51
|
Puente Santiago AR, Sanad MF, Moreno-Vicente A, Ahsan MA, Cerón MR, Yao YR, Sreenivasan ST, Rodriguez-Fortea A, Poblet JM, Echegoyen L. A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M 3N@C 2n (2 n = 68, 78, and 80) Fullerenes. J Am Chem Soc 2021; 143:6037-6042. [PMID: 33821637 DOI: 10.1021/jacs.0c13002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven M3N@2n (2n = 68, 78, and 80) fullerenes (Gd3N@Ih(7)-C80, Y3N@Ih(7)-C80, Lu3N@Ih(7)-C80, Sc3N@Ih(7)-C80, Sc3N@D5h(6)-C80, Sc3N@D3h(5)-C78, and Sc3N@D3(6140)-C68) using a combination of experimental and theoretical techniques. The non-IPR Sc3N@D3(6140)-C68 compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg-1 at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.
Collapse
Affiliation(s)
- Alain R Puente Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Mohamed Fathi Sanad
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Department of Environmental Sciences and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Moreno-Vicente
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory 7000 East Ave, Livermore, California 94550, United States
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Rodriguez-Fortea
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
52
|
Calatayud DG, Jardiel T, Bernardo MS, Mirabello V, Ge H, Arrowsmith RL, Cortezon-Tamarit F, Alcaraz L, Isasi J, Arévalo P, Caballero AC, Pascu SI, Peiteado M. Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS APPLIED BIO MATERIALS 2021; 4:4105-4118. [PMID: 34056563 PMCID: PMC8155200 DOI: 10.1021/acsabm.0c01417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
![]()
Existing fluorescent
labels used in life sciences are based on
organic compounds with limited lifetime or on quantum dots which are
either expensive or toxic and have low kinetic stability in biological
environments. To address these challenges, luminescent nanomaterials
have been conceived as hierarchical, core–shell structures
with spherical morphology and highly controlled dimensions. These
tailor-made nanophosphors incorporate Ln:YVO4 nanoparticles
(Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and
narrow emission maxima centered at ∼565 nm. These cores can
be encapsulated in silica shells with highly controlled dimensions
as well as functionalized with chitosan or PEG5000 to reduce nonspecific
interactions with biomolecules in living cells. Confocal fluorescence
microscopy in living prostate cancer cells confirmed the potential
of these platforms to overcome the disadvantages of commercial fluorophores
and their feasibility as labels for multiplexing, biosensing, and
imaging in life science assays.
Collapse
Affiliation(s)
- David G Calatayud
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Mara S Bernardo
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Lorena Alcaraz
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Josefa Isasi
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Pablo Arévalo
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Amador C Caballero
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Marco Peiteado
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
53
|
Ahsan MA, He T, Eid K, Abdullah AM, Curry ML, Du A, Puente Santiago AR, Echegoyen L, Noveron JC. Tuning the Intermolecular Electron Transfer of Low-Dimensional and Metal-Free BCN/C 60 Electrocatalysts via Interfacial Defects for Efficient Hydrogen and Oxygen Electrochemistry. J Am Chem Soc 2021; 143:1203-1215. [PMID: 33401899 DOI: 10.1021/jacs.0c12386] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of low-dimensional (LD) supramolecular materials with multifunctional electrocatalytic properties has sparked the attention of the catalysis community. Herein, we report the synthesis of a new class of 0D-2D heterostructures composed of boron carbon nitride nanosheets (BCN NSs) and fullerene molecules (C60/F) that exhibit multifunctional electrocatalytic properties for the hydrogen evolution/oxidation reactions (HER/HOR) and the oxygen evolution/reduction reactions (OER/ORR). The electrocatalytic properties were studied with varying F:BCN weight ratios to optimize the intermolecular electron transfer (ET) from the BCN NSs to the electron-accepting C60 molecules. The nanohybrid supramolecular material with 10 wt % F in BCN NSs (10% F/BCN) exhibited the largest Raman and C 1s binding energy shifts, which were associated with greater cooperativity interactions and enhanced ET processes at the F/BCN interface. This synergistic interfacial phenomenon resulted in highly active catalytic sites that markedly boosted electrocatalytic activity of the material. The 10% F/BCN showed the highest tetrafunctional catalytic performance, outperforming the OER catalytic activity of commercial RuO2 catalysts with a η10 of 390 mV and very competitive onset potential values of -0.042 and 0.92 V vs RHE for HER and ORR, respectively, and a current density value of 1.47 mA cm-2 at 0.1 V vs RHE with an ultralow ΔGH* value of -0.03 eV toward the HOR process. Additionally, the 10% F/BCN catalyst was also used as both cathode and anode in a water splitting device, delivering a cell potential of 1.61 V to reach a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Md Ariful Ahsan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States.,Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Tianwei He
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Michael L Curry
- Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Aijun Du
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Alain R Puente Santiago
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan C Noveron
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States.,Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|