion mobility spectrometry.
Collapse
Affiliation(s)
- Kasper D. Rand
- The Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115
| | - Steven D. Pringle
- Waters MS Technologies Centre, Micromass UK Ltd., Floats Rd, Wythenshawe, Manchester M23 9LZ, UK
| | | | | | - Jeff Brown
- Waters MS Technologies Centre, Micromass UK Ltd., Floats Rd, Wythenshawe, Manchester M23 9LZ, UK
| | - John R. Engen
- The Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115
| |
Collapse
|
81
|
Electrospray ionization mass spectrometry as a method for studying the high-pressure denaturation of proteins. Biosci Rep 2009; 30:91-9. [DOI: 10.1042/bsr20090015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-pressure denaturation of proteins can provide important information concerning their folding and function. These studies require expensive and complicated equipment. In this paper, we present a new convenient method for studying high-pressure denaturation of proteins combining DHX (deuterium–hydrogen exchange) and electrospray ionization MS. Application of various values of pressure causes different degrees of protein unfolding resulting in molecules with a different number of protons available for exchange with deuterons. After decompression a protein refolds and a certain number of deuterons are trapped within the hydrophobic core of a refolded protein. Redissolving the deuterated protein in an aqueous buffer initiates the DHX of amides located on the protein surface only, which can be monitored under atmospheric pressure by MS. Depending on the degree of deuteration after high-pressure treatment, the DHX kinetics are different and indicate how many deuterons were trapped in the protein after refolding. The dependence of this number on pressure gives information on the denaturation state of a protein. The distribution of deuterium along the sequence of a high-pressure-denatured protein was studied the ECD (electron-capture-induced dissociation) on a Fourier-transform mass spectrometer, enabling the monitoring of high-pressure denaturation with single amino acid resolution.
Collapse
|
82
|
Rey M, Man P, Brandolin G, Forest E, Pelosi L. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3431-3438. [PMID: 19827048 DOI: 10.1002/rcm.4260] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydrogen/deuterium (H/D) exchange coupled to mass spectrometry is nowadays routinely used to probe protein interactions or conformational changes. The method has many advantages, e.g. very low sample consumption, but offers limited spatial resolution. One way to higher resolution leads through the use of different proteases or their combinations. In the present work we describe recombinant production, purification and use of aspartic protease zymogen from Rhizopus chimensis, protease type XVIII (EC 3.4.23.6), commonly referred to as rhizopuspepsinogen (Rpg). The enzyme was expressed in Escherichia coli, refolded and purified to homogeneity. A typical yield was approximately 100 mg of pure enzyme per 1 L of original bacterial culture. The kinetics of protease activation, i.e. removal of the propeptide achieved by autolysis in an acidic environment, was followed by mass spectrometry. The digestion efficiency was tested for the protease in solution as well as for the immobilized enzyme. Apomyoglobin was successfully digested under all conditions tested and the protease displayed very low or no autodigestion. The results outperformed those obtained with commercial protease where the digestion of apomyoglobin was incomplete and accompanied by many contaminating peptides. Taken together, the recombinant protease type XVIII can be considered as a new and highly efficient tool for H/D exchange followed by mass spectrometry.
Collapse
Affiliation(s)
- Martial Rey
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (BBSI), Institut de Recherches en Technologies et Sciences du Vivant (iRTSV), UMR 5092 CNRS, CEA, Université Joseph Fourier, F-38054 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
83
|
Rand KD, Zehl M, Jensen ON, Jørgensen TJD. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 2009; 81:5577-84. [PMID: 19601649 DOI: 10.1021/ac9008447] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin proteolysis of the labeled protein, the assignment of deuteriums to individual residues is typically not obtained, thereby limiting a detailed understanding of HX and the dynamics of protein structure. Here we use gas-phase fragmentation of peptic peptides by electron transfer dissociation (ETD) to measure the HX of individual amide linkages in the amyloidogenic protein beta2-microglobulin. A comparison of the deuterium levels of 60 individual backbone amides of beta2-microglobulin measured by HX-ETD-MS analysis to the corresponding values measured by NMR spectroscopy shows an excellent correlation. The deuterium labeling pattern of beta2-microglobulin is retained in the gaseous fragment ions by employing mild declustering conditions for electrospray ionization. A recently developed model peptide is used to arrive at such ion source declustering conditions that prevent the occurrence of intramolecular gas-phase hydrogen (1H/2H) migration (i.e., hydrogen scrambling). This article demonstrates that ETD can be implemented in a mass spectrometric method to monitor the conformational dynamics of proteins in solution at single-residue resolution.
Collapse
Affiliation(s)
- Kasper D Rand
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
84
|
Kaltashov IA, Bobst CE, Abzalimov RR. H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top-down approach? Anal Chem 2009; 81:7892-9. [PMID: 19694441 PMCID: PMC2805115 DOI: 10.1021/ac901366n] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen/deuterium exchange (HDX) combined with mass spectrometry (MS) detection has matured in recent years to become a powerful tool in structural biology and biophysics. Several limitations of this technique can and will be addressed by tapping into the ever expanding arsenal of methods to manipulate ions in the gas phase offered by mass spectrometry.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
85
|
Abzalimov RR, Kaplan DA, Easterling ML, Kaltashov IA. Protein conformations can be probed in top-down HDX MS experiments utilizing electron transfer dissociation of protein ions without hydrogen scrambling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1514-7. [PMID: 19467606 PMCID: PMC2725517 DOI: 10.1016/j.jasms.2009.04.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 05/21/2023]
Abstract
Electron-transfer dissociation (ETD) is evaluated as a technique to provide local information on higher order structure and dynamics of a whole protein molecule. Isotopic labeling of highly flexible segments of a model 18 kDa protein is carried out in solution under mildly denaturing conditions by means of hydrogen/deuterium exchange (HDX), followed by transfer of intact protein ions to the gas phase by means of electrospray ionization, and mass-selection of a precursor ion for subsequent reactions with fluoranthene radical anions. The ETD process gives rise to abundant fragment ions, whose deuterium content can be measured as a function of duration of the HDX reaction in solution. No backbone protection is detected for all protein segments spanning the 25-residue long N-terminal part of the protein, which is known to lack structure in solution. At the same time, noticeable protection is evident for segments representing the structured regions of the protein. The results of this work suggest that ETD of intact protein ions is not accompanied by detectable hydrogen scrambling and can be used in tandem with HDX to probe protein conformation in solution.
Collapse
Affiliation(s)
- Rinat R. Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003
| | | | | | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003
- To whom correspondence should be addressed at University of Massachusetts, Department of Chemistry, 710 North Pleasant Street, Lederle Graduate Research Tower #701, Amherst, MA 01003, Tel (413) 545-1460, Fax (413) 545-4490,
| |
Collapse
|
86
|
Bobst CE, Zhang M, Kaltashov IA. Existence of a noncanonical state of iron-bound transferrin at endosomal pH revealed by hydrogen exchange and mass spectrometry. J Mol Biol 2009; 388:954-67. [PMID: 19324057 DOI: 10.1016/j.jmb.2009.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/19/2009] [Accepted: 03/17/2009] [Indexed: 11/30/2022]
Abstract
Transferrin (Tf) is an enigmatic metalloprotein that exhibits a profound conformational change upon binding of ferric ion and a synergistic anion (oxalate or carbonate). While the apo and holo forms of the protein have well-defined and stable conformations termed "open" and "closed," certain aspects of Tf behavior imply the existence of alternative protein states. In this work, hydrogen/deuterium exchange was used in combination with mass spectrometry to map solvent-accessible surfaces of the iron-bound and iron-free forms of the N-terminal lobe of human serum Tf at both neutral and endosomal pH levels. While the deuterium uptake is significantly decelerated in the iron-bound state of the protein (compared with the apo form) at neutral pH, the changes are distributed very unevenly across the protein sequence. Protein segments exhibiting most noticeable gain in protection map onto the interdomain cleft region housing the iron-binding site. At the same time, protection levels of segments located in the bulk of the protein are largely unaffected by the presence of the metal. These observations are fully consistent with the notion of a metal-induced switch from the open to the closed conformation with solvent-inaccessible interdomain cleft. However, differences in the exchange behavior between the apo and holo forms of Tf become much less noticeable at endosomal pH, including the segments located in the interdomain cleft region. Intriguingly, a significant patch in the cleft region becomes slightly less protected in the presence of the metal, suggesting that the holoprotein exists in the open conformation under these slightly acidic conditions. The existence of a noncanonical state of holoTf was postulated several years ago; however, this work provides, for the first time, conclusive evidence that such alternative states are indeed populated in solution.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, Lederle Graduate Research Tower, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
87
|
Pan Y, Stocks BB, Brown L, Konermann L. Structural Characterization of an Integral Membrane Protein in Its Natural Lipid Environment by Oxidative Methionine Labeling and Mass Spectrometry. Anal Chem 2008; 81:28-35. [DOI: 10.1021/ac8020449] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Pan
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bradley B. Stocks
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leonid Brown
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lars Konermann
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|