51
|
Itabashi T, Arashiba K, Tanaka H, Yoshizawa K, Nishibayashi Y. Hydroboration and Hydrosilylation of a Molybdenum–Nitride Complex Bearing a PNP-Type Pincer Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takayuki Itabashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
52
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
53
|
González MJ, Bauer F, Breit B. Cobalt-Catalyzed Hydroboration of Terminal and Internal Alkynes. Org Lett 2021; 23:8199-8203. [PMID: 34618449 DOI: 10.1021/acs.orglett.1c02854] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology to access synthetically versatile vinylboronic esters through a ligand-controlled cobalt-catalyzed hydroboration of terminal and internal alkynes is reported. The approach relies on the in situ reduction of Co(II) by H-BPin in the presence of bisphosphine ligands generating catalytically active Co(I) hydride complexes. This procedure avoids the use of stoichiometric amounts of base, and no boron-containing byproducts are generated which is translated into high functional group tolerance and atom economy.
Collapse
Affiliation(s)
- María J González
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| |
Collapse
|
54
|
Tan YX, Peng PY, Wang YJ, Liu XL, Ye W, Gao D, Lin GQ, Tian P. Diastereo- and enantioselective rhodium(III)-catalyzed reductive cyclization of cyclohexadienone-containing 1,6-dienes. Chem Commun (Camb) 2021; 57:9724-9727. [PMID: 34474456 DOI: 10.1039/d1cc03645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diastereo- and enantioselective rhodium(III)-catalyzed reductive cyclization of cyclohexadienone-tethered terminal alkenes and (E)-1,2-disubstituted alkenes (1,6-dienes) is reported, providing cis-bicyclic products bearing three contiguous stereocenters with good yields and high diastereo- and enantioselectivities. The kinetic resolution of the racemic precursor is also achieved with good efficiency. Moreover, a subgram-scale experiment, several transformations of the cyclization product, and one-pot preparation of bridged polycyclic frameworks are presented.
Collapse
Affiliation(s)
- Yun-Xuan Tan
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. .,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei-Ying Peng
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Ya-Jie Wang
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Xi-Liang Liu
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Wenbo Ye
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Dingding Gao
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Guo-Qiang Lin
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. .,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ping Tian
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. .,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
55
|
Zhao X, Zhu S, Qing FL, Chu L. Reductive hydrobenzylation of terminal alkynes via photoredox and nickel dual catalysis. Chem Commun (Camb) 2021; 57:9414-9417. [PMID: 34528966 DOI: 10.1039/d1cc03668h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/nickel dual catalyzed reductive hydrobenzylation of alkynes and benzyl chlorides by employing alkyl amines as a stoichiometric reductant is described. This synergistic protocol proceeds via Markovnikov-selective migratory insertion of an alkyne into nickel hydride, followed by cross-coupling with benzyl chloride, providing facile access to important 1,1-disubstituted olefins. This reaction enables the generation of nickel hydride by utilizing readily available alkyl amines as the hydrogen source. The mild conditions are compatible with a wide range of aryl and alkyl alkynes as well as chlorides.
Collapse
Affiliation(s)
- Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Feng-Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
56
|
Herbort JH, Lalisse RF, Hadad CM, RajanBabu TV. Cationic Co(I) Catalysts for Regiodivergent Hydroalkenylation of 1,6-Enynes. An Uncommon cis-β-C-H Activation Leads to Z-Selective Coupling of Acrylates. ACS Catal 2021; 11:9605-9617. [PMID: 34745711 DOI: 10.1021/acscatal.1c02530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two intermolecular hydroalkenylation reactions of 1,6-enynes are presented which yield substituted 5-membered carbo- and -heterocycles. This reactivity is enabled by a cationic bis-diphenylphosphinopropane (DPPP)CoI species which forms a cobaltacyclopentene intermediate by oxidative cyclization of the enyne. This key species interacts with alkenes in distinct fashion, depending on the identity of the coupling partner to give regiodivergent products. Simple alkenes undergo insertion reactions to furnish 1,3-dienes whereby one of the alkenes is tetrasubstituted. When acrylates are employed as coupling partners, the site of intermolecular C-C formation shifts from the alkyne to the alkene motif of the enyne, yielding Z-substituted-acrylate derivatives. Computational studies provide support for our experimental observations and show that the turnover-limiting steps in both reactions are the interactions of the alkenes with the cobaltacyclopentene intermediate via either a 1,2-insertion in the case of ethylene, or an unexpected β-C-H activation in the case of most acrylates. Thus, the H syn to the ester is activated through the coordination of the acrylate carbonyl to the cobaltacycle intermediate, which explains the uncommon Z-selectivity and regiodivergence. Variable time normalization analysis (VTNA) of the kinetic data reveals a dependance upon the concentration of cobalt, acrylate, and activator. A KIE of 2.1 was observed with methyl methacrylate in separate flask experiments, indicating that C-H cleavage is the turnover-limiting step in the catalytic cycle. Lastly, a Hammett study of aryl-substituted enynes yields a ρ value of -0.4, indicating that more electron-rich substituents accelerate the rate of the reaction.
Collapse
Affiliation(s)
- James H. Herbort
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Remy F. Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - T. V. RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
57
|
Guo J, Cheng Z, Chen J, Chen X, Lu Z. Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes. Acc Chem Res 2021; 54:2701-2716. [PMID: 34011145 DOI: 10.1021/acs.accounts.1c00212] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalyzed asymmetric hydrofunctionalization of readily available unsaturated hydrocarbons presents one of the most straightforward and atom-economic protocols to access valuable optically active products. For decades, noble transition metal catalysts have laid the cornerstone in this field, on account of their superior reactivity and selectivity. In recent years, from an economical and sustainable standpoint, first-row, earth-abundant transition metals have received considerable attention, due to their high natural reserves, affordable costs, and low toxicity. Meanwhile, the earth-abundant metal catalyzed hydrofunctionalization reactions have also gained much interest and been investigated gradually. However, since chiral ligand libraries for earth-abundant transition-metal catalysis are limited to date, the development of highly enantioselective versions remains a significant challenge.This Account summarizes our recent efforts in developing suitable chiral ligands for iron and cobalt catalysts and their applications in the highly enantioselective hydrofunctionalization reactions (hydroboration and hydrosilylation) of alkenes and alkynes. In ligand design, we envisioned that chiral unsymmetric NNN-tridentate (UNT) ligand scaffolds could promote these enantioselective transformations with earth-abundant metals. Therefore, several types of chiral UNT ligands were designed and prepared in our laboratory, utilizing readily available natural amino acids as chiral sources. In the very beginning, chiral oxazoline iminopyridine (OIP) ligands were proposed and investigated through the rational combination of nitrogen-containing ligand scaffolds. After a systematic survey of the ligand effects, the imine moiety in the rigid OIP ligands was replaced by a conformationally more flexible amine unit, leading to the construction of reactive oxazoline aminoisopropylpyridine (OAP) ligands. Subsequently, imidazoline iminopyridine (IIP) and thiazoline iminopyridine (TIP) ligands were prepared by altering the oxygen atom of oxazoline with nitrogen and sulfur linkers, respectively. To further expand the chiral ligand library, other tridentate ligands containing a twisted pincer, anionic, and nonrigid backbone were also designed and synthesized, including iminophenyl oxazolinyl phenylamine (IPOPA) and imidazoline phenyl picolinamide (ImPPA). The efficacy of these chiral UNT ligands for asymmetric induction in iron and cobalt catalysis has been demonstrated through asymmetric hydrofunctionalization of alkenes and asymmetric sequential hydrofunctionalization of alkynes, which exhibit excellent reactivity as well as high chemo-, regio-, and stereoselectivity with broad functional group tolerance. Notably, highly regio- and enantioselective hydrofunctionalization of challenging substrates, such as 1,1-disubstituted aryl alkenes and terminal aliphatic alkenes, was also achieved. Furthermore, the development of asymmetric sequential isomerization/hydroboration of internal alkenes and sequential hydrofunctionalization of alkynes further demonstrates the synthetic power of these catalytic systems. The chiral enantioenriched products obtained by these methodologies could be potentially utilized in organic synthesis, medicinal chemistry, and materials science. We believe that our continuous efforts in this field would be beneficial to the development of asymmetric earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
58
|
Yang D, Huang H, Zhang H, Yin LM, Song MP, Niu JL. Regioselective Intermolecular Hydroamination of Unactivated Alkenes: “Co–H” Enabled Remote Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - He Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ming Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
59
|
Ren X, Tang L, Shen C, Li H, Wang P, Dong K. Enantioselective Hydroesterificative Cyclization of 1,6-Enynes to Chiral γ-Lactams Bearing a Quaternary Carbon Stereocenter. Org Lett 2021; 23:3561-3566. [PMID: 33908782 DOI: 10.1021/acs.orglett.1c00952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-catalyzed asymmetric hydroesterification-cyclization of 1,6-enynes with CO and alcohol was developed to efficiently prepare a variety of enantioenriched γ-lactams bearing a chiral quaternary carbon center and a carboxylic ester group. The approach featured good to high chemo-, region-, and enantioselectivities, high atom economy, and mild reaction conditions as well as broad substrate scope. The correlation between the multiple selectivities of such process and the N-substitutes of the amide linker in the 1,6-enyne substrate has been depicted by the crystallographic evidence and control experiments.
Collapse
Affiliation(s)
- Xinyi Ren
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Tang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Huimin Li
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Peng Wang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
60
|
Iwamoto H, Ozawa Y, Takenouchi Y, Imamoto T, Ito H. Backbone-Modified C2-Symmetrical Chiral Bisphosphine TMS-QuinoxP*: Asymmetric Borylation of Racemic Allyl Electrophiles. J Am Chem Soc 2021; 143:6413-6422. [PMID: 33891398 DOI: 10.1021/jacs.0c08899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new C2-symmetrical P-chirogenic bisphosphine ligand with silyl substituents on the ligand backbone, (R,R)-5,8-TMS-QuinoxP*, has been developed. This ligand showed higher reactivity and enantioselectivity for the direct enantioconvergent borylation of cyclic allyl electrophiles than its parent ligand, (R,R)-QuinoxP* (e.g., for a piperidine-type substrate: 95% ee vs 76% ee). The borylative kinetic resolution of linear allyl electrophiles was also achieved using (R,R)-5,8-TMS-QuinoxP* (up to 90% ee, s = 46.4). An investigation into the role of the silyl groups on the ligand backbone using X-ray crystallography and computational studies displayed interlocking structures between the phosphine and silyl moieties of (R,R)-5,8-TMS-QuinoxP*. The results of DFT calculations revealed that the entropy effect thermodynamically destabilizes the dormant dimer species in the catalytic cycle to improve the reactivity. Furthermore, in the direct enantioconvergent case, detailed calculations indicated a pronounced enantioselective recognition of carbon-carbon double bonds, which is virtually unaffected by the chirality at the allylic position, as a key for the borylation from both enantiomers of racemic allyl electrophiles.
Collapse
Affiliation(s)
- Hiroaki Iwamoto
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yu Ozawa
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuta Takenouchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tsuneo Imamoto
- Organic R&D Department, Nippon Chemical Industrial Co., Ltd., Kameido, Koto-Ku, Tokyo 136-8515, Japan.,Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
61
|
Chen S, Cai M, Huang J, Yao H, Lin A. Cobalt-Catalyzed Dearomatization of Indoles via Transfer Hydrogenation To Afford Polycyclic Indolines. Org Lett 2021; 23:2212-2216. [PMID: 33683891 DOI: 10.1021/acs.orglett.1c00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt-catalyzed dearomatization of indoles via transfer hydrogenation with HBpin and H2O has been developed. This reaction offered a straightforward platform to access hexahydropyrido[1,2-a]indoles in high regio- and chemoselectivity. A preliminary reaction mechanism was proposed on the basis of deuterium-labeling experiments, and a cobalt hydride species was involved in the reaction.
Collapse
Affiliation(s)
- Siwei Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Min Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Junru Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
62
|
Ji Y, Zhang M, Xing M, Cui H, Zhao Q, Zhang C. Transition Metal Catalyzed Enantioselective Borylative Cyclization Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| |
Collapse
|
63
|
Snead RF, Nekvinda J, Santos WL. Copper(ii)-catalyzed protoboration of allenes in aqueous media and open air. NEW J CHEM 2021. [DOI: 10.1039/d0nj02010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A copper(ii)-catalyzed internal protoboration of monosubstituted allenes efficiently occurs in water at room temperature and open air to generate 1,1-disubstituted vinyl boronic acid derivatives.
Collapse
Affiliation(s)
- Russell F. Snead
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
64
|
Ding Z, Wang Y, Liu W, Chen Y, Kong W. Diastereo- and Enantioselective Construction of Spirocycles by Nickel-Catalyzed Cascade Borrowing Hydrogen Cyclization. J Am Chem Soc 2020; 143:53-59. [PMID: 33356186 DOI: 10.1021/jacs.0c10055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhengtian Ding
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yiming Wang
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wenfeng Liu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yate Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
65
|
Kong D, Hu B, Yang M, Gong D, Xia H, Chen D. Bis(phosphine)cobalt-Catalyzed Highly Regio- and Stereoselective Hydrosilylation of 1,3-Diynes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Degong Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Bowen Hu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Dawei Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
66
|
Abstract
This short review highlights the recent developments reported in the last four years on the asymmetric construction of chiral rings based on enantioselective domino reactions promoted by chiral metal catalysts.1 Introduction2 Formation of One Ring Containing One Nitrogen Atom3 Formation of One Ring Containing One Oxygen/Sulfur Atom4 Formation of One Ring Containing Several Heterocyclic Atoms5 Formation of One Carbon Ring6 Formation of Two Rings7 Conclusion
Collapse
|
67
|
Whyte A, Bajohr J, Torelli A, Lautens M. Enantioselective Cobalt-Catalyzed Intermolecular Hydroacylation of 1,6-Enynes. Angew Chem Int Ed Engl 2020; 59:16409-16413. [PMID: 32524694 DOI: 10.1002/anie.202006716] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Abstract
We report a cobalt-catalyzed hydroacylation of 1,6-enynes with exogenous aldehydes in a domino sequence to construct enantioenriched ketones. The products were obtained in good yields with excellent regio-, diastereo-, and enantioselectivity. Furthermore, the chiral products served as valuable precursors to access complex spirocyclic scaffolds with three contiguous stereocenters. The asymmetric hydroacylation process exhibited no C-H crossover and no KIE, thus indicating that the C-H bond cleavage was not involved in the turnover-limiting step.
Collapse
Affiliation(s)
- Andrew Whyte
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan Bajohr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Alexa Torelli
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
68
|
Chen J, Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium‐Catalyzed Enantioselective Arylative Cyclization of 1,6‐Enynes with Arylzincs. Angew Chem Int Ed Engl 2020; 59:18510-18514. [DOI: 10.1002/anie.202008770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
69
|
Chen J, Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium‐Catalyzed Enantioselective Arylative Cyclization of 1,6‐Enynes with Arylzincs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
70
|
Affiliation(s)
- Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University 571199 Haikou Hainan P. R. China
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS) JAIN (Deemed-to-be University) Jain Global Campus Bangalore 562112 India
| |
Collapse
|
71
|
Whyte A, Bajohr J, Torelli A, Lautens M. Enantioselective Cobalt‐Catalyzed Intermolecular Hydroacylation of 1,6‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew Whyte
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jonathan Bajohr
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alexa Torelli
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
72
|
Wang G, Khan R, Liu H, Shen G, Yang F, Chen J, Zhou Y, Fan B. Cobalt-Catalyzed Ligand-Controlled Divergent Regioselective Reactions of 1,6-Enynes with Thiols. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaowei Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Haojie Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Guoli Shen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Fan Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Yongyun Zhou
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| | - Baomin Fan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming 650500, China
| |
Collapse
|
73
|
Yang D, Huang H, Li MH, Si XJ, Zhang H, Niu JL, Song MP. Directed Cobalt-Catalyzed anti-Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by “Co–H” Catalysis. Org Lett 2020; 22:4333-4338. [DOI: 10.1021/acs.orglett.0c01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Meng-Hui Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
74
|
Whyte A, Torelli A, Mirabi B, Prieto L, Rodríguez JF, Lautens M. Cobalt-Catalyzed Enantioselective Hydroarylation of 1,6-Enynes. J Am Chem Soc 2020; 142:9510-9517. [PMID: 32337994 DOI: 10.1021/jacs.0c03246] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An asymmetric hydroarylative cyclization of enynes involving a C-H bond cleavage is reported. The cobalt-catalyzed cascade generates three new bonds in an atom-economical fashion. The products were obtained in excellent yields and excellent enantioselectivities as single diastereo- and regioisomers. Preliminary mechanistic studies indicate that the reaction shows no intermolecular C-H crossover. This work highlights the potential of cobalt catalysis in C-H bond functionalization and enantioselective domino reactivity.
Collapse
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Liher Prieto
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - José F Rodríguez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
75
|
Gu Y, Dai L, Mao K, Zhang J, Wang C, Zhao L, Rong L. Time-Economical Radical Cascade Cyclization/Haloazidation of 1,6-Enynes: Construction of Highly Functional Succinimide Derivatives. Org Lett 2020; 22:2956-2960. [DOI: 10.1021/acs.orglett.0c00682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Lei Dai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Kaimin Mao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Jinghang Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Chang Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Liming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| |
Collapse
|
76
|
Gudun KA, Slamova A, Hayrapetyan D, Khalimon AY. Efficient Co-Catalyzed Double Hydroboration of Nitriles: Application to One-Pot Conversion of Nitriles to Aldimines. Chemistry 2020; 26:4963-4968. [PMID: 32052878 DOI: 10.1002/chem.202000753] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/31/2022]
Abstract
The commercially available and bench-stable Co(acac)2 /dpephos system is employed as a precatalyst for selective and efficient room temperature hydroboration of organic nitriles with HBPin to produce a series of N,N-diborylamines [RN(BPin)2 ], which react in situ with aldehydes to give aldimines. Formation of aldimines from N,N-diborylamines does not require a dehydrating agent, is applicable to a wide range of N,N-diborylamine and aldehyde substrates and is highly chemoselective, being unaffected by various common functional groups, such as alkenes, alkynes, secondary amines, ketones, esters, amides, carboxylic acids, pyridines, nitriles, and nitro compounds. The overall transformation represents a synthetically valuable approach to aldimines from nitriles and can be performed in a sequential one-pot manner, tolerating ester, lactone, carboxamide and unactivated alkene functionalities.
Collapse
Affiliation(s)
- Kristina A Gudun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan
| | - Ainur Slamova
- Core Facilities, Office of the Provost, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan
| | - Davit Hayrapetyan
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan
| | - Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan.,The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
77
|
Méndez-Gálvez C, Böhme M, Leino R, Savela R. Synthesis of Isobenzofuranones by Cobalt Catalyzed [2+2+2] Cycloaddition. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carolina Méndez-Gálvez
- Laboratory of Molecular Science and Technology; Åbo Akademi University; Biskopsgatan 8 20500 Åbo Finland
| | - Matthias Böhme
- Laboratory of Molecular Science and Technology; Åbo Akademi University; Biskopsgatan 8 20500 Åbo Finland
| | - Reko Leino
- Laboratory of Molecular Science and Technology; Åbo Akademi University; Biskopsgatan 8 20500 Åbo Finland
| | - Risto Savela
- Laboratory of Molecular Science and Technology; Åbo Akademi University; Biskopsgatan 8 20500 Åbo Finland
| |
Collapse
|
78
|
Hu M, Ge S. Versatile cobalt-catalyzed regioselective chain-walking double hydroboration of 1,n-dienes to access gem-bis(boryl)alkanes. Nat Commun 2020; 11:765. [PMID: 32034153 PMCID: PMC7005816 DOI: 10.1038/s41467-020-14543-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022] Open
Abstract
Double hydroboration of dienes is the addition of a hydrogen and a boryl group to the two double bonds of a diene molecule and represents a straightforward and effective protocol to prepare synthetically versatile bis(boryl)alkanes, provided that this reaction occurs selectively. However, this reaction can potentially yield several isomeric organoboron products, and it still remains a challenge to control the regioselectivity of this reaction, which allows the selective production of a single organoboron product, in particular, for a broad scope of dienes. By employing a readily available cobalt catalyst, here we show that this double hydroboration yields synthetically useful gem-bis(boryl)alkanes with excellent regioselectivity. In addition, the scope of dienes for this reaction is broad and encompasses a wide range of conjugated and non-conjugated dienes. Furthermore, mechanistic studies indicate that this cobalt-catalyzed double hydroboration occurs through boryl-directed chain-walking hydroboration of alkenylboronates generated from anti-Markovnikov 1,2-hydroboration of 1,n-diene. Control of regioselectivity in the double hydroboration of dienes to obtain a single organoboron compound is a considerable synthetic challenge. Here, the authors show a cobalt-catalyzed chain-walking double hydroboration of 1,n-dienes to access gem-bis(boryl)alkanes with regioselective control.
Collapse
Affiliation(s)
- Ming Hu
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore.
| |
Collapse
|
79
|
Wu C, Ge S. Ligand-controlled cobalt-catalyzed regiodivergent hydroboration of aryl,alkyl-disubstituted internal allenes. Chem Sci 2020; 11:2783-2789. [PMID: 34084338 PMCID: PMC8157611 DOI: 10.1039/c9sc06136c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
We report a stereoselective regiodivergent hydroboration of aryl,alkyl-disubstituted internal allenes with pinacolborane (HBpin) in the presence of cobalt catalysts generated from bench-stable Co(acac)2 and bisphosphine ligands. An interesting correlation between the regioselectivity of this hydroboration and the bite angles of bisphosphine ligands was identified. When hydroboration was conducted with cobalt catalysts containing bisphosphines with medium bite angles (e.g. 98° for dppb and 96° for dppf), HBpin was selectively added to the alkyl-substituted double bond. However, HBpin was selectively added to the aryl-substituted double bond when the reactions were conducted with cobalt catalysts containing bisphosphines with large bite angles (e.g. 111° for xantphos and 114° for Nixantphos). A range of internal allenes underwent these Co-catalyzed hydroboration reactions in a regiodivergent manner to yield the corresponding (Z)-alkenylboronates in high isolated yields and with high regioselectivity. These reactions show good functional group compatibility and can be readily scaled up to gram scales without using a dry box. In addition, the comparison of regioselectivity between the Co-catalyzed hydrosilylation and hydroboration reactions of the same allene substrate suggests that this Co-catalyzed regiodivergent hydroboration of allenes proceeds through a Co-Bpin intermediate. Deuterium-labeling experiments suggest that the Co-Bpin intermediates react with allenes to form allylcobalt species which then react with HBpin to release (Z)-alkenylboronate products.
Collapse
Affiliation(s)
- Caizhi Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
80
|
Xu Z, Tang Y, Shen C, Zhang H, Gan Y, Ji X, Tian X, Dong K. Nickel-catalyzed regio- and diastereoselective hydroarylative and hydroalkenylative cyclization of 1,6-dienes. Chem Commun (Camb) 2020; 56:7741-7744. [DOI: 10.1039/c9cc09450d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By using methanol as the hydrogen source and commercially available nickel complex as the catalyst, the hydroarylative and hydroalkenylative cyclization of unsymmetrically substituted 1,6-dienes with organoboronic acid was developed to afford products with high regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Zhengshuai Xu
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yitian Tang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Chaoren Shen
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Hongru Zhang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yuxin Gan
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xiaolei Ji
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xinxin Tian
- Institute of Molecular Science
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University
- Taiyuan 030006
- China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
81
|
Zhang Y, Chen C, Zhao J, Liu G. Rhodium‐Catalyzed Cascade Radical Cyclization of 1,6‐Enynes with Br−CX
3
: Access to Bromine‐Containing Trihalomethylated Pyrrolidines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingying Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
82
|
Sang HL, Wu C, Phua GGD, Ge S. Cobalt-Catalyzed Regiodivergent Stereoselective Hydroboration of 1,3-Diynes To Access Boryl-Functionalized Enynes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03139] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Leng Sang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Caizhi Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Guan Ge Darren Phua
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
83
|
Huang Q, Hu MY, Zhu SF. Cobalt-Catalyzed Cyclization/Hydroboration of 1,6-Diynes with Pinacolborane. Org Lett 2019; 21:7883-7887. [DOI: 10.1021/acs.orglett.9b02873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Meng-Yang Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
84
|
Liu R, Chou Y, Lian B, Fang DC, Gao M, Cheng T, Liu G. Mechanistic Insights into the Ru(II)-Catalyzed Intramolecular Formal [3 + 2] Cycloaddition of ( E)-1,6-Enynes. Org Lett 2019; 21:6815-6820. [PMID: 31449425 DOI: 10.1021/acs.orglett.9b02446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Design of a unique reaction pathway in transition-metal-catalyzed 1,6-enynes cyclization to construct valuable synthetic motifs is a significant challenge in organic chemistry. Herein, we report a Ru(II)-catalyzed formal [3 + 2] cycloaddition as an efficient method to prepare unprecedented bicyclo[3.3.0]octenes from readily available (E)-1,6-enynes. Mechanistic studies based on the deuterium labeling experiments and the DFT calculation disclose a reasonable mechanistic pathway, where a ruthenacyclopentene generated by an ene-yne oxidative cyclization undergoes a sequential ß-hydride elimination and intramolecular hydroruthenation to form a ruthenacyclohexene, producing the desirable bicyclo[3.3.0]octenes.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Resource Chemistry and Rare Earth Materials, Shanghai Normal University, Shanghai 200241, China
| | - Yajie Chou
- Laboratory of Resource Chemistry and Rare Earth Materials, Shanghai Normal University, Shanghai 200241, China
| | - Bing Lian
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Gao
- Laboratory of Resource Chemistry and Rare Earth Materials, Shanghai Normal University, Shanghai 200241, China
| | - Tanyu Cheng
- Laboratory of Resource Chemistry and Rare Earth Materials, Shanghai Normal University, Shanghai 200241, China
| | - Guohua Liu
- Laboratory of Resource Chemistry and Rare Earth Materials, Shanghai Normal University, Shanghai 200241, China
| |
Collapse
|
85
|
Cabrera-Lobera N, Quirós MT, Brennessel WW, Neidig ML, Buñuel E, Cárdenas DJ. Atom-Economical Ni-Catalyzed Diborylative Cyclization of Enynes: Preparation of Unsymmetrical Diboronates. Org Lett 2019; 21:6552-6556. [PMID: 31356084 PMCID: PMC7196956 DOI: 10.1021/acs.orglett.9b02485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a Ni-catalyzed diborylative cyclization of enynes that affords carbo- and heterocycles containing both alkyl- and alkenylboronates. The reaction is fully atom-economical, shows a broad scope, and employs a powerful and inexpensive catalytic Ni-based system. The reaction mechanism seems to involve activation of the enyne by Ni(0) through oxidative cyclometalation of the enyne prior to diboron reagent activation. An unprecedented dinuclear bis(organometallic) Ni(I) intermediate complex was isolated.
Collapse
Affiliation(s)
- Natalia Cabrera-Lobera
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autonòma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Av. Francisco Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - M. Teresa Quirós
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autonòma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Av. Francisco Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael L. Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Elena Buñuel
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autonòma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Av. Francisco Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - Diego J. Cárdenas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autonòma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Av. Francisco Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
86
|
Yang X, Kalita SJ, Maheshuni S, Huang YY. Recent advances on transition-metal-catalyzed asymmetric tandem reactions with organoboron reagents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Tan YX, Zhang F, Xie PP, Zhang SQ, Wang YF, Li QH, Tian P, Hong X, Lin GQ. Rhodium(III)-Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone-Containing 1,6-Dienes: An Experimental and DFT Study. J Am Chem Soc 2019; 141:12770-12779. [DOI: 10.1021/jacs.9b05583] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun-Xuan Tan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fang Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yi-Fan Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
88
|
Wang ZC, Shen D, Gao J, Jia X, Xu Y, Shi SL. Base-catalysed reductive relay hydroboration of allylic alcohols with pinacolborane to form alkylboronic esters. Chem Commun (Camb) 2019; 55:8848-8851. [PMID: 31173003 DOI: 10.1039/c9cc03459e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An unprecedented base-catalysed reductive relay hydroboration of allylic alcohols is described. Commercially available nBuLi was found to be a robust transition metal-free initiator for this protocol, affording various boronic esters in high yield and selectivity. Mechanistically, this methodology involves a one-pot three-step successive process (dehydrocoupling/allylic hydride substitution/anti-Markovnikov hydroboration).
Collapse
Affiliation(s)
- Zi-Chao Wang
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | | | |
Collapse
|
89
|
Li F, Bai X, Cai Y, Li H, Zhang SQ, Liu FH, Hong X, Xu Y, Shi SL. Aluminum-Catalyzed Selective Hydroboration of Alkenes and Alkynylsilanes. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xu Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Han Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Feng-Hua Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
90
|
Wu C, Liao J, Ge S. Cobalt‐Catalyzed Enantioselective Hydroboration/Cyclization of 1,7‐Enynes: Asymmetric Synthesis of Chiral Quinolinones Containing Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2019; 58:8882-8886. [DOI: 10.1002/anie.201903377] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Caizhi Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiayu Liao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shaozhong Ge
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
91
|
Yang J, Sekiguchi Y, Yoshikai N. Cobalt-Catalyzed Enantioselective and Chemodivergent Addition of Cyclopropanols to Oxabicyclic Alkenes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00655] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Junfeng Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yoshiya Sekiguchi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
92
|
Wu C, Liao J, Ge S. Cobalt‐Catalyzed Enantioselective Hydroboration/Cyclization of 1,7‐Enynes: Asymmetric Synthesis of Chiral Quinolinones Containing Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Caizhi Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiayu Liao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shaozhong Ge
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
93
|
Duvvuri K, Dewese KR, Parsutkar MM, Jing SM, Mehta MM, Gallucci JC, RajanBabu TV. Cationic Co(I)-Intermediates for Hydrofunctionalization Reactions: Regio- and Enantioselective Cobalt-Catalyzed 1,2-Hydroboration of 1,3-Dienes. J Am Chem Soc 2019; 141:7365-7375. [PMID: 31020835 DOI: 10.1021/jacs.8b13812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much of the recent work on catalytic hydroboration of alkenes has focused on simple alkenes and styrene derivatives with few examples of reactions of 1,3-dienes, which have been reported to undergo mostly 1,4-additions to give allylic boronates. We find that reduced cobalt catalysts generated from 1,n- bis-diphenylphosphinoalkane complexes [Ph2P-(CH2) n-PPh2]CoX2; n = 1-5) or from (2-oxazolinyl)phenyldiarylphosphine complexes [(G-PHOX)CoX2] (G = 4-substituent on oxazoline ring) effect selective 1,2-, 1,4-, or 4,3-additions of pinacolborane (HBPin) to a variety of 1,3-dienes depending on the ligands chosen. Conditions have been found to optimize the 1,2-additions. The reactive catalysts can be generated from the cobalt(II)-complexes using trimethylaluminum, methyl aluminoxane, or activated zinc in the presence of sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBARF). The complex, (dppp)CoCl2, gives the best results (ratio of 1,2- to 1,4-addition >95:5) for a variety of linear terminal 1,3-dienes and 2-substituted 1,3-dienes. The [(PHOX)CoX2] (X = Cl, Br) complexes give mostly 1,4-addition with linear unsubstituted 1,3-dienes, but, surprisingly, selective 1,2-additions with 2-substituted or 2,3-disubstituted 1,3-dienes. Isolated and fully characterized (X-ray crystallography) Co(I)-complexes, (dppp)3Co2Cl2 and [( S,S)-BDPP]3Co2Cl2, do not catalyze the reaction unless activated by a Lewis acid or NaBARF, suggesting a key role for a cationic Co(I) species in the catalytic cycle. Regio- and enantioselective 1,2-hydroborations of 2-substituted 1,3-dienes are best accomplished using a catalyst prepared via activation of a chiral phosphinooxazoline-cobalt(II) complex with zinc and NaBARF. A number of common functional groups, among them, -OBn, -OTBS, -OTs, N-phthalimido- groups, are tolerated, and er's > 95:5 are obtained for several dienes including 1-alkenylcycloalk-1-enes. This operationally simple reaction expands the realm of asymmetric hydroboration to provide direct access to a number of nearly enantiopure homoallylic boronates, which are not readily accessible by current methods. The resulting boronates have been converted into the corresponding alcohols, potassium trifluororoborate salts, N-BOC amines, and aryl derivatives by C-BPin to C-aryl transformation.
Collapse
Affiliation(s)
- Krishnaja Duvvuri
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Kendra R Dewese
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Mahesh M Parsutkar
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Stanley M Jing
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Milauni M Mehta
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Judith C Gallucci
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
94
|
Merz LS, Blasius CK, Wadepohl H, Gade LH. Square Planar Cobalt(II) Hydride versus T-Shaped Cobalt(I): Structural Characterization and Dihydrogen Activation with PNP–Cobalt Pincer Complexes. Inorg Chem 2019; 58:6102-6113. [DOI: 10.1021/acs.inorgchem.9b00384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Clemens K. Blasius
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lutz H. Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| |
Collapse
|
95
|
Guo J, Wang H, Xing S, Hong X, Lu Z. Cobalt-Catalyzed Asymmetric Synthesis of gem-Bis(silyl)alkanes by Double Hydrosilylation of Aliphatic Terminal Alkynes. Chem 2019. [DOI: 10.1016/j.chempr.2019.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Agahi R, Challinor AJ, Carter NB, Thomas SP. Earth-Abundant Metal Catalysis Enabled by Counterion Activation. Org Lett 2019; 21:993-997. [PMID: 30714742 DOI: 10.1021/acs.orglett.8b03986] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A precatalyst activation strategy has been developed for earth-abundant metal catalysis enabled by counterion dissociation and demonstrated through alkene hydroboration. Commercially available iron and cobalt tetrafluoroborate salts were found to catalyze the hydroboration of aryl and alkyl alkenes with good functional group tolerance (Fe, 12 substrates; Co, 13 substrates) with three structurally distinct ligands. Key to this endogenous activation was counterion dissociation to generate fluoride which indirectly activates the precatalyst by reaction with pinacol borane.
Collapse
Affiliation(s)
- Riaz Agahi
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , U.K
| | - Amy J Challinor
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , U.K
| | - Neil B Carter
- Syngenta , Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EX , U.K
| | - Stephen P Thomas
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , U.K
| |
Collapse
|
97
|
|
98
|
Carreras J, Caballero A, Pérez PJ. Alkenyl Boronates: Synthesis and Applications. Chem Asian J 2019; 14:329-343. [DOI: 10.1002/asia.201801559] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Javier Carreras
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá (IQAR) 28805-Alcalá de Henares Madrid Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| |
Collapse
|
99
|
Cabrera-Lobera N, Quirós MT, Buñuel E, Cárdenas DJ. Atom-economical regioselective Ni-catalyzed hydroborylative cyclization of enynes: development and mechanism. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02568a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report a full study on the novel regioselective Ni-catalyzed hydroborylative cyclization of enynes using HBpin as the borylation agent.
Collapse
Affiliation(s)
- Natalia Cabrera-Lobera
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Institute for Advanced Research in Chemical Sciences (IAdChem)
- 28049-Madrid
| | - M. Teresa Quirós
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Institute for Advanced Research in Chemical Sciences (IAdChem)
- 28049-Madrid
| | - Elena Buñuel
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Institute for Advanced Research in Chemical Sciences (IAdChem)
- 28049-Madrid
| | - Diego J. Cárdenas
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Institute for Advanced Research in Chemical Sciences (IAdChem)
- 28049-Madrid
| |
Collapse
|
100
|
Ai W, Zhong R, Liu X, Liu Q. Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chem Rev 2018; 119:2876-2953. [DOI: 10.1021/acs.chemrev.8b00404] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenying Ai
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rui Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xufang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|