51
|
N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction. NANOMATERIALS 2021; 11:nano11092418. [PMID: 34578734 PMCID: PMC8470669 DOI: 10.3390/nano11092418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
N-doped graphene samples with different N species contents were prepared by a two-step synthesis method and evaluated as electrocatalysts for the nitrate reduction reaction (NORR) for the first time. In an acidic solution with a saturated calomel electrode as reference, the pyridinic-N dominant sample (NGR2) had an onset of 0.932 V and a half-wave potential of 0.833 V, showing the superior activity towards the NORR compared to the pyrrolic-N dominant N-doped graphene (onset potential: 0.850 V, half-wave potential: 0.732 V) and the pure graphene (onset potential: 0.698 V, half-wave potential: 0.506 V). N doping could significantly boost the NORR performance of N-doped graphene, especially the contribution of pyridinic-N. Density functional theory calculation revealed the pyridinic-N facilitated the desorption of NO, which was kinetically involved in the process of the NORR. The findings of this work would be valuable for the development of metal-free NORR electrocatalysts.
Collapse
|
52
|
Sanad MF, Chava VSN, Shalan AE, Enriquez LG, Zheng T, Pilla S, Sreenivasan ST. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40731-40741. [PMID: 34424665 DOI: 10.1021/acsami.1c12423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Facile electron transport and intimate electronic contact at the catalyst-electrode interface are critical for the ideal performance of electrochemical devices such as glucose biofuel cells and biosensors. Here, through a comprehensive experimental-theoretical exploration, we demonstrate that engineering of interfacial properties, including interfacial electron dynamics, electron affinity, electrode-catalyst-adsorbate electrical synergy, and electrocatalytically active surface area, can lead to highly efficient graphene-based electrochemical devices. We selected two closely related but electronically and surface chemically different functionalized graphene analogues-graphene acid (GA) and reduced graphene oxide (rGO)-as the model graphenic platforms. Our studies reveal that compared to rGO, GA is a superior bifunctional catalyst with high oxygen reduction reaction (an onset potential of 0.8 V) and good glucose oxidation activities. Spectroscopic and electrochemical analysis of GA and rGO indicated that the higher carboxylic acid content on GA increases its overall electron affinity and coupled with improved conductivity and band alignment, which leads to GA's better electrochemical performance. The formulation of a heterostructure between GA and samarium oxide (Sm2O3) nanoparticles led to augmented conductivity (lower charge-transfer resistance) and glucose binding affinity, resulting in a further enhanced glucose oxidation activity. The interdimensional Sm2O3/GA heterostructure, leveraging their enhanced glucose oxidation capacity, exhibited excellent nonenzymatic amperometric glucose sensing performance, with a detection limit of 107 nM and a sensitivity of 20.8 μA/μM. Further, a nonenzymatic, membrane-free glucose biofuel cell (with Sm2O3/GA heterostructure as anode and GA as biocathode) produced a power density of 3.2 μW·cm-2 (in PBS spiked with 3 mM glucose), which can function as self-powered glucose sensors with 70 nM limit of detection. The study establishes the potential of interfacial engineering of GA to engage it as a highly tunable substrate for a broad range of electrochemical applications, especially in future self-powered biosensors.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
- Department of Environmental Sciences and Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Venkata S N Chava
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Lissette Garcia Enriquez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, South Carolina 29607, United States
| | - Srikanth Pilla
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, South Carolina 29607, United States
- Clemson Composites Centre, Clemson University, Greenville, South Carolina 29607, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29602, United States
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29602, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
53
|
Wu X, Zhang H, Zhang J, Lou XWD. Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008376. [PMID: 34405909 DOI: 10.1002/adma.202008376] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/11/2021] [Indexed: 06/13/2023]
Abstract
Transition metal dichalcogenides (TMDCs) hold great promise for electrochemical energy conversion technologies in view of their unique structural features associated with the layered structure and ultrathin thickness. Because the inert basal plane accounts for the majority of a TMDC's bulk, activation of the basal plane sites is necessary to fully exploit the intrinsic potential of TMDCs. Here, recent advances on TMDCs-based hybrids/composites with greatly enhanced electrochemical activity are reviewed. After a summary of the synthesis of TMDCs with different sizes and morphologies, comprehensive in-plane activation strategies are described in detail, mainly including in-plane-modification-induced phase transformation, surface-layer modulation, and interlayer modification/coupling. Simultaneously, the underlying mechanisms for improved electrochemical activities are highlighted. Finally, the strategic evaluation on further research directions of TMDCs in-plane activation is featured. This work would shed some light on future design trends of TMDCs-based functional materials for electrochemical energy-related applications.
Collapse
Affiliation(s)
- Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
54
|
Sun X, Xie F, Peng Z, Peng X, Chen W, Shi C, Chen C, Li Y, Wei M. In‐Situ Growth Mirror‐Like Cobalt Sulfide Nanosheets on ITO for High Efficiency Counter Electrode of Dye‐Sensitized Solar Cells**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xun Sun
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
- Fujian Key Laboratory of Functional Marine Sensing Materials Minjiang University Fuzhou Fujian 350002 China
| | - Fengyan Xie
- Fujian Key Laboratory of Functional Marine Sensing Materials Minjiang University Fuzhou Fujian 350002 China
| | - Zhen Peng
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Xiantao Peng
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Wangchao Chen
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Chengwu Shi
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Caiyun Chen
- Fujian Institute of Metrology Fuzhou Fujian 350002 China
| | - Yafeng Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials Fuzhou University Fuzhou Fujian 350002 China
| | - Mingdeng Wei
- Fujian Key Laboratory of Electrochemical Energy Storage Materials Fuzhou University Fuzhou Fujian 350002 China
| |
Collapse
|
55
|
Blackstone C, Ignaszak A. Van der Waals Heterostructures-Recent Progress in Electrode Materials for Clean Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3754. [PMID: 34279324 PMCID: PMC8269904 DOI: 10.3390/ma14133754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/09/2023]
Abstract
The unique layered morphology of van der Waals (vdW) heterostructures give rise to a blended set of electrochemical properties from the 2D sheet components. Herein an overview of their potential in energy storage systems in place of precious metals is conducted. The most recent progress on vdW electrocatalysis covering the last three years of research is evaluated, with an emphasis on their catalytic activity towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). This analysis is conducted in pair with the most active Pt-based commercial catalyst currently utilized in energy systems that rely on the above-listed electrochemistry (metal-air battery, fuel cells, and water electrolyzers). Based on current progress in HER catalysis that employs vdW materials, several recommendations can be stated. First, stacking of the two types vdW materials, with one being graphene or its doped derivatives, results in significantly improved HER activity. The second important recommendation is to take advantage of an electronic coupling when stacking 2D materials with the metallic surface. This significantly reduces the face-to-face contact resistance and thus improves the electron transfer from the metallic surface to the vdW catalytic plane. A dual advantage can be achieved from combining the vdW heterostructure with metals containing an excess of d electrons (e.g., gold). Despite these recent and promising discoveries, more studies are needed to solve the complexity of the mechanism of HER reaction, in particular with respect to the electron coupling effects (metal/vdW combinations). In addition, more affordable synthetic pathways allowing for a well-controlled confined HER catalysis are emerging areas.
Collapse
Affiliation(s)
- Chance Blackstone
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
56
|
Luo J, Fan M, Xiong L, Hao Q, Jiang M, He Q, Su C. 1T-Phase Dirac Semimetal PdTe 2 Nanoparticles for Efficient Photothermal Therapy in the NIR-II Biowindow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27963-27971. [PMID: 34110773 DOI: 10.1021/acsami.1c06740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
1T-phase transition-metal dichalcogenides (TMDs) nanomaterials are one type of emerging and promising near-infrared II (NIR-II) photothermal agents (PTAs) derived from their distinct metallic electronic structure, but it is still challenging to synthesize these nanomaterials. Herein, PdTe2 nanoparticles (PTNs) with a 1T crystal symmetry and around 50 nm in size are prepared by an electrochemical exfoliation method, and the corresponding photothermal performances irradiated under a NIR-II laser have been explored. The encapsulation of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) endows PTNs with water solubility, enhanced photothermal stability, and high biocompatibility. Notably, PTN/DSPE-PEG displays a potent absorbance through the NIR-II zone and considerable photothermal conversion efficiency, which is up to 68% when irradiated with a 1060 nm laser. With these unique photothermal properties, excellent in vitro and in vivo tumor inhibition effects of PTN/DSPE-PEG have been achieved under the irradiation of a NIR-II (1060 nm) laser without visible toxicity to normal tissues, suggesting that it is an efficient NIR-II photothermal nanoagent.
Collapse
Affiliation(s)
- Jingjing Luo
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Mingjian Fan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen 518060, China
| | - Liwei Xiong
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiaoyan Hao
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Mengna Jiang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen 518060, China
| | - Qianjun He
- School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen 518060, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen 518060, China
| |
Collapse
|
57
|
Puente Santiago AR, Sanad MF, Moreno-Vicente A, Ahsan MA, Cerón MR, Yao YR, Sreenivasan ST, Rodriguez-Fortea A, Poblet JM, Echegoyen L. A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M 3N@C 2n (2 n = 68, 78, and 80) Fullerenes. J Am Chem Soc 2021; 143:6037-6042. [PMID: 33821637 DOI: 10.1021/jacs.0c13002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven M3N@2n (2n = 68, 78, and 80) fullerenes (Gd3N@Ih(7)-C80, Y3N@Ih(7)-C80, Lu3N@Ih(7)-C80, Sc3N@Ih(7)-C80, Sc3N@D5h(6)-C80, Sc3N@D3h(5)-C78, and Sc3N@D3(6140)-C68) using a combination of experimental and theoretical techniques. The non-IPR Sc3N@D3(6140)-C68 compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg-1 at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.
Collapse
Affiliation(s)
- Alain R Puente Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Mohamed Fathi Sanad
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Department of Environmental Sciences and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Moreno-Vicente
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory 7000 East Ave, Livermore, California 94550, United States
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Rodriguez-Fortea
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
58
|
Calatayud DG, Jardiel T, Bernardo MS, Mirabello V, Ge H, Arrowsmith RL, Cortezon-Tamarit F, Alcaraz L, Isasi J, Arévalo P, Caballero AC, Pascu SI, Peiteado M. Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS APPLIED BIO MATERIALS 2021; 4:4105-4118. [PMID: 34056563 PMCID: PMC8155200 DOI: 10.1021/acsabm.0c01417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
![]()
Existing fluorescent
labels used in life sciences are based on
organic compounds with limited lifetime or on quantum dots which are
either expensive or toxic and have low kinetic stability in biological
environments. To address these challenges, luminescent nanomaterials
have been conceived as hierarchical, core–shell structures
with spherical morphology and highly controlled dimensions. These
tailor-made nanophosphors incorporate Ln:YVO4 nanoparticles
(Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and
narrow emission maxima centered at ∼565 nm. These cores can
be encapsulated in silica shells with highly controlled dimensions
as well as functionalized with chitosan or PEG5000 to reduce nonspecific
interactions with biomolecules in living cells. Confocal fluorescence
microscopy in living prostate cancer cells confirmed the potential
of these platforms to overcome the disadvantages of commercial fluorophores
and their feasibility as labels for multiplexing, biosensing, and
imaging in life science assays.
Collapse
Affiliation(s)
- David G Calatayud
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Mara S Bernardo
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Lorena Alcaraz
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Josefa Isasi
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Pablo Arévalo
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Amador C Caballero
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Marco Peiteado
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
59
|
Ahsan MA, He T, Eid K, Abdullah AM, Curry ML, Du A, Puente Santiago AR, Echegoyen L, Noveron JC. Tuning the Intermolecular Electron Transfer of Low-Dimensional and Metal-Free BCN/C 60 Electrocatalysts via Interfacial Defects for Efficient Hydrogen and Oxygen Electrochemistry. J Am Chem Soc 2021; 143:1203-1215. [PMID: 33401899 DOI: 10.1021/jacs.0c12386] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of low-dimensional (LD) supramolecular materials with multifunctional electrocatalytic properties has sparked the attention of the catalysis community. Herein, we report the synthesis of a new class of 0D-2D heterostructures composed of boron carbon nitride nanosheets (BCN NSs) and fullerene molecules (C60/F) that exhibit multifunctional electrocatalytic properties for the hydrogen evolution/oxidation reactions (HER/HOR) and the oxygen evolution/reduction reactions (OER/ORR). The electrocatalytic properties were studied with varying F:BCN weight ratios to optimize the intermolecular electron transfer (ET) from the BCN NSs to the electron-accepting C60 molecules. The nanohybrid supramolecular material with 10 wt % F in BCN NSs (10% F/BCN) exhibited the largest Raman and C 1s binding energy shifts, which were associated with greater cooperativity interactions and enhanced ET processes at the F/BCN interface. This synergistic interfacial phenomenon resulted in highly active catalytic sites that markedly boosted electrocatalytic activity of the material. The 10% F/BCN showed the highest tetrafunctional catalytic performance, outperforming the OER catalytic activity of commercial RuO2 catalysts with a η10 of 390 mV and very competitive onset potential values of -0.042 and 0.92 V vs RHE for HER and ORR, respectively, and a current density value of 1.47 mA cm-2 at 0.1 V vs RHE with an ultralow ΔGH* value of -0.03 eV toward the HOR process. Additionally, the 10% F/BCN catalyst was also used as both cathode and anode in a water splitting device, delivering a cell potential of 1.61 V to reach a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Md Ariful Ahsan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States.,Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Tianwei He
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Michael L Curry
- Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Aijun Du
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Alain R Puente Santiago
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan C Noveron
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States.,Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|