Osuka A, Fujikane D, Shinmori H, Kobatake S, Irie M. Synthesis and photoisomerization of dithienylethene-bridged diporphyrins.
J Org Chem 2001;
66:3913-23. [PMID:
11375015 DOI:
10.1021/jo010001p]
[Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dithienylethene-bridged diporphyrins 1-6 were prepared as photochemical switching molecules. Porphyrin and dithienylethene are directly linked in 1, and linked, respectively, through a 1,4-phenylene spacer in 2, through a 4-ethynylphenylene spacer in 3, and through a di-4-phenylethynylene spacer in 4, while meso-ethynylated porphyrin and dithienylethene are directly connected in 5 and linked through a 1,4-phenylene spacer in 6. Compounds 1, 2, and 5 do not undergo any photochemical isomerization, probably due to efficient quenching of the excited dithienylethene by the attached porphyrin moiety via intramolecular energy transfer. Compounds 4 and 6 undergo open-to-closed and closed-to-open photoisomerizations in quantum yields of 4.3 x 10(-)(2) and 1.8 x 10(-)(3), and 2.6 x 10(-)(3) and 7.5 x 10(-)(4), respectively, by irradiation with 313 and 625 nm light, which are considerably smaller than quantum yields of 0.52 and 3.8 x 10(-)(3) for reference dithienylethene molecule 7. The fluorescence of 4 was regulated in a reversible manner by the photoisomerization of the dithienylethene moiety. In addition, the absorption properties of the porphyrin in 6 changed in response to the photochromic reaction of the dithienylethene bridge.
Collapse