51
|
Xu J, Cao J, Wu X, Wang H, Yang X, Tang X, Toh RW, Zhou R, Yeow EKL, Wu J. Unveiling Extreme Photoreduction Potentials of Donor-Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. J Am Chem Soc 2021; 143:13266-13273. [PMID: 34428911 DOI: 10.1021/jacs.1c05994] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since the seminal work of Zhang in 2016, donor-acceptor cyanoarene-based fluorophores, such as 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN), have been widely applied in photoredox catalysis and used as excellent metal-free alternatives to noble metal Ir- and Ru-based photocatalysts. However, all the reported photoredox reactions involving this chromophore family are based on harnessing the energy from a single visible light photon, with a limited range of redox potentials from -1.92 to +1.79 V vs SCE. Here, we document the unprecedented discovery that this family of fluorophores can undergo consecutive photoinduced electron transfer (ConPET) to achieve very high reduction potentials. One of the newly synthesized catalysts, 2,4,5-tri(9H-carbazol-9-yl)-6-(ethyl(phenyl)amino)isophthalonitrile (3CzEPAIPN), possesses a long-lived (12.95 ns) excited radical anion form, 3CzEPAIPN•-*, which can be used to activate reductively recalcitrant aryl chlorides (Ered ≈ -1.9 to -2.9 V vs SCE) under mild conditions. The resultant aryl radicals can be engaged in synthetically valuable aromatic C-B, C-P, and C-C bond formation to furnish arylboronates, arylphosphonium salts, arylphosphonates, and spirocyclic cyclohexadienes.
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Chemistry, National University of Singapore, 117545 Singapore
| | - Jilei Cao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiangyang Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Han Wang
- Department of Chemistry, National University of Singapore, 117545 Singapore
| | - Xiaona Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xinxin Tang
- Department of Chemistry, National University of Singapore, 117545 Singapore
| | - Ren Wei Toh
- Department of Chemistry, National University of Singapore, 117545 Singapore
| | - Rong Zhou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 117545 Singapore
| |
Collapse
|
52
|
Galushchinskiy A, Brummelhuis K, Antonietti M, Savateev A. Insights Into the Mechanism of Energy Transfer with Poly(Heptazine Imide)s in a Deoximation Reaction. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey Galushchinskiy
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Katharina Brummelhuis
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Markus Antonietti
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
53
|
Audisio D, Talbot A, Sallustrau A, Goudet A, Taran F. Investigation on the Stoichiometry of Carbon Dioxide in Isotope-Exchange Reactions with Phenylacetic Acids. Synlett 2021. [DOI: 10.1055/s-0040-1720447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe functionalization of carbon dioxide (CO2) as a C1 building block has attracted enormous attention. Carboxylation reactions, in particular, are of major interest for applications in isotope labeling. Due to the inexpensive nature of CO2, information about its stoichiometric use is generally unavailable in the literature. Because of the rarity and limited availability of CO2 isotopomers, this parameter is of concern for applications in carbon-isotope labeling. We investigated the effects of the stoichiometry of labeled CO2 on carbon isotope exchange of phenylacetic acids. Both thermal and photocatalytic procedures were studied, providing insight into product outcome and isotope incorporation. Preliminary results on isotope-dilution effects of carbonate bases in photocatalytic carboxylation reactions have also been obtained.
Collapse
|
54
|
Hahm H, Kim J, Ryoo JY, Han MS, Hong S. Photocatalytic carbocarboxylation of styrenes with CO 2 for the synthesis of γ-aminobutyric esters. Org Biomol Chem 2021; 19:6301-6312. [PMID: 34212945 DOI: 10.1039/d1ob00866h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free photoredox-catalyzed carbocarboxylation of various styrenes with carbon dioxide (CO2) and amines to obtain γ-aminobutyric ester derivatives has been developed (up to 91% yield, 36 examples). The radical anion of (2,3,4,6)-3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBnBN) possessing a high reduction potential (-1.72 V vs. saturated calomel electrode (SCE)) easily reduces both electron-donating and electron-withdrawing group-substituted styrenes.
Collapse
Affiliation(s)
- Hyungwoo Hahm
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jiyun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea. and School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
55
|
Mavridi-Printezi A, Menichetti A, Guernelli M, Montalti M. Extending photocatalysis to the visible and NIR: the molecular strategy. NANOSCALE 2021; 13:9147-9159. [PMID: 33978040 DOI: 10.1039/d1nr01401c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalysis exploits light to perform important processes as solar fuel production by water splitting, and CO2 reduction or water and air decontamination. Therefore, photocatalysis contributes to the satisfaction of the increasing needs for clean energy, environmental remediation and, most recently, sanification. Most of the efficient semiconductor nanoparticles (NP), developed as photocatalysts, work in the ultraviolet (UV) spectral region and they are not able to exploit either visible (Vis) or near infrared (NIR) radiation. This limitation makes them unable to fully exploit the broad band solar radiaton or to be applied in indoor conditions. Recently, different approaches have been developed to extend the spectral activity of semiconductor NP, like for example band-gap engineering, integration with upconversion NP and plasmonic enhancement involving also hot-electron injection. Nevertheless, the use of organic molecules and metal complexes, for enhancing the photoactivity in the Vis and NIR, was one of the first strategies proposed for sensitization and it is still one of the most efficient. In this minireview we highlight and critically discuss the most recent and relevant achievements in the field of photocatalysis obtained by exploiting dye sensitization either via dynamic or static quenching.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - Moreno Guernelli
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
56
|
Feng M, De Oliveira J, Sallustrau A, Destro G, Thuéry P, Roy S, Cantat T, Elmore CS, Blankenstein J, Taran F, Audisio D. Direct Carbon Isotope Exchange of Pharmaceuticals via Reversible Decyanation. J Am Chem Soc 2021; 143:5659-5665. [PMID: 33825486 DOI: 10.1021/jacs.1c01923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incorporation of carbon-14 allows tracking of organic molecules and provides vital knowledge on their fate. This information is critical in pharmaceutical development, crop science, and human food safety evaluation. Herein, a transition-metal-catalyzed procedure enabling carbon isotope exchange on aromatic nitriles is described. By utilizing the radiolabeled precursor Zn([14C]CN)2, this protocol allows the insertion of the desired carbon tag without the need for structural modifications, in a single step. By reducing synthetic costs and limiting the generation of radioactive waste, this procedure will facilitate the labeling of nitrile containing drugs and accelerate 14C-based ADME studies supporting drug development.
Collapse
Affiliation(s)
- Minghao Feng
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| | - Joao De Oliveira
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France.,Isotope Chemistry, Integrated Drug Discovery Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| | - Gianluca Destro
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France.,Université Paris Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Sebastien Roy
- Isotope Chemistry, Integrated Drug Discovery Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Thibault Cantat
- Université Paris Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Charles S Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Jorg Blankenstein
- Isotope Chemistry, Integrated Drug Discovery Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| |
Collapse
|
57
|
Abstract
We report the photosubstitution of one cyano group in dicyanobenzene-based photocatalysts and thermally activated delayed fluorescence (TADF) emitters. The reaction is a general degradation pathway for some widely used organic photocatalysts such as 4CzIPN and suggests that the active photocatalyst in many reactions is likely different from 4CzIPN. On the contrary, photosubstitution is a facile route to diverse highly reducing photocatalysts and blue TADF emitters.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
58
|
Nguyen VT, Haug GC, Nguyen VD, Vuong NTH, Arman HD, Larionov OV. Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chem Sci 2021; 12:6429-6436. [PMID: 34084443 PMCID: PMC8115300 DOI: 10.1039/d1sc01389k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfonamides feature prominently in organic synthesis, materials science and medicinal chemistry, where they play important roles as bioisosteric replacements of carboxylic acids and other carbonyls. Yet, a general synthetic platform for the direct conversion of carboxylic acids to a range of functionalized sulfonamides has remained elusive. Herein, we present a visible light-induced, dual catalytic platform that for the first time allows for a one-step access to sulfonamides and sulfonyl azides directly from carboxylic acids. The broad scope of the direct decarboxylative amidosulfonation (DDAS) platform is enabled by the efficient direct conversion of carboxylic acids to sulfinic acids that is catalyzed by acridine photocatalysts and interfaced with copper-catalyzed sulfur-nitrogen bond-forming cross-couplings with both electrophilic and nucleophilic reagents.
Collapse
Affiliation(s)
- Vu T Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ngan T H Vuong
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
59
|
Reilly SW, Lam YH, Ren S, Strotman NA. Late-Stage Carbon Isotope Exchange of Aryl Nitriles through Ni-Catalyzed C-CN Bond Activation. J Am Chem Soc 2021; 143:4817-4823. [PMID: 33725443 DOI: 10.1021/jacs.1c01454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile one-pot strategy for 13CN and 14CN exchange with aryl, heteroaryl, and alkenyl nitriles using a Ni phosphine catalyst and BPh3 is described. This late-stage carbon isotope exchange (CIE) strategy employs labeled Zn(CN)2 to facilitate enrichment using the nonlabeled parent compound as the starting material, eliminating de novo synthesis for precursor development. A broad substrate scope encompassing multiple pharmaceuticals is disclosed, including the preparation of [14C] belzutifan to illustrate the exceptional functional group tolerance and utility of this labeling approach. Preliminary experimental and computational studies suggest the Lewis acid BPh3 is not critical for the oxidative addition step and instead plays a role in facilitating CN exchange on Ni. This CIE method dramatically reduces the synthetic steps and radioactive waste involved in preparation of 14C labeled tracers for clinical development.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc. Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A Strotman
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
60
|
Babin V, Talbot A, Labiche A, Destro G, Del Vecchio A, Elmore CS, Taran F, Sallustrau A, Audisio D. Photochemical Strategy for Carbon Isotope Exchange with CO2. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05344] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor Babin
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Alex Talbot
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Alexandre Labiche
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Gianluca Destro
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Antonio Del Vecchio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Charles S. Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|