51
|
Jebali A, Nayeri EK, Roohana S, Aghaei S, Ghaffari M, Daliri K, Fuente G. Nano-carbohydrates: Synthesis and application in genetics, biotechnology, and medicine. Adv Colloid Interface Sci 2017; 240:1-14. [PMID: 27988019 DOI: 10.1016/j.cis.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023]
Abstract
Combining nanoparticles with carbohydrate has triggered an exponential growth of research activities for the design of novel functional bionanomaterials, nano-carbohydrates. Recent advances in versatile synthesis of glycosylated nanoparticles have paved the way towards diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shape, size, and organization around stable nanoparticles, has readily contributed to their development and application in nanomedicine. Glycosylated gold nanoparticles, glycosylated quantum dots, fullerenes, single-wall nanotubes, and self-assembled glyconanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention for their application in powerful imaging, therapeutic, and biodiagnostic devices. Recently, nano-carbohydrates were used for different types of microarrays to detect proteins and nucleic acids.
Collapse
Affiliation(s)
- Ali Jebali
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Elham Khajeh Nayeri
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran; Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Iran
| | - Sima Roohana
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran; Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Iran
| | - Shiva Aghaei
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maede Ghaffari
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Karim Daliri
- Department of Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Garcia Fuente
- Department of Nanobiotechnology, Institute of Advanced Tech, Barcelona, Spain.
| |
Collapse
|
52
|
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles. Bioconjug Chem 2017; 28:212-221. [PMID: 27709892 PMCID: PMC5247775 DOI: 10.1021/acs.bioconjchem.6b00514] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/06/2016] [Indexed: 01/09/2023]
Abstract
An impressive development has been achieved toward the production of well-defined "smart" inorganic nanoparticles, in which the physicochemical properties can be controlled and predicted to a high degree of accuracy. Nanoparticle design is indeed highly advanced, multimodal and multitargeting being the norm, yet we do not fully understand the obstacles that nanoparticles face when used in vivo. Increased cooperation between chemists and biochemists, immunologists and physicists, has allowed us to think outside the box, and we are slowly starting to understand the interactions that nanoparticles undergo under more realistic situations. Importantly, such an understanding involves awareness about the limitations when assessing the influence of such inorganic nanoparticles on biological entities and vice versa, as well as the development of new validation strategies.
Collapse
Affiliation(s)
- Malou Henriksen-Lacey
- CIC biomaGUNE, Paseo
de Miramón 182, 20014 Donostia − San Sebastián, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN), 2014 Donostia − San Sebastián, Spain
| | | | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo
de Miramón 182, 20014 Donostia − San Sebastián, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN), 2014 Donostia − San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
53
|
Sanchez L, Yi Y, Yu Y. Effect of partial PEGylation on particle uptake by macrophages. NANOSCALE 2017; 9:288-297. [PMID: 27909711 PMCID: PMC6397647 DOI: 10.1039/c6nr07353k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Controlling the internalization of synthetic particles by immune cells remains a grand challenge for developing successful drug carrier systems. Polyethylene glycol (PEG) is frequently used as a protective coating on particles to evade immune clearance, but it also hinders the interactions of particles with their intended target cells. In this study, we investigate a spatial decoupling strategy, in which PEGs are coated on only one hemisphere of particles, so that the other hemisphere is available for functionalization of cell-targeting ligands without the hindrance effect from the PEGs. The partial coating of PEGs is realized by creating two-faced Janus particles with different surface chemistries on opposite sides. We show that a half-coating of PEGs reduces the macrophage uptake of particles as effectively as a complete coating. Owing to the surface asymmetry, Janus particles that are internalized enter macrophage cells via a combination of ligand-guided phagocytosis and macropinocytosis. By spatially segregating PEGs and ligands for targeting T cells on Janus particles, we demonstrate that the Janus particles bind T cells uni-directionally from the ligand-coated side, bypassing the hindrance from the PEGs on the other hemisphere. The results reveal a new mechanistic understanding on how a spatial coating of PEGs on particles changes the phagocytosis of particles. This study also suggests a new design principle for therapeutic particles - the spatial decoupling of PEGs and cell-targeting moieties reduces the interference between the two functions while attaining the protective effect of PEGs for macrophage evasion.
Collapse
Affiliation(s)
- Lucero Sanchez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
54
|
Hao N, Li L, Tang F. BSA Protein-Mediated Synthesis of Hollow Mesoporous Silica Nanotubes, and Their Carbohydrate Conjugates for Targeting Cancer Cells and Detecting Mycobacteria. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29208-29212. [PMID: 27767305 DOI: 10.1021/acsami.6b10051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A straightforward method was developed to synthesize hollow mesoporous silica nanotubes (HMSNTs) using bovine serum protein (BSA) as the protective coating and phosphate buffered saline (PBS) as the etching agent at room temperature. Galactose-grafted HMSNTs significantly reduced phagocytosis by macrophages, and enhanced cellular uptake by A549 cells via caveolae-mediated uptake pathway. Trehalose-conjugated HMSNTs interacted strongly with mycobacteria, showing the linear detection range from 1 × 104 to 1 × 108 bacteria/mL and the detection limit of 1 × 103 bacteria/mL. In all cases, the hollow nanotube structure showed higher cellular uptake, bacterial binding, and detection efficiency than their spherical counterpart.
Collapse
Affiliation(s)
- Nanjing Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- Thayer School of Engineering, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Laifeng Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fangqiong Tang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
55
|
Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, Zhang P, Zhang Z, Yu H, Wang S, Li Y. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9581-9588. [PMID: 27628433 DOI: 10.1002/adma.201602173] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/09/2016] [Indexed: 05/17/2023]
Abstract
A unique biomimetic drug-delivery system composed of 4T1-breast-cancer-cell membranes and paclitaxel-loaded polymeric nanoparticles (PPNs) (cell-membrane-coated PPNs), demonstrates superior interactions to its source tumor cells and elongated blood circulation, and displays highly cell-specific targeting of the homotypic primary tumor and metastases, with successful inhibition of the growth and lung metastasis of the breast cancer cells.
Collapse
Affiliation(s)
- Huiping Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinghan Su
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Qingshuo Meng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Lingli Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Wangwen Gu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
56
|
Johannssen T, Lepenies B. Glycan-Based Cell Targeting To Modulate Immune Responses. Trends Biotechnol 2016; 35:334-346. [PMID: 28277249 DOI: 10.1016/j.tibtech.2016.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Glycosylation is an integral post-translational modification present in more than half of all eukaryotic proteins. It affects key protein functions, including folding, stability, and immunogenicity. Glycoengineering approaches, such as the use of bacterial N-glycosylation systems, or expression systems, including yeasts, insect cells, and mammalian cells, have enabled access to defined and homogenous glycoproteins. Given that glycan structures on proteins can be recognized by host lectin receptors, they may facilitate cell-specific targeting and immune modulation. Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are attractive targets to shape immune responses. Multivalent glycan display on nanoparticles, liposomes, or dendrimers has successfully enabled CLR targeting. In this review, we discuss novel strategies to access defined glycan structures and highlight CLR targeting approaches for immune modulation.
Collapse
Affiliation(s)
- Timo Johannssen
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Arnimallee 22, 14195 Berlin, Germany; University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
57
|
Zhang Z, Schepens B, Nuhn L, Saelens X, Schotsaert M, Callewaert N, De Rycke R, Zhang Q, Moins S, Benali S, Mespouille L, Hoogenboom R, De Geest BG. Influenza-binding sialylated polymer coated gold nanoparticles prepared via RAFT polymerization and reductive amination. Chem Commun (Camb) 2016; 52:3352-5. [PMID: 26823186 DOI: 10.1039/c6cc00501b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a straightforward strategy to fabricate bioactive glycosylated gold nanoparticles via a combination of RAFT polymerization, carbohydrate ligation through reductive amination and thiol-gold self-assembly. This approach is used for the design of gold nanoparticles decorated with the complex sialylated glycan Neu5Ac-α-2-6-Gal, and we demonstrate multivalent and specific recognition between the nanoparticles, lectins and hemagglutinin on the surface of the influenza virus.
Collapse
Affiliation(s)
- Z Zhang
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - B Schepens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium and Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - L Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - X Saelens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium and Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - M Schotsaert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium and Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - N Callewaert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium and Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - R De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium and Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Q Zhang
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Krijgslaan 281, 9000 Ghent, Belgium
| | - S Moins
- Laboratory of Polymeric & Composite Materials, Ctr Innovat & Res Mat & Polymers (CIRMAP), Material Res Inst. and Health Res. Inst., University of Mons, B-7000 Mons, Belgium
| | - S Benali
- Laboratory of Polymeric & Composite Materials, Ctr Innovat & Res Mat & Polymers (CIRMAP), Material Res Inst. and Health Res. Inst., University of Mons, B-7000 Mons, Belgium
| | - L Mespouille
- Laboratory of Polymeric & Composite Materials, Ctr Innovat & Res Mat & Polymers (CIRMAP), Material Res Inst. and Health Res. Inst., University of Mons, B-7000 Mons, Belgium
| | - R Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Krijgslaan 281, 9000 Ghent, Belgium
| | - B G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
58
|
Ju Y, Dai Q, Cui J, Dai Y, Suma T, Richardson JJ, Caruso F. Improving Targeting of Metal-Phenolic Capsules by the Presence of Protein Coronas. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22914-22922. [PMID: 27560314 DOI: 10.1021/acsami.6b07613] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Particles adsorb proteins when they enter a physiological environment; this results in a surface coating termed a "protein corona". A protein corona can affect both the properties and functionalities of engineered particles. Here, we prepared hyaluronic acid (HA)-based capsules through the assembly of metal-phenolic networks (MPNs) and engineered their targeting ability in the absence and presence of protein coronas by varying the HA molecular weight. The targeting ability of the capsules was HA molecular weight dependent, and a high HA molecular weight (>50 kDa) was required for efficient targeting. The specific interactions between high molecular weight HA capsules and receptor-expressing cancer cells were negligibly affected by the presence of protein coronas, whereas nonspecific capsule-cell interactions were significantly reduced in the presence of a protein corona derived from human serum. Consequently, the targeting specificity of HA-based MPN capsules was enhanced due to the formation of a protein corona. This study highlights the significant and complex roles of a protein corona in biointeractions and demonstrates how protein coronas can be used to improve the targeting specificity of engineered particles.
Collapse
Affiliation(s)
- Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiong Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yunlu Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
59
|
Chaudhary PM, Sangabathuni S, Murthy RV, Paul A, Thulasiram HV, Kikkeri R. Assessing the effect of different shapes of glyco-gold nanoparticles on bacterial adhesion and infections. Chem Commun (Camb) 2016; 51:15669-72. [PMID: 26359971 DOI: 10.1039/c5cc05238f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Achieving selective and sensitive carbohydrate-protein interactions (CPIs) using nanotechnology is an intriguing area of research. Here we demonstrate that the different shapes of gold nanoparticles (AuNPs) functionalized with monosaccharides tune the bacterial aggregations. The mechanism of aggregation revealed that the large number of surface interactions of rod shaped mannose-AuNPs with E. coli ORN 178 compared with spherical and star-shaped AuNPs exhibited higher avidity and sensitivity. Moreover, such sensitive binding can be used for effective inhibition of bacterial infection of cells.
Collapse
|
60
|
Wang W, Ji X, Burns H, Mattoussi H. A multi-coordinating polymer ligand optimized for the functionalization of metallic nanocrystals and nanorods. Faraday Discuss 2016; 191:481-494. [PMID: 27460288 DOI: 10.1039/c6fd00056h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the design and use of a multi-coordinating polymer ligand that is ideally suited for functionalizing gold nanoparticles and nanorods, and promoting their steric stabilization in buffer media. The ligand is prepared via a one-step nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) and amine-modified anchoring groups and hydrophilic moieties. Surface functionalization of gold nanoparticles and nanorods with this polymer yields nanocrystals that exhibit excellent long-term colloidal stability over a broad range of conditions, including pH changes and in growth media, as verified using dynamic light scattering measurements combined with agarose gel electrophoresis. This polymer coating can also prevent the formation of protein corona. These features bode well for use in biological applications where small size, reduced nonspecific interactions and colloidal stability are highly desired. Furthermore, this design can be easily expanded to functionalize a variety of other inorganic nanocrystals.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | |
Collapse
|
61
|
Sangabathuni S, Vasudeva Murthy R, Chaudhary PM, Surve M, Banerjee A, Kikkeri R. Glyco-gold nanoparticle shapes enhance carbohydrate-protein interactions in mammalian cells. NANOSCALE 2016; 8:12729-12735. [PMID: 27279022 DOI: 10.1039/c6nr03008d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advances in shape-dependent nanoparticle (NP) research have prompted a close scrutiny of the behaviour of nanostructures in vitro and in vivo. Data pertaining to cellular uptake and site specific sequestration of different shapes of NPs will undoubtedly assist researchers to design better nano-probes for therapeutic and imaging purposes. Herein, we investigated the shape dependent uptake of glyco-gold nanoparticles (G-AuNPs) in different cancer cell lines. Specifically, we have compared the behaviour of spherical, rod and star AuNPs with mannose and galactose conjugations. In vitro experiments showed that the rod-AuNPs exhibited the highest uptake over that of the star and spherical counterparts. Further, an investigation of the mechanism of the uptake clearly demonstrated clathrin mediated endocytosis of the specific G-AuNPs. These results reveal the benefits of different G-AuNP shapes in carbohydrate-mediated interactions.
Collapse
|
62
|
Gupta A, Moyano DF, Parnsubsakul A, Papadopoulos A, Wang LS, Landis RF, Das R, Rotello VM. Ultrastable and Biofunctionalizable Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14096-101. [PMID: 27191946 PMCID: PMC5848069 DOI: 10.1021/acsami.6b02548] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gold nanoparticles provide an excellent platform for biological and material applications due to their unique physical and chemical properties. However, decreased colloidal stability and formation of irreversible aggregates while freeze-drying nanomaterials limit their use in real world applications. Here, we report a new generation of surface ligands based on a combination of short oligo (ethylene glycol) chains and zwitterions capable of providing nonfouling characteristics while maintaining colloidal stability and functionalization capabilities. Additionally, conjugation of these gold nanoparticles with avidin can help the development of a universal toolkit for further functionalization of nanomaterials.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Daniel F. Moyano
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Attasith Parnsubsakul
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Alexander Papadopoulos
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Li-Sheng Wang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ryan F. Landis
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Riddha Das
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
63
|
Mirshafiee V, Kim R, Mahmoudi M, Kraft ML. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum. Int J Biochem Cell Biol 2016; 75:188-95. [DOI: 10.1016/j.biocel.2015.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022]
|
64
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
65
|
Dong L, Zang Y, Zhou D, He XP, Chen GR, James TD, Li J. Glycosylation enhances the aqueous sensitivity and lowers the cytotoxicity of a naphthalimide zinc ion fluorescence probe. Chem Commun (Camb) 2016; 51:11852-5. [PMID: 26111007 DOI: 10.1039/c5cc04357c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With this research we demonstrate that glycosylation of a naphthalimide zinc ion probe, using click chemistry, leads to an improvement of the aqueous sensitivity, working pH range and targeting ability for specific cells, together with significantly reduced cytotoxicity.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Schulz F, Friedrich W, Hoppe K, Vossmeyer T, Weller H, Lange H. Effective PEGylation of gold nanorods. NANOSCALE 2016; 8:7296-308. [PMID: 26975977 DOI: 10.1039/c6nr00607h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to ∼3 nm(-2), are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to dramatically improve the ligand exchange and to synthesize PEGylated AuNR with high chemical and colloidal stability and high PEG grafting densities. Such AuNR are especially interesting for applications in nanomedicine.
Collapse
Affiliation(s)
- F Schulz
- Institute for Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
67
|
Frenkel-Pinter M, Richman M, Belostozky A, Abu-Mokh A, Gazit E, Rahimipour S, Segal D. Selective Inhibition of Aggregation and Toxicity of a Tau-Derived Peptide using Its Glycosylated Analogues. Chemistry 2016; 22:5945-52. [DOI: 10.1002/chem.201504950] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Moran Frenkel-Pinter
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Michal Richman
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Anna Belostozky
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Amjaad Abu-Mokh
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Ehud Gazit
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Shai Rahimipour
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Daniel Segal
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
68
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
69
|
Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B Biointerfaces 2016; 137:39-49. [DOI: 10.1016/j.colsurfb.2015.05.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
|
70
|
Dai Q, Yan Y, Guo J, Björnmalm M, Cui J, Sun H, Caruso F. Targeting Ability of Affibody-Functionalized Particles Is Enhanced by Albumin but Inhibited by Serum Coronas. ACS Macro Lett 2015; 4:1259-1263. [PMID: 35614824 DOI: 10.1021/acsmacrolett.5b00627] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein coronas formed on engineered particles can alter their targeting ability as they enter biological environments. Here, we engineer polymer-coated silica particles and investigate the influence of protein coronas derived from various sources. The particles were functionalized with a small antibody-mimetic ligand (affibody), and their targeting ability to cancer cells in the presence of protein coronas was determined. Protein coronas derived from human serum showed a dramatic inhibition of specific particle-cell association (from ∼70 to ∼7%), whereas the most abundant protein in human serum-human serum albumin-enhanced the specific association of functionalized particles to SK-OV-3 human ovary cancer cells (to ∼90%). This study shows how protein coronas can both facilitate and impede targeting and provides key insights into the importance of challenging engineered particles with multicomponent biologically relevant environments.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yan Yan
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Junling Guo
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Huanli Sun
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
71
|
Single nanoparticle plasmonic sensors. SENSORS 2015; 15:25774-92. [PMID: 26473866 PMCID: PMC4634464 DOI: 10.3390/s151025774] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/30/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022]
Abstract
The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.
Collapse
|
72
|
Restuccia A, Tian YF, Collier JH, Hudalla GA. Self-assembled glycopeptide nanofibers as modulators of galectin-1 bioactivity. Cell Mol Bioeng 2015; 8:471-487. [PMID: 26495044 DOI: 10.1007/s12195-015-0399-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that act as extracellular signaling molecules in various normal and pathological processes. Galectin bioactivity is mediated by specific non-covalent interactions with cell-surface and extracellular matrix (ECM) glycoproteins, which can enhance or inhibit signaling events that influence various cellular behaviors, including adhesion, proliferation, differentiation, and apoptosis. Here, we developed a materials approach to modulate galectin bioactivity by mimicking natural galectin-glycoprotein interactions. Specifically, we created a variant of a peptide that self-assembles into β-sheet nanofibers under aqueous conditions, QQKFQFQFEQQ (Q11), which has an asparagine residue modified with the monosaccharide N-acetylglucosamine (GlcNAc) at its N-terminus (GlcNAc-Q11). GlcNAc-Q11 self-assembled into β-sheet nanofibers under similar conditions as Q11. Nanofibrillar GlcNAc moieties were efficiently converted to the galectin-binding disaccharide N-acetyllactosamine (LacNAc) via the enzyme β-1,4-galactosyltransferase and the sugar donor UDP-galactose, while retaining β-sheet structure and nanofiber morphology. LacNAc-Q11 nanofibers bound galectin-1 and -3 in a LacNAc concentration-dependent manner, although nanofibers bound galectin-1 with higher affinity than galectin-3. In contrast, galectin-1 bound weakly to GlcNAc-Q11 nanofibers, while no galectin-3 binding to these nanofibers was observed. Galectin-1 binding to LacNAc-Q11 nanofibers was specific because it could be inhibited by excess soluble β-lactose, a galectin-binding carbohydrate. LacNAc-Q11 nanofibers inhibited galectin-1-mediated apoptosis of Jurkat T cells in a LacNAc concentration-dependent manner, but were unable to inhibit galectin-3 activity, consistent with galectin-binding affinity of the nanofibers. We envision that glycopeptide nanofibers capable of modulating galectin-1 bioactivity will be broadly useful as biomaterials for various medical applications, including cancer therapeutics, immunotherapy, tissue regeneration, and viral prophylaxis.
Collapse
Affiliation(s)
| | - Ye F Tian
- Department of Surgery, University of Chicago. ; Department of Biomedical Engineering, Illinois Institute of Technology
| | | | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering. ; Department of Surgery, University of Chicago
| |
Collapse
|
73
|
García I, Henriksen-Lacey M, Sánchez-Iglesias A, Grzelczak M, Penadés S, Liz-Marzán LM. Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods. J Phys Chem Lett 2015; 6:2003-2008. [PMID: 26266492 DOI: 10.1021/acs.jpclett.5b00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gold nanorods have numerous applications in biomedical research, including diagnostics, bioimaging, and photothermal therapy. Even though surfactant removal and surface conjugation with antifouling molecules such as polyethylene glycol (PEG) are required to minimize nonspecific protein binding and cell uptake, the reliable characterization of these processes remains challenging. We propose here the use of laser desorption/ionization mass spectrometry (LDI-MS) to study the ligand exchange efficiency of cetyltrimethylammonium bromide (CTAB)-coated nanorods with different PEG grafting densities and to characterize nanorod internalization in cells. Application of LDI-MS analysis shows that residual CTAB consistently remains adsorbed on PEG-capped Au nanorods. Interestingly, such residual CTAB can be exploited as a mass barcode to discern the presence of nanorods in complex fluids and in vitro cellular systems, even at very low concentrations.
Collapse
Affiliation(s)
- Isabel García
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- ‡Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
| | | | | | - Marek Grzelczak
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- §Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Soledad Penadés
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- ‡Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- ‡Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- §Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
74
|
Wang P, Wang X, Wang L, Hou X, Liu W, Chen C. Interaction of gold nanoparticles with proteins and cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:034610. [PMID: 27877797 PMCID: PMC5099834 DOI: 10.1088/1468-6996/16/3/034610] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 05/17/2023]
Abstract
Gold nanoparticles (Au NPs) possess many advantages such as facile synthesis, controllable size and shape, good biocompatibility, and unique optical properties. Au NPs have been widely used in biomedical fields, such as hyperthermia, biocatalysis, imaging, and drug delivery. The broad application range may result in hazards to the environment and human health. Therefore, it is important to predict safety and evaluate therapeutic efficiency of Au NPs. It is necessary to establish proper approaches for the study of toxicity and biomedical effects. In this review, we first focus on the recent progress in biological effects of Au NPs at the molecular and cellular levels, and then introduce key techniques to study the interaction between Au NPs and proteins. Knowledge of the biomedical effects of Au NPs is significant for the rational design of functional nanomaterials and will help predict their safety and potential applications.
Collapse
Affiliation(s)
- Pengyang Wang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, People’s Republic of China
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xin Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| | - Liming Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xiaoyang Hou
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, People’s Republic of China
| | - Wei Liu
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, People’s Republic of China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| |
Collapse
|
75
|
Liu K, Zheng Y, Lu X, Thai T, Lee NA, Bach U, Gooding JJ. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4973-80. [PMID: 25874503 DOI: 10.1021/acs.langmuir.5b00666] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.
Collapse
Affiliation(s)
- Kang Liu
- †School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- §ARC Training Centre for Advanced Technologies in Food Manufacture (ATFM), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuanhui Zheng
- †School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xun Lu
- †School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thibaut Thai
- ‡Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Nanju Alice Lee
- §ARC Training Centre for Advanced Technologies in Food Manufacture (ATFM), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Udo Bach
- ‡Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - J Justin Gooding
- †School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- ∥ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|