51
|
Takada S, Brandani GB, Tan C. Nucleosomes as allosteric scaffolds for genetic regulation. Curr Opin Struct Biol 2020; 62:93-101. [PMID: 31901887 DOI: 10.1016/j.sbi.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Nucleosomes are stable yet highly dynamic complexes exhibiting diverse types of motions, such as sliding, DNA unwrapping, and disassembly, encoding a landscape with a large number of metastable states. In this review, describing recent studies on these nucleosome structure changes, we propose that the nucleosome can be viewed as an ideal allosteric scaffold: regulated by effector molecules such as transcription factors and chromatin remodelers, the nucleosome controls the downstream gene activity. Binding of transcription factors to the nucleosome can enhance DNA unwrapping or slide the DNA, altering either the binding or the unbinding of other transcription factors to nearby sites. ATP-dependent chromatin remodelers induce a series of DNA deformations, which allosterically propagate throughout the nucleosome to induce DNA sliding or histone exchange.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan.
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan
| | - Cheng Tan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo, Kobe, 650-0047 Japan
| |
Collapse
|
52
|
Ensembles of Breathing Nucleosomes: A Computational Study. Biophys J 2019; 118:2297-2308. [PMID: 31882248 DOI: 10.1016/j.bpj.2019.11.3395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
About three-fourths of the human DNA molecules are wrapped into nucleosomes, protein spools with DNA. Nucleosomes are highly dynamic, transiently exposing their DNA through spontaneous unspooling. Recent experiments allowed to observe the DNA of an ensemble of such breathing nucleosomes through x-ray diffraction with contrast matching between the solvent and the protein core. In this study, we calculate such an ensemble through a Monte Carlo simulation of a coarse-grained nucleosome model with sequence-dependent DNA mechanics. Our analysis gives detailed insights into the sequence dependence of nucleosome breathing observed in the experiment and allows us to determine the adsorption energy of the DNA bound to the protein core as a function of the ionic strength. Moreover, we predict the breathing behavior of other potentially interesting sequences and compare the findings to earlier related experiments.
Collapse
|
53
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
54
|
Nussinov R, Tsai C, Jang H. Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB J 2019; 34:16-29. [DOI: 10.1096/fj.201901341r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Basic Science Program Frederick National Laboratory for Cancer Research Frederick MD USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Chung‐Jung Tsai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Hyunbum Jang
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
55
|
Okushima T, Niiyama T, Ikeda KS, Shimizu Y. Mean first passage times reconstruct the slowest relaxations in potential energy landscapes of nanoclusters. Phys Rev E 2019; 100:032311. [PMID: 31639985 DOI: 10.1103/physreve.100.032311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 11/07/2022]
Abstract
Relaxation modes are the collective modes in which all probability deviations from equilibrium states decay with the same relaxation rates. In contrast, a first passage time is the required time for arriving for the first time from one state to another. In this paper, we discuss how and why the slowest relaxation rates of relaxation modes are reconstructed from the first passage times. As an illustrative model, we use a continuous-time Markov state model of vacancy diffusion in KCl nanoclusters. Using this model, we reveal that all characteristics of the relaxations in KCl nanoclusters come from the fact that they are hybrids of two kinetically different regions of the fast surface and slow bulk diffusions. The origin of the different diffusivities turns out to come from the heterogeneity of the activation energies on the potential energy landscapes. We also develop a stationary population method to compute the mean first passage times as mean times required for pair annihilations of particle-hole pairs, which enables us to obtain the symmetric results of relaxation rates under the exchange of the sinks and the sources. With this symmetric method, we finally show why the slowest relaxation times can be reconstructed from the mean first passage times.
Collapse
Affiliation(s)
- Teruaki Okushima
- College of Engineering, Chubu University, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Tomoaki Niiyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920-1192, Japan
| | - Kensuke S Ikeda
- College of Science and Engineering, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, shiga 525-8577, Japan
| | - Yasushi Shimizu
- Department of Physics, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, shiga 525-8577, Japan
| |
Collapse
|
56
|
Tsai MY, Zheng W, Chen M, Wolynes PG. Multiple Binding Configurations of Fis Protein Pairs on DNA: Facilitated Dissociation versus Cooperative Dissociation. J Am Chem Soc 2019; 141:18113-18126. [DOI: 10.1021/jacs.9b08287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan (R.O.C.)
| | | | | | | |
Collapse
|
57
|
Alhadeff R, Warshel A. A free-energy landscape for the glucagon-like peptide 1 receptor GLP1R. Proteins 2019; 88:127-134. [PMID: 31294890 DOI: 10.1002/prot.25777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
G-protein-coupled receptors (GPCRs) are among the most important receptors in human physiology and pathology. They serve as master regulators of numerous key processes and are involved in as well as cause debilitating diseases. Consequently, GPCRs are among the most attractive targets for drug design and pharmaceutical interventions (>30% of drugs on the market). The glucagon-like peptide 1 (GLP-1) hormone receptor GLP1R is closely involved in insulin secretion by pancreatic β-cells and constitutes a major druggable target for the development of anti-diabetes and obesity agents. GLP1R structure was recently solved, with ligands, allosteric modulators and as part of a complex with its cognate G protein. However, the translation of this structural data into structure/function understanding remains limited. The current study functionally characterizes GLP1R with special emphasis on ligand and cellular partner binding interactions and presents a free-energy landscape as well as a functional model of the activation cycle of GLP1R. Our results should facilitate a deeper understanding of the molecular mechanism underlying GLP1R activation, forming a basis for improved development of targeted therapeutics for diabetes and related disorders.
Collapse
Affiliation(s)
- Raphael Alhadeff
- Department of Chemistry, University of Southern California, California, Los Angeles
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, California, Los Angeles
| |
Collapse
|
58
|
Velasco-Bolom JL, Corzo G, Garduño-Juárez R. Folding profiles of antimicrobial scorpion venom-derived peptides on hydrophobic surfaces: a molecular dynamics study. J Biomol Struct Dyn 2019; 38:2928-2938. [PMID: 31345123 DOI: 10.1080/07391102.2019.1648319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Most helical antimicrobial peptides (AMPs) are usually unfolded in aqueous solution; however they acquire their secondary structure in the presence of a hydrophobic environment such as lipid membranes. Being the biological membranes the main target of many AMPs it is necessary to understand their way of action. Pandinin 2 (Pin2) is an alpha-helical AMP isolated from the venom of the African scorpion Pandinus imperator which shows high antimicrobial activity against Gram-positive bacteria and it is less active against Gram-negative bacteria, nevertheless, it has strong hemolytic activity. Its chemically synthesized Pin2GVG analog has low hemolytic activity while keeping its antimicrobial activity. With the aim of exploring the partition and subsequent folding of these peptides, in this work we report the results of extensive molecular dynamics simulations of Pin2 and Pin2GVG peptides in the presence of 2 hydrophobic environments such as dodecyl-phosphocholine (DPC) micelle and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) membrane. Our results indicate that Pin2 folds in DPC with a 79% of alpha-helical content, which is in agreement with the experimental results, while in POPC it has 62.5% of alpha-helical content. On the other hand, Pin2GVG presents a higher percentage of alpha-helical structure in POPC and a smaller content in DPC when compared with Pin2. These results can help to better choose the starting structures in future molecular dynamics simulations of AMPs, because these peptides can adopt slightly different conformations depending on the hydrophobic environment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José-Luis Velasco-Bolom
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
59
|
Jiang Z, Zhang B. Theory of active chromatin remodeling.. [DOI: 10.1101/687145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nucleosome positioning controls the accessible regions of chromatin and plays essential roles in DNA-templated processes. ATP driven remodeling enzymes are known to be crucial for its establishment in vivo, but their non-equilibrium nature has hindered the development of a unified theoretical framework for nucleosome positioning. Using a perturbation theory, we show that the effect of these enzymes can be well approximated by effective equilibrium models with rescaled temperatures and interactions. Numerical simulations support the accuracy of the theory in predicting both kinetic and steady-state quantities, including the effective temperature and the radial distribution function, in biologically relevant regimes. The energy landscape view emerging from our study provides an intuitive understanding for the impact of remodeling enzymes in either reinforcing or overwriting intrinsic signals for nucleosome positioning, and may help improve the accuracy of computational models for its prediction in silico.
Collapse
|
60
|
Lequieu J, Córdoba A, Moller J, de Pablo JJ. 1CPN: A coarse-grained multi-scale model of chromatin. J Chem Phys 2019; 150:215102. [PMID: 31176328 DOI: 10.1063/1.5092976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A central question in epigenetics is how histone modifications influence the 3D structure of eukaryotic genomes and, ultimately, how this 3D structure is manifested in gene expression. The wide range of length scales that influence the 3D genome structure presents important challenges; epigenetic modifications to histones occur on scales of angstroms, yet the resulting effects of these modifications on genome structure can span micrometers. There is a scarcity of computational tools capable of providing a mechanistic picture of how molecular information from individual histones is propagated up to large regions of the genome. In this work, a new molecular model of chromatin is presented that provides such a picture. This new model, referred to as 1CPN, is structured around a rigorous multiscale approach, whereby free energies from an established and extensively validated model of the nucleosome are mapped onto a reduced coarse-grained topology. As such, 1CPN incorporates detailed physics from the nucleosome, such as histone modifications and DNA sequence, while maintaining the computational efficiency that is required to permit kilobase-scale simulations of genomic DNA. The 1CPN model reproduces the free energies and dynamics of both single nucleosomes and short chromatin fibers, and it is shown to be compatible with recently developed models of the linker histone. It is applied here to examine the effects of the linker DNA on the free energies of chromatin assembly and to demonstrate that these free energies are strongly dependent on the linker DNA length, pitch, and even DNA sequence. The 1CPN model is implemented in the LAMMPS simulation package and is distributed freely for public use.
Collapse
Affiliation(s)
- Joshua Lequieu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrés Córdoba
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Joshua Moller
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
61
|
Parsons T, Zhang B. Critical role of histone tail entropy in nucleosome unwinding. J Chem Phys 2019; 150:185103. [PMID: 31091895 DOI: 10.1063/1.5085663] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleosome is the fundamental packaging unit for the genome. It must remain tightly wound to ensure genome stability while simultaneously being flexible enough to keep the DNA molecule accessible for genome function. The set of physicochemical interactions responsible for the delicate balance between these naturally opposed processes have not been determined due to challenges in resolving partially unwound nucleosome configurations at atomic resolution. Using a near atomistic protein-DNA model and advanced sampling techniques, we calculate the free energy cost of nucleosome DNA unwinding. Our simulations identify a large energetic barrier that decouples the outer and the inner DNA unwinding into two separate processes, occurring on different time scales. This dynamical decoupling allows the exposure of outer DNA at a modest cost to ensure accessibility while keeping the inner DNA and the histone core intact to maintain stability. We also reveal that this energetic barrier arises from a delayed loss of contacts between disordered histone tails and the DNA and is, surprisingly, largely offset by an entropic contribution from these tails. Implications of this enthalpy entropy compensation for the regulation of nucleosome stability and genome function are discussed.
Collapse
Affiliation(s)
- Thomas Parsons
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
62
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
63
|
Moller J, Lequieu J, de Pablo JJ. The Free Energy Landscape of Internucleosome Interactions and Its Relation to Chromatin Fiber Structure. ACS CENTRAL SCIENCE 2019; 5:341-348. [PMID: 30834322 PMCID: PMC6396382 DOI: 10.1021/acscentsci.8b00836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 05/11/2023]
Abstract
The supramolecular chromatin fiber is governed by molecular scale energetics and interactions. Such energetics originate from the fiber's building block, the nucleosome core particle (NCP). In recent years, the chromatin fiber has been examined through perturbative methods in attempts to extract the energetics of nucleosome association in the fiber. This body of work has led to different results from experiments and simulations concerning the nucleosome-nucleosome energetics. Here, we expand on previous experiments and use coarse-grained simulations to evaluate the energetics inherent to nucleosomes across a variety of parameters in configurational and environmental space. Through this effort, we are able to uncover molecular processes that are critical to understanding the 30 nm chromatin fiber structure. In particular, we describe the NCP-NCP interactions by relying on an anisotropic energetic landscape, rather than a single potential energy value. The attractions in that landscape arise predominantly from the highly anisotropic interactions provided by the NCP histone N-terminal domain (NTD) tails. Our results are found to be in good agreement with recent nucleosome interaction experiments that suggest a maximum interaction energy of 2.69k B T. Furthermore, we examine the influence of crucial epigenetic modifications, such as acetylation of the H4 tail, and how they modify the underlying landscape. Our results for acetylated NCP interactions are also in agreement with experiment. We additionally find an induced chirality in NCP-NCP interactions upon acetylation that reduces interactions which would correspond to a left-handed superhelical chromatin fiber.
Collapse
Affiliation(s)
- Joshua Moller
- Institute
for Molecular Engineering, University of
Chicago, Chicago, Illinois 60637, United States
| | - Joshua Lequieu
- Institute
for Molecular Engineering, University of
Chicago, Chicago, Illinois 60637, United States
- Chemical
Engineering, University of California Santa
Barbara, Santa Barbara, California 93106, United States
| | - Juan J. de Pablo
- Institute
for Molecular Engineering, University of
Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- E-mail for J.J.d.P.:
| |
Collapse
|
64
|
Dey P, Bhattacherjee A. Disparity in anomalous diffusion of proteins searching for their target DNA sites in a crowded medium is controlled by the size, shape and mobility of macromolecular crowders. SOFT MATTER 2019; 15:1960-1969. [PMID: 30539954 DOI: 10.1039/c8sm01933a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using extensive computer simulations, we analyzed the role of physical properties of molecular crowding agents such as size, shape and mobility in the target search dynamics of DNA binding proteins. Our main result is that the sub-diffusive dynamics of a protein inside a crowded medium strongly depends on the crowder properties and also on the protein's mode of diffusion. For instance, while scanning the DNA one-dimensionally, the protein dynamics does not vary with the change in crowder properties. Conversely, the diffusion exponent varies non-monotonically during 3D diffusion and is maximally affected when the crowders match the protein physically. The investigation shows that the effect stems from the ruggedness of the associated potential energy landscape, which is regulated by the protein-crowder and DNA-crowder interactions. Our findings have broad significance in understanding the target search dynamics of proteins on DNA in crowded cellular milieu and selecting appropriate crowding agents when designing in vitro experiments.
Collapse
Affiliation(s)
- Pinki Dey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | | |
Collapse
|
65
|
Latham AP, Zhang B. Improving Coarse-Grained Protein Force Fields with Small-Angle X-ray Scattering Data. J Phys Chem B 2019; 123:1026-1034. [PMID: 30620594 DOI: 10.1021/acs.jpcb.8b10336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small-angle X-ray scattering (SAXS) experiments provide valuable structural data for biomolecules in solution. We develop a highly efficient maximum entropy approach to fit SAXS data by introducing minimal biases to a coarse-grained protein force field, the associative memory, water mediated, structure, and energy model (AWSEM). We demonstrate that the resulting force field, AWSEM-SAXS, succeeds in reproducing scattering profiles and models protein structures with shapes that are in much better agreement with experimental results. Quantitative metrics further reveal a modest, but consistent, improvement in the accuracy of modeled structures when SAXS data are incorporated into the force field. Additionally, when applied to a multiconformational protein, we find that AWSEM-SAXS is able to recover the population of different protein conformations from SAXS data alone. We, therefore, conclude that the maximum entropy approach is effective in fine-tuning the force field to better characterize both protein structure and conformational fluctuation.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bin Zhang
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
66
|
Winogradoff D, Aksimentiev A. Molecular Mechanism of Spontaneous Nucleosome Unraveling. J Mol Biol 2019; 431:323-335. [PMID: 30468737 PMCID: PMC6331254 DOI: 10.1016/j.jmb.2018.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022]
Abstract
Meters of DNA wrap around histone proteins to form nucleosomes and fit inside the micron-diameter nucleus. For the genetic information encoded in the DNA to become available for transcription, replication, and repair, the DNA-histone assembly must be disrupted. Experiment has indicated that the outer stretches of nucleosomal DNA "breathe" by spontaneously detaching from and reattaching to the histone core. Here, we report direct observation of spontaneous DNA breathing in atomistic molecular dynamics simulations, detailing a microscopic mechanism of the DNA breathing process. According to our simulations, the outer stretches of nucleosomal DNA detach in discrete steps involving 5 or 10 base pairs, with the detachment process being orchestrated by the motion of several conserved histone residues. The inner stretches of nucleosomal DNA are found to be more stably associated with the histone core by more abundant nonspecific DNA-protein contacts, providing a microscopic interpretation of nucleosome unraveling experiments. The CG content of nucleosomal DNA is found to anticorrelate with the extent of unwrapping, supporting the possibility that AT-rich segments may signal the start of transcription by forming less stable nucleosomes.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
67
|
Wu H, Wolynes PG, Papoian GA. AWSEM-IDP: A Coarse-Grained Force Field for Intrinsically Disordered Proteins. J Phys Chem B 2018; 122:11115-11125. [PMID: 30091924 PMCID: PMC6713210 DOI: 10.1021/acs.jpcb.8b05791] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The associative memory, water-mediated, structure and energy model (AWSEM) has been successfully used to study protein folding, binding, and aggregation problems. In this work, we introduce AWSEM-IDP, a new AWSEM branch for simulating intrinsically disordered proteins (IDPs), where the weights of the potentials determining secondary structure formation have been finely tuned, and a novel potential is introduced that helps to precisely control both the average extent of protein chain collapse and the chain's fluctuations in size. AWSEM-IDP can efficiently sample large conformational spaces, while retaining sufficient molecular accuracy to realistically model proteins. We applied this new model to two IDPs, demonstrating that AWSEM-IDP can reasonably well reproduce higher-resolution reference data, thus providing the foundation for a transferable IDP force field. Finally, we used thermodynamic perturbation theory to show that, in general, the conformational ensembles of IDPs are highly sensitive to fine-tuning of force field parameters.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Peter G. Wolynes
- Departments of Chemistry and Physics and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
68
|
Chakraborty K, Kang M, Loverde SM. Molecular Mechanism for the Role of the H2A and H2B Histone Tails in Nucleosome Repositioning. J Phys Chem B 2018; 122:11827-11840. [DOI: 10.1021/acs.jpcb.8b07881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaushik Chakraborty
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Myungshim Kang
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| |
Collapse
|
69
|
Saintillan D, Shelley MJ, Zidovska A. Extensile motor activity drives coherent motions in a model of interphase chromatin. Proc Natl Acad Sci U S A 2018; 115:11442-11447. [PMID: 30348795 PMCID: PMC6233076 DOI: 10.1073/pnas.1807073115] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3D spatiotemporal organization of the human genome inside the cell nucleus remains a major open question in cellular biology. In the time between two cell divisions, chromatin-the functional form of DNA in cells-fills the nucleus in its uncondensed polymeric form. Recent in vivo imaging experiments reveal that the chromatin moves coherently, having displacements with long-ranged correlations on the scale of micrometers and lasting for seconds. To elucidate the mechanism(s) behind these motions, we develop a coarse-grained active polymer model where chromatin is represented as a confined flexible chain acted upon by molecular motors that drive fluid flows by exerting dipolar forces on the system. Numerical simulations of this model account for steric and hydrodynamic interactions as well as internal chain mechanics. These demonstrate that coherent motions emerge in systems involving extensile dipoles and are accompanied by large-scale chain reconfigurations and nematic ordering. Comparisons with experiments show good qualitative agreement and support the hypothesis that self-organizing long-ranged hydrodynamic couplings between chromatin-associated active motor proteins are responsible for the observed coherent dynamics.
Collapse
Affiliation(s)
- David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093;
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, NY 10010
- Courant Institute, New York University, New York, NY 10012
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003
| |
Collapse
|
70
|
Brandani GB, Takada S. Chromatin remodelers couple inchworm motion with twist-defect formation to slide nucleosomal DNA. PLoS Comput Biol 2018; 14:e1006512. [PMID: 30395604 PMCID: PMC6237416 DOI: 10.1371/journal.pcbi.1006512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/15/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023] Open
Abstract
ATP-dependent chromatin remodelers are molecular machines that control genome organization by repositioning, ejecting, or editing nucleosomes, activities that confer them essential regulatory roles on gene expression and DNA replication. Here, we investigate the molecular mechanism of active nucleosome sliding by means of molecular dynamics simulations of the Snf2 remodeler translocase in complex with a nucleosome. During its inchworm motion driven by ATP consumption, the translocase overwrites the original nucleosome energy landscape via steric and electrostatic interactions to induce sliding of nucleosomal DNA unidirectionally. The sliding is initiated at the remodeler binding location via the generation of a pair of twist defects, which then spontaneously propagate to complete sliding throughout the entire nucleosome. We also reveal how remodeler mutations and DNA sequence control active nucleosome repositioning, explaining several past experimental observations. These results offer a detailed mechanistic picture of remodeling important for the complete understanding of these key biological processes. Nucleosomes are the protein-DNA complexes underlying Eukaryotic genome organization, and serve as regulators of gene expression by occluding DNA to other proteins. This regulation requires the precise positioning of nucleosomes along DNA. Chromatin remodelers are the molecular machines that consume ATP to slide nucleosome at their correct locations, but the mechanisms of remodeling are still unclear. Based on the static structural information of a remodeler bound on nucleosome, we performed molecular dynamics computer simulations revealing the details of how remodelers slide nucleosomal DNA: the inchworm-like motion of remodelers create small DNA deformations called twist defects, which then spontaneously propagate throughout the nucleosome to induce sliding. These simulations explain several past experimental findings and are important for our understanding of genome organization.
Collapse
Affiliation(s)
- Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
71
|
Abstract
G-protein-coupled receptors (GPCRs) are a large group of membrane-bound receptor proteins that are involved in a plethora of diverse processes (e.g., vision, hormone response). In mammals, and particularly in humans, GPCRs are involved in many signal transduction pathways and, as such, are heavily studied for their immense pharmaceutical potential. Indeed, a large fraction of drugs target various GPCRs, and drug-development is often aimed at GPCRs. Therefore, understanding the activation of GPCRs is a challenge of major importance both from fundamental and practical considerations. And yet, despite the remarkable progress in structural understanding, we still do not have a translation of the structural information to an energy-based picture. Here we use coarse-grained (CG) modeling to chart the free-energy landscape of the activation process of the β-2 adrenergic receptor (β2AR) as a representative GPCR. The landscape provides the needed tool for analyzing the processes that lead to activation of the receptor upon binding of the ligand (adrenaline) while limiting constitutive activation. Our results pave the way to better understand the biological mechanisms of action of the β2AR and GPCRs, from a physical chemistry point of view rather than simply by observing the receptor's behavior physiologically.
Collapse
|
72
|
Tan C, Takada S. Dynamic and Structural Modeling of the Specificity in Protein–DNA Interactions Guided by Binding Assay and Structure Data. J Chem Theory Comput 2018; 14:3877-3889. [DOI: 10.1021/acs.jctc.8b00299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
73
|
Watanabe S, Mishima Y, Shimizu M, Suetake I, Takada S. Interactions of HP1 Bound to H3K9me3 Dinucleosome by Molecular Simulations and Biochemical Assays. Biophys J 2018; 114:2336-2351. [PMID: 29685391 PMCID: PMC6129468 DOI: 10.1016/j.bpj.2018.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin protein 1 (HP1), associated with heterochromatin formation, recognizes an epigenetically repressive marker, trimethylated lysine 9 in histone H3 (H3K9me3), and generally contributes to long-term silencing. How HP1 induces heterochromatin is not fully understood. Recent experiments suggested that not one, but two nucleosomes provide a platform for this recognition. Integrating previous and new biochemical assays with computational modeling, we provide near-atomic structural models for HP1 binding to the dinucleosomes. We found that the dimeric HP1α tends to bind two H3K9me3s that are in adjacent nucleosomes, thus bridging two nucleosomes. We identified, to our knowledge, a novel DNA binding motif in the hinge region that is specific to HP1α and is essential for recognizing the H3K9me3 sites of two nucleosomes. An HP1 isoform, HP1γ, does not easily bridge two nucleosomes in extended conformations because of the absence of the above binding motif and its shorter hinge region. We propose a molecular mechanism for chromatin structural changes caused by HP1.
Collapse
Affiliation(s)
- Shuhei Watanabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Yuichi Mishima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; College of Nutrition, Koshien University, Takarazuka, Japan.
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan.
| |
Collapse
|
74
|
Brandani GB, Niina T, Tan C, Takada S. DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations. Nucleic Acids Res 2018; 46:2788-2801. [PMID: 29506273 PMCID: PMC5887990 DOI: 10.1093/nar/gky158] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
While nucleosomes are highly stable structures as fundamental units of chromatin, they also slide along the DNA, either spontaneously or by active remodelers. Here, we investigate the microscopic mechanisms of nucleosome sliding by multiscale molecular simulations, characterizing how the screw-like motion of DNA proceeds via the formation and propagation of twist defects. Firstly, coarse-grained molecular simulations reveal that the sliding dynamics is highly dependent on DNA sequence. Depending on the sequence and the nucleosome super-helical location, we find two distinct types of twist defects: a locally under-twisted DNA region, previously observed in crystal structures, and a locally over-twisted DNA, an unprecedented feature. The stability of the over-twist defect was confirmed via all-atom simulations. Analysis of our trajectories via Markov state modeling highlights how the sequence-dependence of the sliding dynamics is due to the different twist defect energy costs, and in particular how nucleosome regions where defects cannot easily form introduce the kinetic bottlenecks slowing down repositioning. Twist defects can also mediate sliding of nucleosomes made with strong positioning sequences, albeit at a much lower diffusion coefficient, due to a high-energy intermediate state. Finally, we discuss how chromatin remodelers may exploit these spontaneous fluctuations to induce unidirectional sliding of nucleosomes.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
75
|
Okushima T, Niiyama T, Ikeda KS, Shimizu Y. Slowest kinetic modes revealed by metabasin renormalization. Phys Rev E 2018; 97:021301. [PMID: 29548087 DOI: 10.1103/physreve.97.021301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 11/07/2022]
Abstract
Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009)PLEEE81539-375510.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016)CHPLBC0009-261410.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.
Collapse
Affiliation(s)
- Teruaki Okushima
- Science and Technology Section, General Education Division, College of Engineering, Chubu University, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Tomoaki Niiyama
- College of Science and Engineering, Kanazwa University, Kakuma-cho, Kanazawa, Ishikawa 920-1192, Japan
| | - Kensuke S Ikeda
- College of Science and Engineering, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Yasushi Shimizu
- Department of Physics, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu 525-8577, Japan
| |
Collapse
|
76
|
Fenley AT, Anandakrishnan R, Kidane YH, Onufriev AV. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core. Epigenetics Chromatin 2018; 11:11. [PMID: 29548294 PMCID: PMC5856334 DOI: 10.1186/s13072-018-0181-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Controlled modulation of nucleosomal DNA accessibility via post-translational modifications (PTM) is a critical component to many cellular functions. Charge-altering PTMs in the globular histone core-including acetylation, phosphorylation, crotonylation, propionylation, butyrylation, formylation, and citrullination-can alter the strong electrostatic interactions between the oppositely charged nucleosomal DNA and the histone proteins and thus modulate accessibility of the nucleosomal DNA, affecting processes that depend on access to the genetic information, such as transcription. However, direct experimental investigation of the effects of these PTMs is very difficult. Theoretical models can rationalize existing observations, suggest working hypotheses for future experiments, and provide a unifying framework for connecting PTMs with the observed effects. RESULTS A physics-based framework is proposed that predicts the effect of charge-altering PTMs in the histone core, quantitatively for several types of lysine charge-neutralizing PTMs including acetylation, and qualitatively for all phosphorylations, on the nucleosome stability and subsequent changes in DNA accessibility, making a connection to resulting biological phenotypes. The framework takes into account multiple partially assembled states of the nucleosome at the atomic resolution. The framework is validated against experimentally known nucleosome stability changes due to the acetylation of specific lysines, and their effect on transcription. The predicted effect of charge-altering PTMs on DNA accessibility can vary dramatically, from virtually none to a strong, region-dependent increase in accessibility of the nucleosomal DNA; in some cases, e.g., H4K44, H2AK75, and H2BK57, the effect is significantly stronger than that of the extensively studied acetylation sites such H3K56, H3K115 or H3K122. Proximity to the DNA is suggestive of the strength of the PTM effect, but there are many exceptions. For the vast majority of charge-altering PTMs, the predicted increase in the DNA accessibility should be large enough to result in a measurable modulation of transcription. However, a few possible PTMs, such as acetylation of H4K77, counterintuitively decrease the DNA accessibility, suggestive of the repressed chromatin. A structural explanation for the phenomenon is provided. For the majority of charge-altering PTMs, the effect on DNA accessibility is simply additive (noncooperative), but there are exceptions, e.g., simultaneous acetylation of H4K79 and H3K122, where the combined effect is amplified. The amplification is a direct consequence of the nucleosome-DNA complex having more than two structural states. The effect of individual PTMs is classified based on changes in the accessibility of various regions throughout the nucleosomal DNA. The PTM's resulting imprint on the DNA accessibility, "PTMprint," is used to predict effects of many yet unexplored PTMs. For example, acetylation of H4K44 yields a PTMprint similar to the PTMprint of H3K56, and thus acetylation of H4K44 is predicted to lead to a wide range of strong biological effects. CONCLUSION Charge-altering post-translational modifications in the relatively unexplored globular histone core may provide a precision mechanism for controlling accessibility to the nucleosomal DNA.
Collapse
Affiliation(s)
- Andrew T. Fenley
- Department of Physics, Virginia Tech, 2160C Torgersen Hall, Blacksburg, VA 24061 USA
| | | | - Yared H. Kidane
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061 USA
| | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, 2160C Torgersen Hall, Blacksburg, VA 24061 USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
77
|
Shimizu M, Takada S. Reconstruction of Atomistic Structures from Coarse-Grained Models for Protein-DNA Complexes. J Chem Theory Comput 2018; 14:1682-1694. [PMID: 29397721 DOI: 10.1021/acs.jctc.7b00954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While coarse-grained (CG) simulations have widely been used to accelerate structure sampling of large biomolecular complexes, they are unavoidably less accurate and thus the reconstruction of all-atom (AA) structures and the subsequent refinement is desirable. In this study we developed an efficient method to reconstruct AA structures from sampled CG protein-DNA complex models, which attempts to model the protein-DNA interface accurately. First we developed a method to reconstruct atomic details of DNA structures from a three-site per nucleotide CG model, which uses a DNA fragment library. Next, for the protein-DNA interface, we referred to the side chain orientations in the known structure of the target interface when available. The other parts are modeled by existing tools. We confirmed the accuracy of the protocol in various aspects including the structure deviation in the self-reproduction, the base pair reproducibility, atomic contacts at the protein-DNA interface, and feasibility of the posterior AA simulations.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Department of Biophysics, Graduate School of Science , Kyoto University , Sakyo, Kyoto 606-8502 Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science , Kyoto University , Sakyo, Kyoto 606-8502 Japan
| |
Collapse
|
78
|
Role of Macromolecular Crowding on the Intracellular Diffusion of DNA Binding Proteins. Sci Rep 2018; 8:844. [PMID: 29339733 PMCID: PMC5770392 DOI: 10.1038/s41598-017-18933-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/20/2017] [Indexed: 11/08/2022] Open
Abstract
Recent experiments suggest that cellular crowding facilitates the target search dynamics of proteins on DNA, the mechanism of which is not yet known. By using large scale computer simulations, we show that two competing factors, namely the width of the depletion layer that separates the crowder cloud from the DNA molecule and the degree of protein-crowder crosstalk, act in harmony to affect the target search dynamics of proteins. The impacts vary from nonspecific to specific target search regime. During a nonspecific search, dynamics of a protein is only minimally affected, whereas, a significantly different behaviour is observed when the protein starts forming a specific protein-DNA complex. We also find that the severity of impacts largely depends upon physiological crowder concentration and deviation from it leads to attenuation in the binding kinetics. Based on extensive kinetic study and binding energy landscape analysis, we further present a comprehensive molecular description of the search process that allows us to interpret the experimental findings.
Collapse
|
79
|
Niina T, Brandani GB, Tan C, Takada S. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Comput Biol 2017; 13:e1005880. [PMID: 29194442 PMCID: PMC5728581 DOI: 10.1371/journal.pcbi.1005880] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/13/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements.
Collapse
Affiliation(s)
- Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
80
|
Chakraborty K, Loverde SM. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails. J Chem Phys 2017; 147:065101. [DOI: 10.1063/1.4997573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
81
|
Liu C, Wang T, Bai Y, Wang J. Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones. PLoS One 2017; 12:e0178405. [PMID: 28552960 PMCID: PMC5446181 DOI: 10.1371/journal.pone.0178405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/14/2017] [Indexed: 11/18/2022] Open
Abstract
A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism.
Collapse
Affiliation(s)
- Chuanbo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China, 130022
- University of Chinese Academy of Sciences, Beijing, P.R. China, 130022
| | - Tianshu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China, 130022
- College of Physics, Jilin University, Chuangchun, Jilin, P. R. China, 130012
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 20892
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China, 130022
- College of Physics, Jilin University, Chuangchun, Jilin, P. R. China, 130012
- Department of Chemistry and Physics, State University of New York, Stony Brook, New York, United States of America, 11794-3400
- * E-mail:
| |
Collapse
|
82
|
Bascom GD, Kim T, Schlick T. Kilobase Pair Chromatin Fiber Contacts Promoted by Living-System-Like DNA Linker Length Distributions and Nucleosome Depletion. J Phys Chem B 2017; 121:3882-3894. [PMID: 28299939 DOI: 10.1021/acs.jpcb.7b00998] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleosome placement, or DNA linker length patterns, are believed to yield specific spatial features in chromatin fibers, but details are unknown. Here we examine by mesoscale modeling how kilobase (kb) range contacts and fiber looping depend on linker lengths ranging from 18 to 45 bp, with values modeled after living systems, including nucleosome free regions (NFRs) and gene encoding segments. We also compare artificial constructs with alternating versus randomly distributed linker lengths in the range of 18-72 bp. We show that nonuniform distributions with NFRs enhance flexibility and encourage kb-range contacts. NFRs between neighboring gene segments diminish short-range contacts between flanking nucleosomes, while enhancing kb-range contacts via hierarchical looping. We also demonstrate that variances in linker lengths enhance such contacts. In particular, moderate sized variations in fiber linker lengths (∼27 bp) encourage long-range contacts in randomly distributed linker length fibers. Our work underscores the importance of linker length patterns, alongside bound proteins, in biological regulation. Contacts formed by kb-range chromatin folding are crucial to gene activity. Because we find that special linker length distributions in living systems promote kb contacts, our work suggests ways to manipulate these patterns for regulation of gene activity.
Collapse
Affiliation(s)
- Gavin D Bascom
- Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States
| | - Taejin Kim
- Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States
| | - Tamar Schlick
- Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, New York University , 251 Mercer St, New York, New York 10012, United States.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai , Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China
| |
Collapse
|
83
|
Zhang B, Wolynes PG. Genomic Energy Landscapes. Biophys J 2017; 112:427-433. [PMID: 27692923 PMCID: PMC5300775 DOI: 10.1016/j.bpj.2016.08.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022] Open
Abstract
Energy landscape theory, developed in the context of protein folding, provides, to our knowledge, a new perspective on chromosome architecture. We review what has been learned concerning the topology and structure of both the interphase and mitotic chromosomes from effective energy landscapes constructed using Hi-C data. Energy landscape thinking raises new questions about the nonequilibrium dynamics of the chromosome and gene regulation.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics and Astronomy, Rice University, Houston, Texas.
| |
Collapse
|
84
|
Bascom G, Schlick T. Linking Chromatin Fibers to Gene Folding by Hierarchical Looping. Biophys J 2017; 112:434-445. [PMID: 28153411 DOI: 10.1016/j.bpj.2017.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/16/2022] Open
Abstract
While much is known about DNA structure on the basepair level, this scale represents only a fraction of the structural levels involved in folding the genomic material. With recent advances in experimental and theoretical techniques, a variety of structures have been observed on the fiber, gene, and chromosome levels of genome organization. Here we view chromatin architecture from nucleosomes and fibers to genes and chromosomes, highlighting the rich structural diversity and fiber fluidity emerging from both experimental and theoretical techniques. In this context, we discuss our recently proposed folding mechanism, which we call "hierarchical looping", similar to rope flaking used in mountain climbing, where 10-nm zigzag chromatin fibers are compacted laterally into self-associating loops which then stack and fold in space. We propose that hierarchical looping may act as a bridge between fibers and genes as well as provide a mechanism to relate key features of interphase and metaphase chromosome architecture to genome structural changes. This motif emerged by analysis of ultrastructural internucleosome contact data by electron microscopy-assisted nucleosome interaction capture cross-linking experiments, in combination with mesoscale modeling. We suggest that while the local folding of chromatin can be regulated at the fiber level by adjustment of internal factors such as linker-histone binding affinities, linker DNA lengths, and divalent ion levels, hierarchical looping on the gene level can additionally be controlled by posttranslational modifications and external factors such as polycomb group proteins. From a combination of 3C data and mesoscale modeling, we suggest that hierarchical looping could also play a role in epigenetic gene silencing, as stacked loops may occlude access to transcription start sites. With advances in crystallography, single-molecule in vitro biochemistry, in vivo imaging techniques, and genome-wide contact data experiments, various modeling approaches are allowing for previously unavailable structural interpretation of these data at multiple spatial and temporal scales. An unprecedented level of productivity and opportunity is on the horizon for the chromatin structure field.
Collapse
Affiliation(s)
- Gavin Bascom
- Department of Chemistry, New York University, New York, New York
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China.
| |
Collapse
|
85
|
Abstract
The mechanisms by which proteins evolve new functions can be slow and mysterious. Comprehensive structural analysis of enzyme variants reveal how gradual enrichments of pre-existing populations with the right productive dynamics for new functions can accomplish this aim.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., and the Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., and the Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
86
|
Tsai MY, Zhang B, Zheng W, Wolynes PG. Molecular Mechanism of Facilitated Dissociation of Fis Protein from DNA. J Am Chem Soc 2016; 138:13497-13500. [PMID: 27685351 DOI: 10.1021/jacs.6b08416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fis protein is a nucleoid-associated protein that plays many roles in transcriptional regulation and DNA site-specific recombination. In contrast to the naïve expectation based on stoichiometry, recent single-molecule studies have shown that the dissociation of Fis protein from DNA is accelerated by increasing the concentration of the Fis protein. Because the detailed molecular mechanism of facilitated dissociation is still not clear, in this study, we employ computational methods to explore the binding landscapes of Fis:DNA complexes with various stoichiometries. When two Fis molecules are present, simulations uncover a ternary complex, where the originally bound Fis protein is partially dissociated from DNA. The simulations support a three-state sequential kinetic model (N ⇄ I → D) for facilitated dissociation, thus explaining the concentration-dependent dissociation.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Weihua Zheng
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Peter G Wolynes
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
87
|
Kim J, Wei S, Lee J, Yue H, Lee TH. Single-Molecule Observation Reveals Spontaneous Protein Dynamics in the Nucleosome. J Phys Chem B 2016; 120:8925-31. [PMID: 27487198 PMCID: PMC5436049 DOI: 10.1021/acs.jpcb.6b06235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural dynamics of a protein molecule is often critical to its function. Single-molecule methods provide efficient ways to investigate protein dynamics, although it is very challenging to achieve a millisecond or higher temporal resolution. Here we report spontaneous structural dynamics of the histone protein core in the nucleosome based on a single-molecule method that can reveal submillisecond dynamics by combining maximum likelihood estimation and fluorescence correlation spectroscopy. The nucleosome, comprising ∼147 bp DNA and an octameric histone protein core consisting of H2A, H2B, H3, and H4, is the fundamental packing unit of the eukaryotic genome. The nucleosome imposes a physical barrier that should be overcome during various DNA-templated processes. Structural fluctuation of the nucleosome in the histone core has been hypothesized to be required for nucleosome disassembly but has yet to be directly probed. Our results indicate that at 100 mM NaCl the histone H2A-H2B dimer dissociates from the histone core transiently once every 3.6 ± 0.6 ms and returns to its position within 2.0 ± 0.3 ms. We also found that the motion is facilitated upon H3K56 acetylation and inhibited upon replacing H2A with H2A.Z. These results provide the first direct examples of how a localized post-translational modification or an epigenetic variation affects the kinetic and thermodynamic stabilities of a macromolecular protein complex, which may directly contribute to its functions.
Collapse
Affiliation(s)
- Jongseong Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Department of Neurology, Dongguk University Ilsan Hospital, Goyang 10326, The Republic of Korea
| | - Sijie Wei
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongjun Yue
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|