51
|
Monomer-dependent secondary nucleation in amyloid formation. Biophys Rev 2017; 9:329-338. [PMID: 28812278 PMCID: PMC5578932 DOI: 10.1007/s12551-017-0289-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022] Open
Abstract
Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.
Collapse
|
52
|
Barritt JD, Younan ND, Viles JH. N‐Terminally Truncated Amyloid‐β
(11
–
40/42)
Cofibrillizes with its Full‐Length Counterpart: Implications for Alzheimer's Disease. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joseph D. Barritt
- Department Chemistry and BiochemistryQueen Mary University of London Mile End Road London E1 4NS UK
| | - Nadine D. Younan
- Department Chemistry and BiochemistryQueen Mary University of London Mile End Road London E1 4NS UK
| | - John H. Viles
- Department Chemistry and BiochemistryQueen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
53
|
Barritt JD, Younan ND, Viles JH. N-Terminally Truncated Amyloid-β (11-40/42) Cofibrillizes with its Full-Length Counterpart: Implications for Alzheimer's Disease. Angew Chem Int Ed Engl 2017; 56:9816-9819. [PMID: 28609583 DOI: 10.1002/anie.201704618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/09/2022]
Abstract
Amyloid-β peptide (Aβ) isoforms of different lengths and aggregation propensities coexist in vivo. These different isoforms are able to nucleate or frustrate the assembly of each other. N-terminally truncated Aβ(11-40) and Aβ(11-42) make up one fifth of plaque load yet nothing is known about their interaction with full-length Aβ(1-40/42) . We show that in contrast to C-terminally truncated isoforms, which do not co-fibrillize, deletions of ten residues from the N terminus of Aβ have little impact on its ability to co-fibrillize with the full-length counterpart. As a consequence, N-terminally truncated Aβ will accelerate fiber formation and co-assemble into short rod-shaped fibers with its full-length Aβ counterpart. This has implications for the assembly kinetics, morphology, and toxicity of all Aβ isoforms.
Collapse
Affiliation(s)
- Joseph D Barritt
- Department Chemistry and Biochemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Nadine D Younan
- Department Chemistry and Biochemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - John H Viles
- Department Chemistry and Biochemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
54
|
Dammers C, Schwarten M, Buell AK, Willbold D. Pyroglutamate-modified Aβ(3-42) affects aggregation kinetics of Aβ(1-42) by accelerating primary and secondary pathways. Chem Sci 2017; 8:4996-5004. [PMID: 28970886 PMCID: PMC5612032 DOI: 10.1039/c6sc04797a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
The aggregation into amyloid fibrils of amyloid-β (Aβ) peptides is a hallmark of Alzheimer's disease. A variety of Aβ peptides have been discovered in vivo, with pyroglutamate-modified Aβ (pEAβ) forming a significant proportion. pEAβ is mainly localized in the core of plaques, suggesting a possible role in inducing and facilitating Aβ oligomerization and accumulation. Despite this potential importance, the aggregation mechanism of pEAβ and its influence on the aggregation kinetics of other Aβ variants have not yet been elucidated. Here we show that pEAβ(3-42) forms fibrils much faster than Aβ(1-42) and the critical concentration above which aggregation was observed was drastically decreased by one order of magnitude compared to Aβ(1-42). We elucidated the co-aggregation mechanism of Aβ(1-42) with pEAβ(3-42). At concentrations at which both species do not aggregate as homofibrils, mixtures of pEAβ(3-42) and Aβ(1-42) aggregate, suggesting the formation of mixed nuclei. We show that the presence of pEAβ(3-42) monomers increases the rate of primary nucleation of Aβ(1-42) and that fibrils of pEAβ(3-42) serve as highly efficient templates for elongation and catalytic surfaces for secondary nucleation of Aβ(1-42). On the other hand, the addition of Aβ(1-42) monomers drastically decelerates the primary and secondary nucleation of pEAβ(3-42) while not altering the pEAβ(3-42) elongation rate. In addition, even moderate concentrations of fibrillar Aβ(1-42) prevent pEAβ(3-42) aggregation, likely due to non-reactive binding of pEAβ(3-42) monomers to the surfaces of Aβ(1-42) fibrils. Thus, pEAβ(3-42) accelerates aggregation of Aβ(1-42) by affecting all individual reaction steps of the aggregation process while Aβ(1-42) dramatically slows down the primary and secondary nucleation of pEAβ(3-42).
Collapse
Affiliation(s)
- C Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
| | - M Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
| | - A K Buell
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | - D Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| |
Collapse
|
55
|
Aprile FA, Sormanni P, Perni M, Arosio P, Linse S, Knowles TPJ, Dobson CM, Vendruscolo M. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. SCIENCE ADVANCES 2017; 3:e1700488. [PMID: 28691099 PMCID: PMC5479649 DOI: 10.1126/sciadv.1700488] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 05/19/2023]
Abstract
Antibodies targeting Aβ42 are under intense scrutiny because of their therapeutic potential for Alzheimer's disease. To enable systematic searches, we present an "antibody scanning" strategy for the generation of a panel of antibodies against Aβ42. Each antibody in the panel is rationally designed to target a specific linear epitope, with the selected epitopes scanning the Aβ42 sequence. By screening in vitro the panel to identify the specific microscopic steps in the Aβ42 aggregation process influenced by each antibody, we identify two antibodies that target specifically the primary and the secondary nucleation steps, which are key for the production of Aβ42 oligomers. These two antibodies act, respectively, to delay the onset of aggregation and to block the proliferation of aggregates, and correspondingly reduce the toxicity in a Caenorhabditis elegans model overexpressing Aβ42. These results illustrate how the antibody scanning method described here can be used to readily obtain very small antibody libraries with extensive coverage of the sequences of target proteins.
Collapse
Affiliation(s)
- Francesco A. Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
56
|
Meisl G, Yang X, Dobson CM, Linse S, Knowles TPJ. Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the Aβ42 peptide and its variants. Chem Sci 2017; 8:4352-4362. [PMID: 28979758 PMCID: PMC5580342 DOI: 10.1039/c7sc00215g] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/03/2017] [Indexed: 01/07/2023] Open
Abstract
The aggregation of the amyloid β peptide (Aβ42), which is linked to Alzheimer's disease, can be altered significantly by modulations of the peptide's intermolecular electrostatic interactions. Variations in sequence and solution conditions have been found to lead to highly variable aggregation behaviour. Here we modulate systematically the electrostatic interactions governing the aggregation kinetics by varying the ionic strength of the solution. We find that changes in the solution ionic strength induce a switch in the reaction pathway, altering the dominant mechanisms of aggregate multiplication. This strategy thereby allows us to continuously sample a large space of different reaction mechanisms and develop a minimal reaction network that unifies the experimental kinetics under a wide range of different conditions. More generally, this universal reaction network connects previously separate systems, such as charge mutants of the Aβ42 peptide, on a continuous mechanistic landscape, providing a unified picture of the aggregation mechanism of Aβ42.
Collapse
Affiliation(s)
- Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . ;
| | - Xiaoting Yang
- Chemistry Department and Molecular Protein Science , Lund University , P. O. Box 124 , SE221 00 Lund , Sweden .
| | - Christopher M Dobson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . ;
| | - Sara Linse
- Chemistry Department and Molecular Protein Science , Lund University , P. O. Box 124 , SE221 00 Lund , Sweden .
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . ;
| |
Collapse
|
57
|
Dear AJ, Michaels TCT, Knowles TPJ. Dynamics of heteromolecular filament formation. J Chem Phys 2016; 145:175101. [DOI: 10.1063/1.4966571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
58
|
Hoarau M, Malbert Y, Irague R, Hureau C, Faller P, Gras E, André I, Remaud-Siméon M. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides. PLoS One 2016; 11:e0161209. [PMID: 27532547 PMCID: PMC4988814 DOI: 10.1371/journal.pone.0161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/01/2016] [Indexed: 01/29/2023] Open
Abstract
An improved production and purification method for Alzheimer’s disease related methionine-modified amyloid-β 1–40 and 1–42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies.
Collapse
Affiliation(s)
- Marie Hoarau
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Yannick Malbert
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Romain Irague
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Peter Faller
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Emmanuel Gras
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Isabelle André
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Magali Remaud-Siméon
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- * E-mail:
| |
Collapse
|
59
|
Beyer I, Rezaei-Ghaleh N, Klafki HW, Jahn O, Haußmann U, Wiltfang J, Zweckstetter M, Knölker HJ. Solid-Phase Synthesis and Characterization of N-Terminally Elongated Aβ-3-x -Peptides. Chemistry 2016; 22:8685-93. [PMID: 27167300 PMCID: PMC5084751 DOI: 10.1002/chem.201600892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 01/24/2023]
Abstract
In addition to the prototypic amyloid-β (Aβ) peptides Aβ1-40 and Aβ1-42 , several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Aβ-peptides Aβ-3-38 , Aβ-3-40 , and Aβ-3-42 . Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ-3-38 and Aβ-3-40 are generated by transfected cells even in the presence of a tripartite β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(-3) can be separated from N-terminally-truncated Aβ forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated Aβ variants in Alzheimer's disease.
Collapse
Affiliation(s)
- Isaak Beyer
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Nasrollah Rezaei-Ghaleh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Experimental Medicine, Proteomics Group, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ute Haußmann
- University of Duisburg-Essen, 45141, Essen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany. ,
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany. ,
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.
| |
Collapse
|