51
|
Skubi KL, Kidd JB, Jung H, Guzei IA, Baik MH, Yoon TP. Enantioselective Excited-State Photoreactions Controlled by a Chiral Hydrogen-Bonding Iridium Sensitizer. J Am Chem Soc 2017; 139:17186-17192. [PMID: 29087702 DOI: 10.1021/jacs.7b10586] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereochemical control of electronically excited states is a long-standing challenge in photochemical synthesis, and few catalytic systems that produce high enantioselectivities in triplet-state photoreactions are known. We report herein an exceptionally effective chiral photocatalyst that recruits prochiral quinolones using a series of hydrogen-bonding and π-π interactions. The organization of these substrates within the chiral environment of the transition-metal photosensitizer leads to efficient Dexter energy transfer and effective stereoinduction. The relative insensitivity of these organometallic chromophores toward ligand modification enables the optimization of this catalyst structure for high enantiomeric excess at catalyst loadings as much as 100-fold lower than the optimal conditions reported for analogous chiral organic photosensitizers.
Collapse
Affiliation(s)
- Kazimer L Skubi
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
52
|
Hydrogen bonding motifs in structurally characterized salts of the tris(ethylenediamine) cobalt trication, [Co(en)3]3+; An interpretive review, including implications for catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
53
|
Zhang L, Meggers E. Stereogenic-Only-at-Metal Asymmetric Catalysts. Chem Asian J 2017; 12:2335-2342. [PMID: 28782915 DOI: 10.1002/asia.201700739] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Indexed: 11/10/2022]
Abstract
Chirality is an essential feature of asymmetric catalysts. This review summarizes asymmetric catalysts that derive their chirality exclusively from stereogenic metal centers. Reported chiral-at-metal catalysts can be divided into two classes, namely, inert metal complexes, in which the metal fulfills a purely structural role, so catalysis is mediated entirely through the ligand sphere, and reactive metal complexes. The latter are particularly appealing because structural simplicity (only achiral ligands) is combined with the prospect of particularly effective asymmetric induction (direct contact of the substrate with the chiral metal center). Challenges and solutions for the design of such reactive stereogenic-only-at-metal asymmetric catalysts are discussed.
Collapse
Affiliation(s)
- Lilu Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
54
|
Mietke T, Cruchter T, Winterling E, Tripp M, Harms K, Meggers E. Suzuki Cross-Coupling for Post-Complexation Derivatization of Non-Racemic Bis-Cyclometalated Iridium(III) Complexes. Chemistry 2017; 23:12363-12371. [DOI: 10.1002/chem.201701758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas Mietke
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Thomas Cruchter
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Erik Winterling
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Matthias Tripp
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Klaus Harms
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Eric Meggers
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
55
|
Cruchter T, Medvedev MG, Shen X, Mietke T, Harms K, Marsch M, Meggers E. Asymmetric Nucleophilic Catalysis with an Octahedral Chiral-at-Metal Iridium(III) Complex. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01296] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Cruchter
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Michael G. Medvedev
- X-ray
Structural Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Xiaodong Shen
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Thomas Mietke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Michael Marsch
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
56
|
Diemoz KM, Hein JE, Wilson SO, Fettinger JC, Franz AK. Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogen-Bonding Catalysts. J Org Chem 2017; 82:6738-6747. [DOI: 10.1021/acs.joc.7b00875] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kayla M. Diemoz
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Jason E. Hein
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T1Z1
| | - Sean O. Wilson
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Annaliese K. Franz
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
57
|
Fang X, Sun M, Zheng J, Li B, Ye L, Wang X, Cao Z, Zhu H, Yuan Y. CH 2 Linkage Effects on the Reactivity of Bis(aminophosphine)-Ruthenium Complexes for Selective Hydrogenation of Esters into Alcohols. Sci Rep 2017; 7:3961. [PMID: 28638062 PMCID: PMC5479805 DOI: 10.1038/s41598-017-04362-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
A novel ruthenium complex binding to two subtly different aminophosphine ligands, (o-PPh2C6H4CH2NH2)(o-PPh2C6H4NH2)RuCl2, was successfully isolated. This bis(aminophosphine)-ruthenium complex shows efficient activity in both dimethyl oxalate (DMO) and methyl benzoate (MB) hydrogenation. On the contrast, similar complexes (o-PPh2C6H4NH2)2RuCl2 and (o-PPh2C6H4CH2NH2)2RuCl2, can only effectively catalyze the hydrogenation of DMO and MB, respectively. Our experimental studies in combination of theoretical calculations reveal that the remarkable substrate selectivity in the hydrogenation of esters arises from the nonbonding interactions operated by the CH2 linkage of the ligand.
Collapse
Affiliation(s)
- Xiaolong Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingjun Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianwei Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Linmin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
58
|
Meggers E. Ausnutzung oktaedrischer Stereozentren: von Enzymhemmung bis hin zu asymmetrischer Photoredoxkatalyse. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eric Meggers
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| |
Collapse
|
59
|
Meggers E. Exploiting Octahedral Stereocenters: From Enzyme Inhibition to Asymmetric Photoredox Catalysis. Angew Chem Int Ed Engl 2017; 56:5668-5675. [DOI: 10.1002/anie.201612516] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|
60
|
Li SW, Gong J, Kang Q. Chiral-at-Metal Rh(III) Complex-Catalyzed Decarboxylative Michael Addition of β-Keto Acids with α,β-Unsaturated 2-Acyl Imidazoles or Pyridine. Org Lett 2017; 19:1350-1353. [PMID: 28245128 DOI: 10.1021/acs.orglett.7b00220] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shi-Wu Li
- Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Jun Gong
- Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Qiang Kang
- Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
61
|
Zhang L, Meggers E. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality. Acc Chem Res 2017; 50:320-330. [PMID: 28128920 DOI: 10.1021/acs.accounts.6b00586] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalysts for asymmetric synthesis must be chiral. Metal-based asymmetric catalysts are typically constructed by assembling chiral ligands around a central metal. In this Account, a new class of effective chiral Lewis acid catalysts is introduced in which the octahedral metal center constitutes the exclusive source of chirality. Specifically, the here discussed class of catalysts are composed of configurationally stable, chiral-at-metal Λ-configured (left-handed propeller) or Δ-configured (right-handed propeller) iridium(III) or rhodium(III) complexes containing two bidentate cyclometalating 5-tert-butyl-2-phenylbenzoxazole (dubbed IrO and RhO) or 5-tert-butyl-2-phenylbenzothiazole (dubbed IrS and RhS) ligands in addition to two exchange-labile acetonitriles. They are synthetically accessible in an enantiomerically pure fashion through a convenient auxiliary-mediated synthesis. Such catalysts are of interest due to their intrinsic structural simplicity (only achiral ligands) and the prospect of an especially effective asymmetric induction due to the intimate contact between the chiral metal center and the metal-coordinated substrates or reagents. With respect to chiral Lewis acid catalysis, the bis-cyclometalated iridium and rhodium complexes provide excellent catalytic activities and asymmetric inductions for a variety of reactions including Michael additions, Friedel-Crafts reactions, cycloadditions, α-aminations, α-fluorinations, Mannich reactions, and a cross-dehydrogenative coupling. Mechanistically, substrates such as 2-acyl imidazoles are usually activated by two-point binding. Exceptions exist as for example for an efficient iridium-catalyzed enantioselective transfer hydrogenation of arylketones with ammonium formate, which putatively proceeds through an iridium-hydride intermediate. The bis-cyclometalated iridium complexes catalyze visible-light-induced asymmetric reactions by intertwining asymmetric catalysis and photoredox catalysis in a unique fashion. This has been applied to the visible-light-induced α-alkylation of 2-acyl imidazoles (and in some instances 2-acylpyridines) with acceptor-substituted benzyl, phenacyl, trifluoromethyl, perfluoroalkyl, and trichloromethyl groups, in addition to photoinduced oxidative α-aminoalkylations and a photoinduced stereocontrolled radical-radical coupling, each employing a single iridium complex. In all photoinduced reaction schemes, the iridium complex serves as a chiral Lewis acid catalyst and at the same time as precursor of in situ assembled photoactive species. The nature of these photoactive intermediates then determines their photochemical properties and thereby the course of the asymmetric photoredox reactions. The bis-cyclometalated rhodium complexes are also very useful for asymmetric photoredox catalysis. Less efficient photochemical properties are compensated with a more rapid ligand exchange kinetics, which permits higher turnover frequencies of the catalytic cycle. This has been applied to a visible-light-induced enantioselective radical α-amination of 2-acyl imidazoles. In this reaction, an intermediate rhodium enolate is supposed to function as a photoactivatable smart initiator to initiate and reinitiate an efficient radical chain process. If a more efficient photoactivation is required, a rhodium-based Lewis acid can be complemented with a photoredox cocatalyst, and this has been applied to efficient catalytic asymmetric alkyl radical additions to acceptor-substituted alkenes. We believe that this class of chiral-only-at-metal Lewis acid catalysts will be of significant value in the field of asymmetric synthesis, in particular in combination with visible-light-induced redox chemistry, which has already resulted in novel strategies for asymmetric synthesis of chiral molecules. Hopefully, this work will also pave the way for the development of other asymmetric catalysts featuring exclusively octahedral centrochirality.
Collapse
Affiliation(s)
- Lilu Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
62
|
Ghosh SK, Lewis KG, Kumar A, Gladysz JA. Syntheses of Families of Enantiopure and Diastereopure Cobalt Catalysts Derived from Trications of the Formula [Co(NH2CHArCHArNH2)3]3+. Inorg Chem 2017; 56:2304-2320. [DOI: 10.1021/acs.inorgchem.6b03042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Subrata K. Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Kyle G. Lewis
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Anil Kumar
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
63
|
Deng T, Thota GK, Li Y, Kang Q. Enantioselective conjugate addition of hydroxylamines to α,β-unsaturated 2-acyl imidazoles catalyzed by a chiral-at-metal Rh(iii) complex. Org Chem Front 2017. [DOI: 10.1039/c6qo00865h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly efficient chiral-at-metal Rh(iii) complex catalyzed asymmetric aza-Michael addition was developed, affordingN-protected β-amino acid derivatives with excellent enantioselectivity.
Collapse
Affiliation(s)
- Tao Deng
- Department of Chemistry
- Fuzhou University
- P. R. China
| | - Ganesh Kumar Thota
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Yi Li
- Department of Chemistry
- Fuzhou University
- P. R. China
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|
64
|
Liu J, Jin C, Yuan B, Liu X, Chen Y, Ji L, Chao H. Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(iii) complexes. Chem Commun (Camb) 2017; 53:2052-2055. [DOI: 10.1039/c6cc10015e] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three AIE-active Ir(iii) complexes that preferentially accumulate in the mitochondria of cancer cells through endocytosis were manifested in a lit up photodynamic activity in mitochondria with efficient lethality towards cancer cells and multicellular tumor spheroids under two-photon irradiation.
Collapse
Affiliation(s)
- Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Xingguo Liu
- Guangzhou Institute of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
65
|
Zhou Z, Li Y, Gong L, Meggers E. Enantioselective 2-Alkylation of 3-Substituted Indoles with Dual Chiral Lewis Acid/Hydrogen-Bond-Mediated Catalyst. Org Lett 2016; 19:222-225. [DOI: 10.1021/acs.orglett.6b03500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Zhou
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yanjun Li
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Gong
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Eric Meggers
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
66
|
August DP, Nichol GS, Lusby PJ. Maximizing Coordination Capsule-Guest Polar Interactions in Apolar Solvents Reveals Significant Binding. Angew Chem Int Ed Engl 2016; 55:15022-15026. [PMID: 27809382 DOI: 10.1002/anie.201608229] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/09/2016] [Indexed: 12/19/2022]
Abstract
Guest encapsulation underpins the functional properties of self-assembled capsules yet identifying systems capable of strongly binding small organic molecules in solution remains a challenge. Most coordination capsules rely on the hydrophobic effect to ensure effective solution-phase association. In contrast, we show that using non-interacting anions in apolar solvents can maximize favorable interactions between a cationic Pd2 L4 host and charge-neutral guests resulting in a dramatic increase in binding strength. With quinone-type guests, association constants in excess of 108 m-1 were observed, comparable to the highest previously recorded constant for a metallosupramolecular capsule. Modulation of optoelectronic properties of the guests was also observed, with encapsulation either changing or switching-on luminescence not present in the bulk phase.
Collapse
Affiliation(s)
- David P August
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Paul J Lusby
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
67
|
August DP, Nichol GS, Lusby PJ. Maximizing Coordination Capsule-Guest Polar Interactions in Apolar Solvents Reveals Significant Binding. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- David P. August
- EaStCHEM School of Chemistry; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Paul J. Lusby
- EaStCHEM School of Chemistry; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
68
|
Xu W, Shen X, Ma Q, Gong L, Meggers E. Restricted Conformation of a Hydrogen Bond Mediated Catalyst Enables the Highly Efficient Enantioselective Construction of an All-Carbon Quaternary Stereocenter. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Weici Xu
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xiang Shen
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Qiao Ma
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Lei Gong
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Eric Meggers
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
69
|
Huang K, Ma Q, Shen X, Gong L, Meggers E. Metal-Templated Asymmetric Catalysis: (Z)-1-Bromo-1-Nitrostyrenes as Versatile Substrates for Friedel-Crafts Alkylation of Indoles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kaifang Huang
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 People's Republic of China) address
| | - Qiao Ma
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 People's Republic of China) address
| | - Xiang Shen
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 People's Republic of China) address
| | - Lei Gong
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 People's Republic of China) address
| | - Eric Meggers
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 People's Republic of China) address
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|