51
|
Zhu Q, Niu Y, Gundry M, Zong C. Single-cell damagenome profiling unveils vulnerable genes and functional pathways in human genome toward DNA damage. SCIENCE ADVANCES 2021; 7:eabf3329. [PMID: 34215579 PMCID: PMC11060043 DOI: 10.1126/sciadv.abf3329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture spontaneous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as "damSNVs," and the whole-genome distribution of damSNVs as the damagenome. We observed that in single human neurons, the damagenome distribution was significantly correlated with three-dimensional genome structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both Alzheimer's disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage genes sheds new lights on the important roles of DNA damage in human diseases and disorders.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael Gundry
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
52
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
53
|
Detection of Genomic Uracil Patterns. Int J Mol Sci 2021; 22:ijms22083902. [PMID: 33918885 PMCID: PMC8070346 DOI: 10.3390/ijms22083902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
The appearance of uracil in the deoxyuridine moiety of DNA is among the most frequently occurring genomic modifications. Three different routes can result in genomic uracil, two of which do not require specific enzymes: spontaneous cytosine deamination due to the inherent chemical reactivity of living cells, and thymine-replacing incorporation upon nucleotide pool imbalances. There is also an enzymatic pathway of cytosine deamination with multiple DNA (cytosine) deaminases involved in this process. In order to describe potential roles of genomic uracil, it is of key importance to utilize efficient uracil-DNA detection methods. In this review, we provide a comprehensive and critical assessment of currently available uracil detection methods with special focus on genome-wide mapping solutions. Recent developments in PCR-based and in situ detection as well as the quantitation of genomic uracil are also discussed.
Collapse
|
54
|
Pathira Kankanamge LS, Perera HM, Griffin WC. Genome Repair Takes a Spotlight during the ACS TOXI Meeting. Chem Res Toxicol 2021; 34:675-677. [PMID: 33508200 DOI: 10.1021/acs.chemrestox.0c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA damage and mutations are a major primary cause of cancer. Chemical bombardment of DNA is a major contributor to DNA damage. The Division of Chemical Toxicology recently hosted a panel of researchers who provided updates on the field of chemical toxicology at the nexus of DNA damage and repair.
Collapse
Affiliation(s)
- Lakindu S Pathira Kankanamge
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
55
|
Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst) 2021; 97:103027. [PMID: 33285475 PMCID: PMC7926032 DOI: 10.1016/j.dnarep.2020.103027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion which is prone to mispair, if left unrepaired, with 2'-deoxyadenosine during DNA replication. While unrepaired or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has recently been reported to have a role in the epigenetic regulation of gene expression. Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the epigenetic and the mutagenic nature of the 8-oxodG is still lacking. To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could cause the translocations and deletions which are associated with cancer.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy.
| |
Collapse
|
56
|
FBW7 Mediates Senescence and Pulmonary Fibrosis through Telomere Uncapping. Cell Metab 2020; 32:860-877.e9. [PMID: 33086033 DOI: 10.1016/j.cmet.2020.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Tissue stem cells undergo premature senescence under stress, promoting age-related diseases; however, the associated mechanisms remain unclear. Here, we report that in response to radiation, oxidative stress, or bleomycin, the E3 ubiquitin ligase FBW7 mediates cell senescence and tissue fibrosis through telomere uncapping. FBW7 binding to telomere protection protein 1 (TPP1) facilitates TPP1 multisite polyubiquitination and accelerates degradation, triggering telomere uncapping and DNA damage response. Overexpressing TPP1 or inhibiting FBW7 by genetic ablation, epigenetic interference, or peptidomimetic telomere dysfunction inhibitor (TELODIN) reduces telomere uncapping and shortening, expanding the pulmonary alveolar AEC2 stem cell population in mice. TELODIN, synthesized from the seventh β strand blade of FBW7 WD40 propeller domain, increases TPP1 stability, lung respiratory function, and resistance to senescence and fibrosis in animals chronically exposed to environmental stress. Our findings elucidate a pivotal mechanism underlying stress-induced pulmonary epithelial stem cell senescence and fibrosis, providing a framework for aging-related disorder interventions.
Collapse
|
57
|
Mingard C, Wu J, McKeague M, Sturla SJ. Next-generation DNA damage sequencing. Chem Soc Rev 2020; 49:7354-7377. [PMID: 32968744 DOI: 10.1039/d0cs00647e] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular DNA is constantly chemically altered by exogenous and endogenous agents. As all processes of life depend on the transmission of the genetic information, multiple biological processes exist to ensure genome integrity. Chemically damaged DNA has been linked to cancer and aging, therefore it is of great interest to map DNA damage formation and repair to elucidate the distribution of damage on a genome-wide scale. While the low abundance and inability to enzymatically amplify DNA damage are obstacles to genome-wide sequencing, new developments in the last few years have enabled high-resolution mapping of damaged bases. Recently, a number of DNA damage sequencing library construction strategies coupled to new data analysis pipelines allowed the mapping of specific DNA damage formation and repair at high and single nucleotide resolution. Strikingly, these advancements revealed that the distribution of DNA damage is heavily influenced by chromatin states and the binding of transcription factors. In the last seven years, these novel approaches have revealed new genomic maps of DNA damage distribution in a variety of organisms as generated by diverse chemical and physical DNA insults; oxidative stress, chemotherapeutic drugs, environmental pollutants, and sun exposure. Preferred sequences for damage formation and repair have been elucidated, thus making it possible to identify persistent weak spots in the genome as locations predicted to be vulnerable for mutation. As such, sequencing DNA damage will have an immense impact on our ability to elucidate mechanisms of disease initiation, and to evaluate and predict the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Cécile Mingard
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
58
|
Li W, Sancar A. Methodologies for detecting environmentally induced DNA damage and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:664-679. [PMID: 32083352 PMCID: PMC7442611 DOI: 10.1002/em.22365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Environmental DNA damaging agents continuously challenge the integrity of the genome by introducing a variety of DNA lesions. The DNA damage caused by environmental factors will lead to mutagenesis and subsequent carcinogenesis if they are not removed efficiently by repair pathways. Methods for detection of DNA damage and repair can be applied to identify, visualize, and quantify the DNA damage formation and repair events, and they enable us to illustrate the molecular mechanisms of DNA damage formation, DNA repair pathways, mutagenesis, and carcinogenesis. Ever since the discovery of the double helical structure of DNA in 1953, a great number of methods have been developed to detect various types of DNA damage and repair. Rapid advances in sequencing technologies have facilitated the emergence of a variety of novel methods for detecting environmentally induced DNA damage and repair at the genome-wide scale during the last decade. In this review, we provide a historical overview of the development of various damage detection methods. We also highlight the current methodologies to detect DNA damage and repair, especially some next generation sequencing-based methods.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
59
|
Gorini F, Scala G, Di Palo G, Dellino GI, Cocozza S, Pelicci PG, Lania L, Majello B, Amente S. The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters. Nucleic Acids Res 2020; 48:4309-4324. [PMID: 32198884 PMCID: PMC7192600 DOI: 10.1093/nar/gkaa175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is the most common marker of oxidative stress and its accumulation within the genome has been associated with major human health issues such as cancer, aging, cardiovascular and neurodegenerative diseases. The characterization of the different genomic sites where 8-oxodG accumulates and the mechanisms underlying its formation are still poorly understood. Using OxiDIP-seq, we recently derived the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A). Here, we identify a subset of human promoters that accumulate 8-oxodG under steady-state condition. 8-oxodG nucleotides co-localize with double strand breaks (DSBs) at bidirectional and CG skewed promoters and their density correlate with RNA Polymerase II co-occupancy and transcription. Furthermore, by performing OxiDIP-seq in quiescent (G0) cells, we found a strong reduction of oxidatively-generated damage in the majority of 8-oxodG-positive promoters in the absence of DNA replication. Overall, our results suggest that the accumulation of 8-oxodG at gene promoters occurs through DNA replication-dependent or -independent mechanisms, with a possible contribution to the formation of cancer-associated translocation events.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Giacomo Di Palo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
60
|
Cao B, Wu X, Zhou J, Wu H, Liu L, Zhang Q, DeMott MS, Gu C, Wang L, You D, Dedon PC. Nick-seq for single-nucleotide resolution genomic maps of DNA modifications and damage. Nucleic Acids Res 2020; 48:6715-6725. [PMID: 32484547 PMCID: PMC7337925 DOI: 10.1093/nar/gkaa473] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
DNA damage and epigenetic marks are well established to have profound influences on genome stability and cell phenotype, yet there are few technologies to obtain high-resolution genomic maps of the many types of chemical modifications of DNA. Here we present Nick-seq for quantitative, sensitive, and accurate mapping of DNA modifications at single-nucleotide resolution across genomes. Pre-existing breaks are first blocked and DNA modifications are then converted enzymatically or chemically to strand-breaks for both 3'-extension by nick-translation to produce nuclease-resistant oligonucleotides and 3'-terminal transferase tailing. Following library preparation and next generation sequencing, the complementary datasets are mined with a custom workflow to increase sensitivity, specificity and accuracy of the map. The utility of Nick-seq is demonstrated with genomic maps of site-specific endonuclease strand-breaks in purified DNA from Eschericia coli, phosphorothioate epigenetics in Salmonella enterica Cerro 87, and oxidation-induced abasic sites in DNA from E. coli treated with a sublethal dose of hydrogen peroxide. Nick-seq applicability is demonstrated with strategies for >25 types of DNA modification and damage.
Collapse
Affiliation(s)
- Bo Cao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore 138602, Singapore
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaolin Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore 138602, Singapore
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Jieliang Zhou
- KK Research Center, KK Women's and Children's Hospital, 229899, Singapore
| | - Hang Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Lili Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qinghua Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore 138602, Singapore
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
61
|
Fleming AM, Zhu J, Jara-Espejo M, Burrows CJ. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2'-Deoxyguanosine. Biochemistry 2020; 59:2616-2626. [PMID: 32567845 DOI: 10.1021/acs.biochem.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequences of DNA typically adopt B-form duplexes in genomes, although noncanonical structures such as G-quadruplexes, i-motifs, Z-DNA, and cruciform structures can occur. A challenge is to determine the functions of these various structures in cellular processes. We and others have hypothesized that G-rich G-quadruplex-forming sequences in human genome promoters serve to sense oxidative damage generated during oxidative stress impacting gene regulation. Herein, chemical tools and a cell-based assay were used to study the oxidation of guanine to 8-oxo-7,8-dihydroguanine (OG) in the context of a cruciform-forming sequence in a gene promoter to determine the impact on transcription. We found that OG in the nontemplate strand in the loop of a cruciform-forming sequence could induce gene expression; conversely when OG was in the same sequence on the template strand, gene expression was inhibited. A model for the transcriptional changes observed is proposed in which OG focuses the DNA repair process on the promoter to impact expression. Our cellular and biophysical studies and literature sources support the idea that removal of OG from duplex DNA by OGG1 yields an abasic site (AP) that triggers a structural shift to the cruciform fold. The AP-bearing cruciform structure is presented to APE1, which functions as a conduit between DNA repair and gene regulation. The significance is enhanced by a bioinformatic study of all human gene promoters and transcription termination sites for inverted repeats (IRs). Comparison of the two regions showed that promoters have stable and G-rich IRs at a low frequency and termination sites have many AT-rich IRs with low stability.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Manuel Jara-Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.,Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, Piracicaba, CEP 13414-018 Sao Paulo, Brazil
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
62
|
Genome-wide Nucleotide-Resolution Mapping of DNA Replication Patterns, Single-Strand Breaks, and Lesions by GLOE-Seq. Mol Cell 2020; 78:975-985.e7. [PMID: 32320643 PMCID: PMC7276987 DOI: 10.1016/j.molcel.2020.03.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 12/03/2022]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3′-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3′-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs. GLOE-Seq detects 3′-OH ends with nucleotide resolution in purified genomic DNA GLOE-Seq maps single-strand breaks, lesions, and replication and repair intermediates GLOE-Seq reveals insight into the use of ligases 1 and 3 in human cells GLOE-Seq detects asymmetries in spontaneous nicks in yeast and human chromatin
Collapse
|
63
|
Aloisi CMN, Nilforoushan A, Ziegler N, Sturla SJ. Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide. J Am Chem Soc 2020; 142:6962-6969. [PMID: 32196326 PMCID: PMC7192524 DOI: 10.1021/jacs.9b11746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
DNA mutations can result from replication
errors due to different
forms of DNA damage, including low-abundance DNA adducts induced by
reactions with electrophiles. The lack of strategies to measure DNA
adducts within genomic loci, however, limits our understanding of
chemical mutagenesis. The use of artificial nucleotides incorporated
opposite DNA adducts by engineered DNA polymerases offers a potential
basis for site-specific detection of DNA adducts, but the availability
of effective artificial nucleotides that insert opposite DNA adducts
is extremely limited, and furthermore, there has been no report of
a quantitative strategy for determining how much DNA alkylation occurs
in a sequence of interest. In this work, we synthesized an artificial
nucleotide triphosphate that is selectively inserted opposite O6-carboxymethyl-guanine DNA by an engineered
polymerase and is required for DNA synthesis past the adduct. We characterized
the mechanism of this enzymatic process and demonstrated that the
artificial nucleotide is a marker for the presence and location in
the genome of O6-carboxymethyl-guanine.
Finally, we established a mass spectrometric method for quantifying
the incorporated artificial nucleotide and obtained a linear relationship
with the amount of O6-carboxymethyl-guanine
in the target sequence. In this work, we present a strategy to identify,
locate, and quantify a mutagenic DNA adduct, advancing tools for linking
DNA alkylation to mutagenesis and for detecting DNA adducts in genes
as potential diagnostic biomarkers for cancer prevention.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Nathalie Ziegler
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
64
|
David R. The promise of toxicogenomics for genetic toxicology: past, present and future. Mutagenesis 2020; 35:153-159. [PMID: 32087008 DOI: 10.1093/mutage/geaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
Toxicogenomics, the application of genomics to toxicology, was described as 'a new era' for toxicology. Standard toxicity tests typically involve a number of short-term bioassays that are costly, time consuming, require large numbers of animals and generally focus on a single end point. Toxicogenomics was heralded as a way to improve the efficiency of toxicity testing by assessing gene regulation across the genome, allowing rapid classification of compounds based on characteristic expression profiles. Gene expression microarrays could measure and characterise genome-wide gene expression changes in a single study and while transcriptomic profiles that can discriminate between genotoxic and non-genotoxic carcinogens have been identified, challenges with the approach limited its application. As such, toxicogenomics did not transform the field of genetic toxicology in the way it was predicted. More recently, next generation sequencing (NGS) technologies have revolutionised genomics owing to the fact that hundreds of billions of base pairs can be sequenced simultaneously cheaper and quicker than traditional Sanger methods. In relation to genetic toxicology, and thousands of cancer genomes have been sequenced with single-base substitution mutational signatures identified, and mutation signatures have been identified following treatment of cells with known or suspected environmental carcinogens. RNAseq has been applied to detect transcriptional changes following treatment with genotoxins; modified RNAseq protocols have been developed to identify adducts in the genome and Duplex sequencing is an example of a technique that has recently been developed to accurately detect mutation. Machine learning, including MutationSeq and SomaticSeq, has also been applied to somatic mutation detection and improvements in automation and/or the application of machine learning algorithms may allow high-throughput mutation sequencing in the future. This review will discuss the initial promise of transcriptomics for genetic toxicology, and how the development of NGS technologies and new machine learning algorithms may finally realise that promise.
Collapse
Affiliation(s)
- Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
65
|
Zhang Y, Hua RN, Zhang CY. Integration of Enzymatic Labeling with Single-Molecule Detection for Sensitive Quantification of Diverse DNA Damages. Anal Chem 2020; 92:4700-4706. [PMID: 32193925 DOI: 10.1021/acs.analchem.9b04547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA damage plays an important role in the regulation of gene expression and disease processes. The accurate measurement of DNA damage is essential to the discovery of potential disease biomarkers for risk assessment, early clinical diagnosis, and therapy monitoring. However, the low abundance, random location in genomic elements, diversity, and the incapability to specifically amplify the DNA damages hinder the accurate quantification of various DNA damages within human genomes. Herein, we demonstrate the integration of enzymatic labeling with single-molecule detection for sensitive quantification of diverse DNA damages. A significant advantage of our method is that only the damaged base-containing DNA sequence can be labeled by the biotin-conjugated deoxynucleotide triphosphate (biotin-dNTP) and separated from the normal DNAs, which greatly improves the detection specificity. In addition, high sensitivity can be achieved by the terminal deoxynucleotidyl transferase (TdT)-induced polymerization of multiple Alexa Fluor 488-labeled-deoxyuridine triphosphates (AF488-dUTPs) and the introduction of single-molecule detection. This method can measure DNA damage with a detection limit as low as 1.1 × 10-16 M, and it can distinguish DNA damage at low abundance down to 1.3 × 10-4%. Importantly, it can provide information about the occurrence of DNA damage in a specific gene and ascertain the DNA damage level in different cancer cell lines, offering a new approach for studying the physiological function of various DNA damages in human diseases.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ruo-Nan Hua
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
66
|
Wieczór M, Czub J. Telomere uncapping by common oxidative guanine lesions: Insights from atomistic models. Free Radic Biol Med 2020; 148:162-169. [PMID: 31926882 DOI: 10.1016/j.freeradbiomed.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Oxidative damage to DNA is widely known to contribute to aging and disease. This relationship has been extensively studied for telomeres - structures that cap chromosome ends - due to their role in cell proliferation and senescence, and exceptional susceptibility to oxidation. Indeed, the repetitive telomeric DNA sequence contains the 5'-GGG-3' motif that has the lowest ionization potential of all trinucleotides. Accordingly, experiments consistently show that telomeric oxidative lesions are more abundant and persistent than elsewhere in the genome. This led to a hypothesis that telomeres act as sensors of prolonged oxidative stress and prevent carcinogenesis, as disruption of telomeric integrity triggers senescence or apoptosis. Here, we use atomistic alchemical Molecular Dynamics simulations to perform a combinatorial assessment of changes in DNA binding affinity of telomeric proteins induced by oxidative guanine lesions. We rank lesions by their effect on telomere integrity, as well as telomeric proteins by their sensitivity to DNA oxidation. While the binding of most proteins is abolished by DNA oxidation, HOT1 emerges as a notable exception, suggesting its potential role in sensing of oxidative damage. Through statistical analysis and free energy decomposition, we also identify common trends in structural responses of protein-DNA complexes that contribute to decreased binding affinity.
Collapse
Affiliation(s)
- Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdańsk, Poland.
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdańsk, Poland.
| |
Collapse
|
67
|
Fleming AM, Burrows CJ. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J Am Chem Soc 2020; 142:1115-1136. [PMID: 31880930 PMCID: PMC6988379 DOI: 10.1021/jacs.9b11050] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living in an oxygen atmosphere demands an ability to thrive in the presence of reactive oxygen species (ROS). Aerobic organisms have successfully found solutions to the oxidative threats imposed by ROS by evolving an elaborate detoxification system, upregulating ROS during inflammation, and utilizing ROS as messenger molecules. In this Perspective, recent studies are discussed that demonstrate ROS as signaling molecules for gene regulation by combining two emergent properties of the guanine (G) heterocycle in DNA, namely, oxidation sensitivity and a propensity for G-quadruplex (G4) folding, both of which depend upon sequence context. In human gene promoters, this results from an elevated 5'-GG-3' dinucleotide frequency and GC enrichment near transcription start sites. Oxidation of DNA by ROS drives conversion of G to 8-oxo-7,8-dihydroguanine (OG) to mark target promoters for base excision repair initiated by OG-glycosylase I (OGG1). Sequence-dependent mechanisms for gene activation are available to OGG1 to induce transcription. Either OGG1 releases OG to yield an abasic site driving formation of a non-canonical fold, such as a G4, to be displayed to apurinic/apyrimidinic 1 (APE1) and stalling on the fold to recruit activating factors, or OGG1 binds OG and facilitates activator protein recruitment. The mechanisms described drive induction of stress response, DNA repair, or estrogen-induced genes, and these pathways are novel potential anticancer targets for therapeutic intervention. Chemical concepts provide a framework to discuss the regulatory or possible epigenetic potential of the OG modification in DNA, in which DNA "damage" and non-canonical folds collaborate to turn on or off gene expression. The next steps for scientific discovery in this growing field are discussed.
Collapse
Affiliation(s)
- Aaron M. Fleming
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J. Burrows
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
68
|
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18:207-219. [PMID: 31993111 PMCID: PMC6974700 DOI: 10.1016/j.csbj.2019.12.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are a constant threat to DNA as they modify bases with the risk of disrupting genome function, inducing genome instability and mutation. Such risks are due to primary oxidative DNA damage and also mediated by the repair process. This leads to a delicate decision process for the cell as to whether to repair a damaged base at a specific genomic location or better leave it unrepaired. Persistent DNA damage can disrupt genome function, but on the other hand it can also contribute to gene regulation by serving as an epigenetic mark. When such processes are out of balance, pathophysiological conditions could get accelerated, because oxidative DNA damage and resulting mutagenic processes are tightly linked to ageing, inflammation, and the development of multiple age-related diseases, such as cancer and neurodegenerative disorders. Recent technological advancements and novel data analysis strategies have revealed that oxidative DNA damage, its repair, and related mutations distribute heterogeneously over the genome at multiple levels of resolution. The involved mechanisms act in the context of genome sequence, in interaction with genome function and chromatin. This review addresses what we currently know about the genome distribution of oxidative DNA damage, repair intermediates, and mutations. It will specifically focus on the various methodologies to measure oxidative DNA damage distribution and discuss the mechanistic conclusions derived from the different approaches. It will also address the consequences of oxidative DNA damage, specifically how it gives rise to mutations, genome instability, and how it can act as an epigenetic mark.
Collapse
|
69
|
Salk JJ, Kennedy SR. Next-Generation Genotoxicology: Using Modern Sequencing Technologies to Assess Somatic Mutagenesis and Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:135-151. [PMID: 31595553 PMCID: PMC7003768 DOI: 10.1002/em.22342] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 05/09/2023]
Abstract
Mutations have a profound effect on human health, particularly through an increased risk of carcinogenesis and genetic disease. The strong correlation between mutagenesis and carcinogenesis has been a driving force behind genotoxicity research for more than 50 years. The stochastic and infrequent nature of mutagenesis makes it challenging to observe and to study. Indeed, decades have been spent developing increasingly sophisticated assays and methods to study these low-frequency genetic errors, in hopes of better predicting which chemicals may be carcinogens, understanding their mode of action, and informing guidelines to prevent undue human exposure. While effective, widely used genetic selection-based technologies have a number of limitations that have hampered major advancements in the field of genotoxicity. Emerging new tools, in the form of enhanced next-generation sequencing platforms and methods, are changing this paradigm. In this review, we discuss rapidly evolving sequencing tools and technologies, such as error-corrected sequencing and single cell analysis, which we anticipate will fundamentally reshape the field. In addition, we consider a variety emerging applications for these new technologies, including the detection of DNA adducts, inference of mutational processes based on genomic site and local sequence contexts, and evaluation of genome engineering fidelity, as well as other cutting-edge challenges for the next 50 years of environmental and molecular mutagenesis research. Environ. Mol. Mutagen. 61:135-151, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Jesse J. Salk
- Department of Medicine, Division of Medical OncologyUniversity of Washington School of MedicineSeattleWashington
- TwinStrand BiosciencesSeattleWashington
| | - Scott R. Kennedy
- Department of PathologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
70
|
Fang Y, Zou P. Genome-Wide Mapping of Oxidative DNA Damage via Engineering of 8-Oxoguanine DNA Glycosylase. Biochemistry 2019; 59:85-89. [PMID: 31618020 DOI: 10.1021/acs.biochem.9b00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The occurrence of 8-oxo-7,8-dihydroguanine (OG) in the genome, as one of the major DNA oxidative damages, has been implicated in an array of biological processes, ranging from mutagenesis to transcriptional regulation. Genome-wide mapping of oxidative damages could shed light on the underlying cellular mechanism. In the present study, we engineered the hOGG1 enzyme, a primary 8-oxoguanine DNA glycosylase, into a guanine oxidation-profiling tool. Our method, called enTRAP-seq, successfully identified more than 1400 guanine oxidation sites in the mouse embryonic fibroblast genome. These OG peaks were enriched in open chromatin regions and regulatory elements, including promoters, 5' untranslated regions, and CpG islands. Collectively, we present a simple and generalizable approach for the genome-wide profiling of DNA damages with high sensitivity and specificity.
Collapse
Affiliation(s)
- Yuxin Fang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Peking University , Beijing 100871 , China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China.,PKU-IDG/McGovern Institute for Brain Research , Peking University , Beijing 100871 , China
| |
Collapse
|
71
|
Abstract
Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
72
|
Zhang Y, Hua RN, Zhang CY. Analysis of the Isolated and the Clustered DNA Damages by Single-Molecule Counting. Anal Chem 2019; 91:10381-10385. [PMID: 31364352 DOI: 10.1021/acs.analchem.9b02694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage seriously threats the genomic stability and is linked to mutagenesis, carcinogenesis, and cell death. DNA damage includes the isolated damage and the clustered damages, but few approaches are available for efficient detection of the clustered damage due to its spatial distribution. Herein, we present a single-molecule counting approach with the capability of detecting both the isolated and the clustered damages in genomic DNAs. We employed the repair enzymes to remove the DNA damage and used the terminal deoxynucleotidyl transferase (TdT) to incorporate biotinylated nucleotides and fluorescent nucleotides into the damage sites in a template-independent manner. The number of total oxidative damaged bases is quantified to be 7328-7406 in a single HeLa cell treated with 150 μM H2O2. This method in combination with special repair enzymes can detect a variety of DNA damage in different types of cells, holding great potential for early diagnosis of DNA damage-related human diseases.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| | - Ruo-Nan Hua
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
73
|
Mao P, Wyrick JJ. Organization of DNA damage, excision repair, and mutagenesis in chromatin: A genomic perspective. DNA Repair (Amst) 2019; 81:102645. [PMID: 31307926 DOI: 10.1016/j.dnarep.2019.102645] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
74
|
Abstract
Chemical damage to DNA is a key initiator of adverse biological consequences due to disruption of the faithful reading of the genetic code. For example, O6-alkylguanine ( O6-alkylG) DNA adducts are strongly miscoding during DNA replication when the damaged nucleobase is a template for polymerase-mediated translesion DNA synthesis. Thus, mutations derived from O6-alkylG adducts can have severe adverse effects on protein translation and function and are an early event in the initiation of carcinogenesis. However, the low abundance of these adducts places significant limitations on our ability to relate their presence and biological influences with resultant mutations or disease risk. As a consequence, there is a critical need for novel tools to detect and study the biological role of alkylation adducts. Incorporating DNA bases with altered structures that are derived synthetically is a strategy that has been used widely to interrogate biological processes involving DNA. Such synthetic nucleosides have contributed to our understanding of DNA structure, DNA polymerase (Pol) and repair enzyme function, and to the expansion of the genetic alphabet. This Account describes our efforts toward creating and applying synthetic nucleosides directed at DNA adducts. We synthesized a variety of nucleosides with altered base structures that complement the altered hydrogen bonding capacity and hydrophilicity of O6-alkylG adducts. The heterocyclic perimidinone-derived nucleoside Per was the first of such adduct-directed synthetic nucleosides; it specifically stabilized O6-benzylguanine ( O6-BnG) in a DNA duplex. Structural variants of Per were used to determine hydrogen bonding and base-stacking contributions to DNA duplex stability in templates containing O6-BnG as well as O6-methylguanine ( O6-MeG) adducts. We created synthetic probes able to stabilize damaged over undamaged templates and established how altered hydrogen bonding or base-stacking properties impact DNA duplex stability as a function of adduct structures. This knowledge was then applied to devise a hybridization-based detection strategy involving gold nanoparticles that distinguish damaged from undamaged DNA by colorimetric changes. Furthermore, synthetic nucleosides were used as mechanistic tools to understand chemical determinants such as hydrogen bonding, π-stacking, and size and shape deviations that impact the efficiency and fidelity of DNA adduct bypass by DNA Pols. Finally, we reported the first example of amplifying alkylated DNA, accomplished by combining an engineered polymerase and synthetic triphosphate for which incorporation is templated by a DNA adduct. The presence of the synthetic nucleoside in amplicons could serve as a marker for the presence and location of DNA damage at low levels in DNA strands. Adduct-directed synthetic nucleosides have opened new concepts to interrogate the levels, locations, and biological influences of DNA alkylation.
Collapse
Affiliation(s)
- Michael H. Räz
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| | - Claudia M. N. Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| | - Hailey L. Gahlon
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| |
Collapse
|
75
|
Li C, Delaney S. Histone H2A Variants Enhance the Initiation of Base Excision Repair in Nucleosomes. ACS Chem Biol 2019; 14:1041-1050. [PMID: 31021597 DOI: 10.1021/acschembio.9b00229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Substituting histone variants for their canonical counterparts can profoundly alter chromatin structure, thereby impacting multiple biological processes. Here, we investigate the influence of histone variants from the H2A family on the excision of uracil (U) by the base excision repair (BER) enzymes uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase. Using a DNA population with globally distributed U:G base pairs, enhanced excision is observed in H2A.Z and macroH2A-containing nucleosome core particles (NCPs). The U with reduced solution accessibility exhibit limited UDG activity in canonical NCPs but are more readily excised in variant NCPs, reflecting the ability of these variants to facilitate excision at sites that are otherwise poorly repaired. We also find that U with the largest increase in the level of excision in variant NCPs are clustered in regions with differential structural features between the variants and canonical H2A. Within 35-40 bp of the DNA terminus in macroH2A NCPs, the activities of both glycosylases are comparable to that on the free duplex. We show that this high level of activity results from two distinct species within the macroH2A NCP ensemble: octasomes and hexasomes. These observations reveal potential functions for H2A variants in promoting BER and preventing mutagenesis within the context of chromatin.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
76
|
Hofer A, Liu ZJ, Balasubramanian S. Detection, Structure and Function of Modified DNA Bases. J Am Chem Soc 2019; 141:6420-6429. [DOI: 10.1021/jacs.9b01915] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alexandre Hofer
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Zheng J. Liu
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cancer Research
UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
77
|
Aloisi CMN, Sturla SJ, Gahlon HL. A gene-targeted polymerase-mediated strategy to identify O 6-methylguanine damage. Chem Commun (Camb) 2019; 55:3895-3898. [PMID: 30860216 DOI: 10.1039/c9cc00278b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Detecting DNA adducts in cancer genes is important for understanding cancer etiology. This study reports a strategy to identify the mutagenic DNA adduct O6-methylguanine in K-Ras. The strategy involves selective replication past a synthetic primer when placed opposite O6-methylguanine. Future work can apply this approach to other cancer-relevant genes.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Hailey L Gahlon
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
78
|
Fleming AM, Zhu J, Ding Y, Esders S, Burrows CJ. Oxidative Modification of Guanine in a Potential Z-DNA-Forming Sequence of a Gene Promoter Impacts Gene Expression. Chem Res Toxicol 2019; 32:899-909. [PMID: 30821442 DOI: 10.1021/acs.chemrestox.9b00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One response to oxidation of guanine (G) to 8-oxo-7,8-dihydroguanine (OG) in a gene promoter is regulation of mRNA expression suggesting an epigenetic-like role for OG. A proposed mechanism involves G oxidation within a potential G-quadruplex-forming sequence (PQS) in the promoter, enabling a structural shift from B-DNA to a G-quadruplex fold (G4). When OG was located in the coding vs template strand, base excision repair led to an on/off transcriptional switch. Herein, a G-rich, potential Z-DNA-forming sequence (PZS) comprised of a d(GC) n repeat was explored to determine whether oxidation in this motif was also a transcriptional switch. Bioinformatic analysis found 1650 PZSs of length >10 nts in the human genome that were overrepresented in promoters and 5'-UTRs. Studies in human cells transfected with a luciferase reporter plasmid in which OG was synthesized in a PZS context in the promoter found that a coding strand OG increased expression and a template strand OG decreased expression. The initial base excision repair product of OG, an abasic site (AP), was also found to yield similar expression changes as OG. Biophysical studies on model Z-DNA strands found OG favored a shift in the equilibrium to Z-DNA from B-DNA, while an AP disrupted Z-DNA to favor a hairpin, placing AP in the loop where it is a poor substrate for the endonuclease APE1. Overall, the impact of OG and AP in a PZS on gene expression was similar to that in a PQS but reduced in magnitude.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Judy Zhu
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Yun Ding
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Selma Esders
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
79
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
80
|
Wu J, Sturla SJ, Burrows CJ, Fleming AM. Impact of DNA Oxidation on Toxicology: From Quantification to Genomics. Chem Res Toxicol 2019; 32:345-347. [PMID: 30807111 DOI: 10.1021/acs.chemrestox.9b00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Understanding the toxicological implications of deoxyribonucleic acid (DNA) oxidation arising from cellular oxidative stress depends on identifying DNA oxidation products, their location in the genome, and their interaction with repair, replication, and gene expression.
Collapse
Affiliation(s)
- Junzhou Wu
- Department of Health Sciences and Technology , ETH Zürich , Schmelzbergstrasse 9 , 8092 Zürich , Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology , ETH Zürich , Schmelzbergstrasse 9 , 8092 Zürich , Switzerland
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
81
|
Poetsch AR, Boulton SJ, Luscombe NM. Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis. Genome Biol 2018; 19:215. [PMID: 30526646 PMCID: PMC6284305 DOI: 10.1186/s13059-018-1582-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND DNA is subject to constant chemical modification and damage, which eventually results in variable mutation rates throughout the genome. Although detailed molecular mechanisms of DNA damage and repair are well understood, damage impact and execution of repair across a genome remain poorly defined. RESULTS To bridge the gap between our understanding of DNA repair and mutation distributions, we developed a novel method, AP-seq, capable of mapping apurinic sites and 8-oxo-7,8-dihydroguanine bases at approximately 250-bp resolution on a genome-wide scale. We directly demonstrate that the accumulation rate of apurinic sites varies widely across the genome, with hot spots acquiring many times more damage than cold spots. Unlike single nucleotide variants (SNVs) in cancers, damage burden correlates with marks for open chromatin notably H3K9ac and H3K4me2. Apurinic sites and oxidative damage are also highly enriched in transposable elements and other repetitive sequences. In contrast, we observe a reduction at chromatin loop anchors with increased damage load towards inactive compartments. Less damage is found at promoters, exons, and termination sites, but not introns, in a seemingly transcription-independent but GC content-dependent manner. Leveraging cancer genomic data, we also find locally reduced SNV rates in promoters, coding sequence, and other functional elements. CONCLUSIONS Our study reveals that oxidative DNA damage accumulation and repair differ strongly across the genome, but culminate in a previously unappreciated mechanism that safeguards the regulatory and coding regions of genes from mutations.
Collapse
Affiliation(s)
- Anna R Poetsch
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|