51
|
Nagashima T, Ueda K, Nishimura C, Yamazaki T. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene. Anal Chem 2015; 87:11544-52. [PMID: 26479462 DOI: 10.1021/acs.analchem.5b03427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules.
Collapse
Affiliation(s)
- Toshio Nagashima
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Keisuke Ueda
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University , 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan
| | - Toshio Yamazaki
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
52
|
Hoppmann C, Maslennikov I, Choe S, Wang L. In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light. J Am Chem Soc 2015; 137:11218-21. [PMID: 26301538 DOI: 10.1021/jacs.5b06234] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.
Collapse
Affiliation(s)
- Christian Hoppmann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco , San Francisco, California 94158, United States
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, Qualcomm Institute, University of California San Diego , San Diego, California 92093, United States
| | - Senyon Choe
- Structural Biology Laboratory, Qualcomm Institute, University of California San Diego , San Diego, California 92093, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
53
|
Wang J, Wei Y, Hu X, Fang YY, Li X, Liu J, Wang S, Yuan Q. Protein Activity Regulation: Inhibition by Closed-Loop Aptamer-Based Structures and Restoration by Near-IR Stimulation. J Am Chem Soc 2015; 137:10576-84. [PMID: 26258907 DOI: 10.1021/jacs.5b04894] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Regulation of protein activity is vital for understanding the molecular mechanism of biological activities. In this work, protein activity is suppressed by proximity-dependent surface hybridization and subsequently restored by near-infrared (NIR) light stimulation. Specifically, by constructing closed-loop structures with two aptamer-based affinity ligands, significantly enhanced inhibition of thrombin activity is achieved compared to traditional single affinity ligand based inhibitors. Furthermore, the activity of inhibited thrombin is efficiently recovered under NIR light stimulation by using gold nanorods (AuNRs) as photothermal agents to disrupt the closed-loop structures. Real-time and in situ monitoring of the conversion of fibrinogen into fibrin catalyzed by both inhibited and recovered thrombin was performed with light scattering spectroscopy and laser scanning confocal microscopy (LSCM). Thrombin trapped in the closed-loop structures shows slow reaction kinetics, while the photothermally liberated thrombin displays largely recovered catalytic activity. Human plasma was further employed to demonstrate that both the inhibited and restored thrombin can be applied to clotting reaction in reality. This strategy provides protein activity regulation for studying the molecular basis of biological activities and can be further applied to potential areas such as metabolic pathway regulation and the development of protein-inhibitor pharmaceuticals.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Yurong Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China.,Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, China
| | - Xiaoxia Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Yu-Yan Fang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xinyang Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Jian Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Shengfu Wang
- Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
54
|
Hu T, Li Z, Wang T, Zeng H. Synthesis and Properties of Photochromic Diarylethenes Bearing Thiazole Moiety. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiesheng Hu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Zhipeng Li
- School of Chemistry and Chemical Engineering and State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Tingting Wang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Heping Zeng
- School of Chemistry and Chemical Engineering and State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| |
Collapse
|
55
|
Wu L, Wu Y, Jin H, Zhang L, He Y, Tang X. Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00378k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoisomerization of an azobenzene moiety modulates the thermodynamic stability of hairpin ODNs by interfering with stacking interation between azobenzene and neighbouring base pair and dihedral angle of the neighbouring base pair.
Collapse
Affiliation(s)
- Li Wu
- College of Chemistry Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Ya Wu
- College of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710062
- China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yujian He
- College of Chemistry Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
56
|
Han G, Feng N, Wang G. Fluorescence Quenching of Hen Egg Lysozyme and Bovine Serum Albumin by Azobenzene Polymer at Different pH. CHEM LETT 2014. [DOI: 10.1246/cl.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoxiang Han
- School of Materials Science and Engineering, University of Science and Technology Beijing
| | - Ning Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing
| |
Collapse
|
57
|
Garcia-Amorós J, Velasco D. Understanding the fast thermal isomerisation of azophenols in glassy and liquid-crystalline polymers. Phys Chem Chem Phys 2014; 16:3108-14. [PMID: 24402615 DOI: 10.1039/c3cp54519a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The good solubility of azophenols in low molar mass liquid crystals together with the ability of their related polymers to form homogeneous nematic and glassy thin films make such azoderivatives valuable chromophores to get a great variety of photoactivatable systems with fast switching speeds under ambient conditions. In fact, the final applicability of these systems is mainly determined by the thermal cis-to-trans isomerisation rate of the photoactive azophenol used, in other words, by the intimate mechanism the reaction goes through. The kinetico-mechanistic study reported herein shows that the rate of the thermal back reaction for azophenols is very sensitive to the local environment where the azo chromophore is located, mainly to its capability to establish hydrogen bonding with its surroundings. With a proper design, azophenol-based polymers can exhibit thermal isomerisation rates as fast as those of the monomers in solution even without the presence of any solvent.
Collapse
Affiliation(s)
- Jaume Garcia-Amorós
- Grup de Materials Orgànics, Departament de Química Orgànica, Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain.
| | | |
Collapse
|
58
|
Hoppmann C, Lacey VK, Louie GV, Wei J, Noel JP, Wang L. Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew Chem Int Ed Engl 2014; 53:3932-6. [PMID: 24615769 PMCID: PMC4051619 DOI: 10.1002/anie.201400001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/27/2014] [Indexed: 01/31/2023]
Abstract
The ability to reversibly control protein structure and function with light would offer high spatiotemporal resolution for investigating biological processes. To confer photoresponsiveness on general proteins, we genetically incorporated a set of photoswitchable click amino acids (PSCaas), which contain both a reversible photoswitch and an additional click functional group for further modifications. Orthogonal tRNA-synthetases were evolved to genetically encode PSCaas bearing azobenzene with an alkene, keto, or benzyl chloride group in E. coli and in mammalian cells. After incorporation into calmodulin, the benzyl chloride PSCaa spontaneously generated a covalent protein bridge by reacting with a nearby cysteine residue through proximity-enabled bioreactivity. The resultant azobenzene bridge isomerized in response to light, thereby changing the conformation of calmodulin. These genetically encodable PSCaas will prove valuable for engineering photoswitchable bridges into proteins for reversible optogenetic regulation.
Collapse
Affiliation(s)
- Christian Hoppmann
- Chemical Biology and Proteomics Laboratory The Salk Institute for Biological Studies 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Vanessa K. Lacey
- Chemical Biology and Proteomics Laboratory The Salk Institute for Biological Studies 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Gordon V. Louie
- Chemical Biology and Proteomics Laboratory The Salk Institute for Biological Studies 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Jing Wei
- Jadebio, Inc., La Jolla, CA 92037 (USA)
| | - Joseph P. Noel
- Chemical Biology and Proteomics Laboratory The Salk Institute for Biological Studies 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
- Howard Hughes Medical Institute
| | - Lei Wang
- Chemical Biology and Proteomics Laboratory The Salk Institute for Biological Studies 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
59
|
Hoppmann C, Lacey VK, Louie GV, Wei J, Noel JP, Wang L. Genetically Encoding Photoswitchable Click Amino Acids inEscherichia coliand Mammalian Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
60
|
Doran TM, Ryan DM, Nilsson BL. Reversible photocontrol of self-assembled peptide hydrogel viscoelasticity. Polym Chem 2014. [DOI: 10.1039/c3py00903c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide hydrogels are promising biomaterials for applications ranging from drug delivery to tissue engineering.
Collapse
Affiliation(s)
- Todd M. Doran
- Department of Chemistry
- University of Rochester
- Rochester
- USA
| | - Derek M. Ryan
- Department of Chemistry
- University of Rochester
- Rochester
- USA
| | | |
Collapse
|
61
|
Sakamoto S, Terauchi M, Araki Y, Wada T. Design and semisynthesis of photoactivable split-GFP by incorporation of photocleavable functionality. Biopolymers 2013; 100:773-9. [PMID: 23893715 DOI: 10.1002/bip.22304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/13/2013] [Accepted: 05/30/2013] [Indexed: 11/07/2022]
Abstract
The design of proteins whose structure and function can be manipulated by the external stimuli has been of great interest in the field of protein engineering. In particular, caged proteins which can be activated by photo-irradiation become powerful tools for investigating a variety of biological events. Although protein caging is straightforward to render light-responsive protein functions, this approach mostly have difficulties based on the preparation of caged proteins in which amino acid residues required for biological activities must be specifically modified with synthetic photolabile groups. The synthetic peptide-based strategy for photoactivation of protein function may expand the versatility of protein caging approaches since the photolabile protecting group can be easily introduced into the peptide by means of standard solid-phase methods in a site-specific manner. In this study, we designed a new photoactivable green fluorescent protein (GFP), in which a relatively short C-terminal fragment (residues 214-230) of a dissected protein was modified with 7-diethylamino-4-hydroxymethylcoumarin (DECM) as a photoresponsive-protecting group. The introduced DECM unit completely inhibited the reconstitution with the GFP N-terminal fragment (residues 2-214). However, irradiation of visible light (>400 nm) resulted in efficient cleavage of DECM group, leading to acceleration of protein reassembly and concomitant GFP fluorescence recovery. These results demonstrated direct control of protein structure and function by application of the synthetic photocleavable functionality to a fragmented protein. The combined system of fragmented proteins and synthetic photocleavable elements will provide the useful and potentially wide applicable strategy for the regulation of protein structure and function by the light in a temporal and spacial manner.
Collapse
Affiliation(s)
- Seiji Sakamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | | | | | | |
Collapse
|
62
|
Leonard S, Cormier A, Pang X, Zimmerman M, Zhou HX, Paravastu A. Solid-state NMR evidence for β-hairpin structure within MAX8 designer peptide nanofibers. Biophys J 2013; 105:222-30. [PMID: 23823242 PMCID: PMC3699732 DOI: 10.1016/j.bpj.2013.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023] Open
Abstract
MAX8, a designer peptide known to undergo self-assembly following changes in temperature, pH, and ionic strength, has demonstrated usefulness for tissue engineering and drug delivery. It is hypothesized that the self-assembled MAX8 nanofiber structure consists of closed β-hairpins aligned into antiparallel β-sheets. Here, we report evidence from solid-state NMR spectroscopy that supports the presence of the hypothesized β-hairpin conformation within the nanofiber structure. Specifically, our (13)C-(13)C two-dimensional exchange data indicate spatial proximity between V3 and K17, and (13)C-(13)C dipolar coupling measurements reveal proximity between the V3 and V18 backbone carbonyls. Moreover, isotopic dilution of labeled MAX8 nanofibers did not result in a loss of the (13)C-(13)C dipolar couplings, showing that these couplings are primarily intramolecular. NMR spectra also indicate the existence of a minor conformation, which is discussed in terms of previously hypothesized nanofiber physical cross-linking and possible nanofiber polymorphism.
Collapse
Affiliation(s)
- Sarah R. Leonard
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Ashley R. Cormier
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Maxwell I. Zimmerman
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Anant K. Paravastu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
- National High Magnetic Field Laboratory, Tallahassee, Florida
| |
Collapse
|
63
|
Abstract
By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.
Collapse
|
64
|
Goulet-Hanssens A, Barrett CJ. Photo-control of biological systems with azobenzene polymers. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26735] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexis Goulet-Hanssens
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec Canada H3A 0B8
| | - Christopher J. Barrett
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec Canada H3A 0B8
| |
Collapse
|
65
|
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev 2013; 113:6114-78. [DOI: 10.1021/cr300179f] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wiktor Szymański
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - John M. Beierle
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Hans A. V. Kistemaker
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Willem A. Velema
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| |
Collapse
|
66
|
Cao J, Liu LH, Fang WH, Xie ZZ, Zhang Y. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases. J Chem Phys 2013; 138:134306. [DOI: 10.1063/1.4798642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
67
|
Ulrich S, Dumy P, Boturyn D, Renaudet O. Engineering of biomolecules for sensing and imaging applications. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Samanta S, Qureshi HI, Woolley GA. A bisazobenzene crosslinker that isomerizes with visible light. Beilstein J Org Chem 2012; 8:2184-90. [PMID: 23359333 PMCID: PMC3554325 DOI: 10.3762/bjoc.8.246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/26/2012] [Indexed: 11/23/2022] Open
Abstract
Background: Large conformational and functional changes of azobenzene-modified biomolecules require longer azobenzene derivatives that undergo large end-to-end distance changes upon photoisomerization. In addition, isomerization that occurs with visible rather than UV irradiation is preferred for biological applications. Results: We report the synthesis and characterization of a new crosslinker in which a central piperazine unit links two azobenzene chromophores. Molecular modeling indicates that this crosslinker can undergo a large change in end-to-end distance upon trans,trans to cis,cis isomerization. Photochemical characterization indicates that it does isomerize with visible light (violet to blue wavelengths). However, the thermal relaxation rate of this crosslinker is rather high (τ½ ~ 1 s in aqueous buffer at neutral pH) so that it is difficult to produce large fractions of the cis,cis-species without very bright light sources. Conclusion: While cis-lifetimes may be longer when the crosslinker is attached to a biomolecule, it appears the para-piperazine unit may be best suited for applications where rapid thermal relaxation is required.
Collapse
Affiliation(s)
- Subhas Samanta
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada; telephone: (416) 978-0675, fax: (416) 978-8775
| | | | | |
Collapse
|
69
|
Wang G, Zhang J. Photoresponsive molecular switches for biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
70
|
Wang R, Pu S, Liu G, Cui S. The effect of the formyl group position upon asymmetric isomeric diarylethenes bearing a naphthalene moiety. Beilstein J Org Chem 2012; 8:1018-26. [PMID: 23019429 PMCID: PMC3458719 DOI: 10.3762/bjoc.8.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/19/2012] [Indexed: 11/23/2022] Open
Abstract
Three new isomeric asymmetric diarylethenes with a naphthyl moiety and a formyl group at the para, meta or ortho position of the terminal benzene ring were synthesized. Their photochromism, fluorescent-switch, and electrochemical properties were investigated. Among these diarylethenes, the one with a formyl group at the ortho position of benzene displayed the largest molar absorption coefficients and fluorescence quantum yield. The cyclization quantum yields of these compounds increased in the order of para < ortho < meta, whereas their cycloreversion quantum yields decreased in the order of meta > para > ortho. Additionally, all of these diarylethenes functioned as effective fluorescent switches in both solution and PMMA films. Cyclic voltammograms proved that the formyl group and its position could effectively modulate the electrochemical behaviors of these diarylethene derivatives.
Collapse
Affiliation(s)
- Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | | | | | | |
Collapse
|
71
|
Beharry AA, Chen T, Al-Abdul-Wahid MS, Samanta S, Davidov K, Sadovski O, Ali AM, Chen SB, Prosser RS, Chan HS, Woolley GA. Quantitative analysis of the effects of photoswitchable distance constraints on the structure of a globular protein. Biochemistry 2012; 51:6421-31. [PMID: 22803618 DOI: 10.1021/bi300685a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoswitchable distance constraints in the form of photoisomerizable chemical cross-links offer a general approach to the design of reversibly photocontrolled proteins. To apply these effectively, however, one must have guidelines for the choice of cross-linker structure and cross-linker attachment sites. Here we investigate the effects of varying cross-linker structure on the photocontrol of folding of the Fyn SH3 domain, a well-studied model protein. We develop a theoretical framework based on an explicit-chain model of protein folding, modified to include detailed model linkers, that allows prediction of the effect of a given linker on the free energy of folding of a protein. Using this framework, we were able to quantitatively explain the experimental result that a longer, but somewhat flexible, cross-linker is less destabilizing to the folded state than a shorter more rigid cross-linker. The models also suggest how misfolded states may be generated by cross-linking, providing a rationale for altered dynamics seen in nuclear magnetic resonance analyses of these proteins. The theoretical framework is readily portable to any protein of known folded state structure and thus can be used to guide the design of photoswitchable proteins generally.
Collapse
Affiliation(s)
- Andrew A Beharry
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
73
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
74
|
Samanta S, Qin C, Lough AJ, Woolley GA. Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative. Angew Chem Int Ed Engl 2012; 51:6452-5. [PMID: 22644657 DOI: 10.1002/anie.201202383] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Indexed: 11/07/2022]
Abstract
It goes both ways: A thiol-reactive cross-linker based on a bridged azobenzene derivative permits photoreversible control of peptide conformation on irradiation with violet (407 nm) and green (500-550 nm) light (see picture) through isomerization of the cross-linker. The large separation of the absorbance bands of the cis (yellow) and trans (red) isomers enables complete bidirectional photoswitching.
Collapse
Affiliation(s)
- Subhas Samanta
- Dept. of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | | | | | | |
Collapse
|
75
|
Samanta S, Qin C, Lough AJ, Woolley GA. Bidirectional Photocontrol of Peptide Conformation with a Bridged Azobenzene Derivative. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202383] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly. ACS Chem Neurosci 2012; 3:211-20. [PMID: 22860190 DOI: 10.1021/cn2001188] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Indexed: 11/30/2022] Open
Abstract
Amyloid-β (Aβ) self-assembly into cross-β amyloid fibrils is implicated in a causative role in Alzheimer's disease pathology. Uncertainties persist regarding the mechanisms of amyloid self-assembly and the role of metastable prefibrillar aggregates. Aβ fibrils feature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self-assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study the role turn nucleation plays on Aβ self-assembly. [3-(3-Aminomethyl)phenylazo]phenylacetic acid (AMPP) was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42 conformer forms fibrillar constructs that are similar in almost all characteristics, including cytotoxicity, to wild-type Aβ42. Conversely, the cis-AMPP Aβ42 congeners formed nonfibrillar, amorphous aggregates that exhibited no cytotoxicity. Additionally, cis-trans photoisomerization resulted in rapid formation of native-like amyloid fibrils and trans-cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photocontrol over Aβ turn conformation provides significant insight into Aβ self-assembly. Specifically, Aβ mutants that adopt stable β-turns form aggregate structures that are unable to enter folding pathways leading to cross-β fibrils and cytotoxic prefibrillar intermediates.
Collapse
Affiliation(s)
- Todd M. Doran
- Department of Chemistry, University of Rochester, Rochester, New York 14627,
United States
| | - Elizabeth A. Anderson
- Department of Chemistry, University of Rochester, Rochester, New York 14627,
United States
| | - Sarah E. Latchney
- Department
of Environmental
Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Lisa A. Opanashuk
- Department
of Environmental
Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Bradley L. Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
77
|
Panja A, Matsuo T, Nagao S, Hirota S. DNA Cleavage by the Photocontrolled Cooperation of ZnII Centers in an Azobenzene-Linked Dizinc Complex. Inorg Chem 2011; 50:11437-45. [DOI: 10.1021/ic201244y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anangamohan Panja
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan
| | - Takashi Matsuo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan
| |
Collapse
|
78
|
Hoppmann C, Schmieder P, Heinrich N, Beyermann M. Photoswitchable Click Amino Acids: Light Control of Conformation and Bioactivity. Chembiochem 2011; 12:2555-9. [DOI: 10.1002/cbic.201100578] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Indexed: 01/04/2023]
|
79
|
Resonant two-photon ionization spectroscopy of the 35Cl and 37Cl isotopomers of cis and trans 3-chloro-4-fluoroanisole. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.05.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
|
81
|
Hoppmann C, Schmieder P, Domaing P, Vogelreiter G, Eichhorst J, Wiesner B, Morano I, Rück-Braun K, Beyermann M. Photocontrol of Contracting Muscle Fibers. Angew Chem Int Ed Engl 2011; 50:7699-702. [DOI: 10.1002/anie.201101398] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/18/2011] [Indexed: 01/26/2023]
|
82
|
Samanta S, Woolley GA. Bis-azobenzene crosslinkers for photocontrol of peptide structure. Chembiochem 2011; 12:1712-23. [PMID: 21698738 DOI: 10.1002/cbic.201100204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 11/08/2022]
Abstract
Crosslinkers that undergo large changes in length upon photoisomerization can produce large conformational changes, and thereby functional changes, in biomolecules. We have designed and synthesized extended and rigid bis-azobenzene crosslinkers: 4,4'-bis(4-(2-chloroacetamido)phenyl)diazenylbiphenyl (BPDB) and the water-soluble sulfonated analogue 4,4'-bis(4-(2-chloroacetamido)phenyl)diazenylbiphenyl-2,2'-disulfonate (BPDBS). These photoswitches can produce end-to-end distance changes of a minimum of ≈5 Å and a maximum of ≈23 Å upon trans/cis isomerization. They have high absorption coefficients (45-60 000 M(-1) cm(-1) ) and can produce up to ≈80 % cis isomers under favorable conditions. The photoswitching behavior of BPDBS-crosslinked peptides was found to be highly dependent on the crosslinker attachment site. Upon UV irradiation (365 nm), significant decreases in α-helix content were observed for peptides that were crosslinked with BPDBS through Cys residues at i,i+19, and i,i+21 positions. In contrast, large increases in α-helix content were exhibited by i,i+11 crosslinked peptides. BPDBS thus constitutes a particularly bright and effective photoswitch for biomolecule photocontrol.
Collapse
Affiliation(s)
- Subhas Samanta
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | |
Collapse
|
83
|
Abstract
The photoisomerization of azobenzene has been known for almost 75 years but only recently has this process been widely applied to biological systems. The central challenge of how to productively couple the isomerization process to a large functional change in a biomolecule has been met in a number of instances and it appears that effective photocontrol of a large variety of biomolecules may be possible. This critical review summarizes key properties of azobenzene that enable its use as a photoswitch in biological systems and describes strategies for using azobenzene photoswitches to drive functional changes in peptides, proteins, nucleic acids, lipids, and carbohydrates (192 references).
Collapse
Affiliation(s)
- Andrew A Beharry
- Department of Chemistry, University of Toronto, 80 St. George St. Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
84
|
Beharry AA, Wong L, Tropepe V, Woolley GA. Fluorescence Imaging of Azobenzene Photoswitching In Vivo. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006506] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
Beharry AA, Wong L, Tropepe V, Woolley GA. Fluorescence Imaging of Azobenzene Photoswitching In Vivo. Angew Chem Int Ed Engl 2011; 50:1325-7. [DOI: 10.1002/anie.201006506] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Indexed: 11/10/2022]
|
86
|
Singer M, Jäschke A. Reversibly photoswitchable nucleosides: synthesis and photochromic properties of diarylethene-functionalized 7-deazaadenosine derivatives. J Am Chem Soc 2010; 132:8372-7. [PMID: 20481531 DOI: 10.1021/ja1024782] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochromic nucleosides were designed that combine the structural features and molecular recognition properties of nucleic acids with the light-sensitivity of diarylethenes. Target compounds 1a-c consist of a 7-deazaadenosine unit that is linked to a thiophene as the second aryl functionality via a 1,2-cyclopentenyl linker. These nucleoside analogues undergo a reversible electrocyclic rearrangement, generating strongly colored closed-ring isomers upon irradiation with UV-light, while exposure to light in the visible range triggers the cycloreversion to the colorless opened-ring form. UV-vis spectroscopy, HPLC, and (1)H NMR measurements revealed recognition of complementary thymidine and up to 97% conversion to the thermally stable closed-ring isomers after illumination with UV-light. The required wavelength for ring closure was found to vary depending on the substituents attached to the thiophene moiety. In a first design step, we used this important feature of diarylethenes to shift the switching wavelength from initially 300 nm (1a) to 405 nm (1cH(+)). In a second step, we generated a pair of orthogonal switches, differing enough in their respective switching wavelengths to be controlled independently in the same sample. Finally, a molecular switch was developed that showed both photochromism and acidichromism, thereby illustrating the possibility to gate the spectral properties to multiple stimuli. These new photochromic nucleosides represent useful building blocks for the generation of light-sensitive nucleic acids either by inducing conformational changes upon isomerization or by exploring the different spectral properties of the closed and opened isomers, for example, for use as reversible fluorescence quenchers.
Collapse
Affiliation(s)
- Marco Singer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | | |
Collapse
|
87
|
Löwik DWPM, Leunissen EHP, van den Heuvel M, Hansen MB, van Hest JCM. Stimulus responsive peptide based materials. Chem Soc Rev 2010; 39:3394-412. [DOI: 10.1039/b914342b] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
88
|
Abstract
For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner. To determine which residues when cross-linked show the largest "photoswitch effect," i.e., difference in activity when illuminated with UV vs. blue light, > 30 variants of a single-chain version of the restriction endonuclease PvuII were produced, modified with azobenzene, and tested for DNA cleavage activity. In general, introducing single cross-links in the enzyme leads to only small effects, whereas with multiple cross-links and additional mutations larger effects are observed. Some of the modified variants, which carry the cross-links close to the catalytic center, can be modulated in their DNA cleavage activity by a factor of up to 16 by illumination with UV (azobenzene in cis) and blue light (azobenzene in trans), respectively. The change in activity is achieved in seconds, is fully reversible, and, in the case analyzed, is due to a change in V(max) rather than K(m).
Collapse
|
89
|
Azuma Y, Imanishi M, Yoshimura T, Kawabata T, Futaki S. Cobalt(II)-responsive DNA binding of a GCN4-bZIP protein containing cysteine residues functionalized with iminodiacetic acid. Angew Chem Int Ed Engl 2009; 48:6853-6. [PMID: 19655361 DOI: 10.1002/anie.200902888] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yusuke Azuma
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
90
|
Wu J, Isaacs L. Cucurbit[7]uril Complexation Drives Thermaltrans-cis-Azobenzene Isomerization and Enables Colorimetric Amine Detection. Chemistry 2009; 15:11675-80. [DOI: 10.1002/chem.200901522] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
91
|
Azuma Y, Imanishi M, Yoshimura T, Kawabata T, Futaki S. Cobalt(II)-Responsive DNA Binding of a GCN4-bZIP Protein Containing Cysteine Residues Functionalized with Iminodiacetic Acid. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902888] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
92
|
Hansen M, Ruizendaal L, Löwik D, van Hest J. Switchable peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2009; 6:e1-e40. [PMID: 24128990 DOI: 10.1016/j.ddtec.2009.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|