51
|
Gogoi S, Biswas S, Modi G, Antonio T, Reith MEA, Dutta AK. Novel bivalent ligands for D2/D3 dopamine receptors: Significant co-operative gain in D2 affinity and potency. ACS Med Chem Lett 2012; 3:991-996. [PMID: 23275802 DOI: 10.1021/ml3002117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This report describes development of a series of novel bivalent molecules with a pharmacophore derived from the D2/D3 agonist 5-OH-DPAT. Spacer length in the bivalent compounds had a pronounced influence on affinity for D2 receptors. A 23-fold increase of D2 affinity was observed at a spacer length of 9 or 10 (compounds 11d and 14b) compared to monovalent 5-OH-DPAT (Ki; 2.5 and 2.0 vs. 59 nM for 11d and 14b vs. 5-OH-DPAT, respectively). Functional potency of 11d and 14b indicated a 24- and 94-fold increase in potency at the D2 receptor compared to 5-OH-DPAT (EC50; 1.7 and 0.44 vs. 41 nM for 11d and 14b vs. 5-OH-DPAT, respectively). These are the most potent bivalent agonists for D2 receptor known to date. This synergism is consonant with cooperative interaction at the two orthosteric binding sites in the homodimeric receptor.
Collapse
Affiliation(s)
- Sanjib Gogoi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Swati Biswas
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Gyan Modi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
52
|
Wiley JL, Marusich JA, Zhang Y, Fulp A, Maitra R, Thomas BF, Mahadevan A. Structural analogs of pyrazole and sulfonamide cannabinoids: effects on acute food intake in mice. Eur J Pharmacol 2012; 695:62-70. [PMID: 22975289 DOI: 10.1016/j.ejphar.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
Abstract
Obesity contributes to a multitude of serious health problems. Given the demonstrated role of the endogenous cannabinoid system in appetite regulation, the purpose of the present study was to evaluate structural analogs of two cannabinoids, rimonabant (cannabinoid CB(1) receptor antagonist) and O-2050 (sulfonamide analog of Δ(8)-tetrahydrocannabinol), that showed appetite suppressant effects in previous studies. Structure-activity relationships of these two lead compounds were examined in several assays, including cannabinoid CB(1) and CB(2) receptor binding, food intake, and an in vivo test battery (locomotor activity, antinociception, ring immobility, and body temperature) in mice. Rimonabant and O-2050 reliably decreased feeding in mice; however, their analogs decreased feeding only at higher doses, even though some compounds had quite good cannabinoid CB(1) binding affinity. Results of the in vivo test battery were inconsistent, with some of the compounds producing effects characteristic of cannabinoid agonists while other compounds were inactive or were antagonists against an active dose of Δ(9)-tetrahydrocannabinol. These results demonstrate that reduction of food intake is not a characteristic effect of pyrazole and sulfonamide cannabinoid analogs with favorable cannabinoid CB(1) binding affinity, suggesting that development of these classes of cannabinoids for the treatment of obesity will require evaluation of their effects in a broad spectrum of pharmacological assays.
Collapse
Affiliation(s)
- Jenny L Wiley
- Research Triangle Institute, 3040 Cornwallis Drive, Research Triangle Park, NC 27709-2194, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
53
|
Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R. Pharmacological modulation of chemokine receptor function. Br J Pharmacol 2012; 165:1617-1643. [PMID: 21699506 DOI: 10.1111/j.1476-5381.2011.01551.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Canals
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - D Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - L Roumen
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Wijtmans
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - C de Graaf
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - H F Vischer
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - R Leurs
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
54
|
Mastinu A, Pira M, Pani L, Pinna GA, Lazzari P. NESS038C6, a novel selective CB1 antagonist agent with anti-obesity activity and improved molecular profile. Behav Brain Res 2012; 234:192-204. [PMID: 22771813 DOI: 10.1016/j.bbr.2012.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/27/2023]
Abstract
The present work aims to study the effects induced by a chronic treatment with a novel CB1 antagonist (NESS038C6) in C57BL/6N diet-induced obesity (DIO) mice. Mice treated with NESS038C6 and fed with a fat diet (NESS038C6 FD) were compared with the following three reference experimental groups: DIO mice fed with the same fat diet used for NESS038C6 and treated with vehicle or the reference CB1 antagonist/inverse agonist rimonabant, "VH FD" and "SR141716 FD", respectively; DIO mice treated with vehicle and switched to a normal diet (VH ND). NESS038C6 chronic treatment (30 mg/kg/day for 31 days) determined a significant reduction in DIO mice weight relative to that of VH FD. The entity of the effect was comparable to that detected in both SR141716 FD and VH ND groups. Moreover, if compared to VH FD, NESS038C6 FD evidenced: (i) improvement of cardiovascular risk factors; (ii) significant decrease in adipose tissue leptin expression; (iii) increase in mRNA expression of hypothalamic orexigenic peptides and a decrease of anorexigenic peptides; (iv) expression increase of metabolic enzymes and peroxisome proliferator-activated receptor-α in the liver; (v) normalization of monoaminergic transporters and neurotrophic expression in mesolimbic area. However, in contrast to the case of rimonabant, the novel CB1 antagonist improved the disrupted expression profile of genes linked to the hunger-satiety circuit, without altering monoaminergic transmission. In conclusion, the novel CB1 antagonist compound NESS038C6 may represent a useful candidate agent for the treatment of obesity and its metabolic complications, without or with reduced side effects relative to those instead observed with rimonabant.
Collapse
Affiliation(s)
- Andrea Mastinu
- CNR, Istituto di Farmacologia Traslazionale, UOS Cagliari, Edificio 5, Loc. Piscinamanna, 09010 Pula, Italy.
| | | | | | | | | |
Collapse
|
55
|
Fulp A, Bortoff K, Seltzman H, Zhang Y, Mathews J, Snyder R, Fennell T, Maitra R. Design and synthesis of cannabinoid receptor 1 antagonists for peripheral selectivity. J Med Chem 2012; 55:2820-34. [PMID: 22372835 PMCID: PMC3319116 DOI: 10.1021/jm201731z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antagonists of cannabinoid receptor 1 (CB1) have potential for the treatment of several diseases such as obesity, liver disease, and diabetes. Recently, development of several CB1 antagonists was halted because of adverse central nervous system (CNS) related side effects observed with rimonabant, the first clinically approved CB1 inverse agonist. However, recent studies indicate that regulation of peripherally expressed CB1 with CNS-sparing compounds is a viable strategy to treat several important disorders. Our efforts aimed at rationally designing peripherally restricted CB1 antagonists have resulted in compounds that have limited blood-brain barrier (BBB) permeability and CNS exposure in preclinical in vitro and in vivo models. Typically, compounds with high topological polar surface areas (TPSAs) do not cross the BBB passively. Compounds with TPSAs higher than that for rimonabant (rimonabant TPSA = 50) and excellent functional activity with limited CNS penetration were identified. These compounds will serve as templates for further optimization.
Collapse
Affiliation(s)
- Alan Fulp
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - Katherine Bortoff
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - Herbert Seltzman
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - Yanan Zhang
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - James Mathews
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - Rodney Snyder
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - Tim Fennell
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| | - Rangan Maitra
- Discovery Sciences, Research Triangle Institute, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709
| |
Collapse
|
56
|
McRobb FM, Crosby IT, Yuriev E, Lane JR, Capuano B. Homobivalent ligands of the atypical antipsychotic clozapine: design, synthesis, and pharmacological evaluation. J Med Chem 2012; 55:1622-34. [PMID: 22243698 DOI: 10.1021/jm201420s] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To date all typical and atypical antipsychotics target the dopamine D(2) receptor. Clozapine represents the best-characterized atypical antipsychotic, although it displays only moderate (submicromolar) affinity for the dopamine D(2) receptor. Herein, we present the design, synthesis, and pharmacological evaluation of three series of homobivalent ligands of clozapine, differing in the length and nature of the spacer and the point of attachment to the pharmacophore. Attachment of the spacer at the N4' position of clozapine yielded a series of homobivalent ligands that displayed spacer-length-dependent gains in affinity and activity for the dopamine D(2) receptor. The 16 and 18 atom spacer bivalent ligands were the highlight compounds, displaying marked low nanomolar receptor binding affinity (1.41 and 1.35 nM, respectively) and functional activity (23 and 44 nM), which correspond to significant gains in affinity (75- and 79-fold) and activity (9- and 5-fold) relative to the original pharmacophore, clozapine. As such these ligands represent useful tools with which to investigate dopamine receptor dimerization and the atypical nature of clozapine.
Collapse
Affiliation(s)
- Fiona M McRobb
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | | | | | | | | |
Collapse
|
57
|
Joce C, White R, Stockley PG, Warriner S, Turnbull WB, Nelson A. Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues. Bioorg Med Chem Lett 2012; 22:278-84. [PMID: 22137339 PMCID: PMC3267017 DOI: 10.1016/j.bmcl.2011.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/06/2011] [Indexed: 11/24/2022]
Abstract
In optimal cases, bivalent ligands can bind with exceptionally high affinity to their protein targets. However, designing optimised linkers, that orient the two binding groups perfectly, is challenging, and yet crucial in both fragment-based ligand design and in the discovery of bisubstrate enzyme inhibitors. To further our understanding of linker design, a series of novel bivalent S-adenosylmethionine (SAM) analogues were designed with the aim of interacting with the MetJ dimer in a bivalent sense (1:1 ligand/MetJ dimer). A range of ligands was synthesised and analyzed for ability to promote binding of the Escherichia coli methionine repressor, MetJ, to its operator DNA. Binding of bivalent SAM analogues to the MetJ homodimer in the presence of operator DNA was evaluated by fluorescence anisotropy and the effect of linker length and structure was investigated. The most effective bivalent ligand identified had a flexible linker, and promoted the DNA-protein interaction at 21-times lower concentration than the corresponding monovalent control compound.
Collapse
Affiliation(s)
- Catherine Joce
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rebecca White
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stuart Warriner
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - W. Bruce Turnbull
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
58
|
Kühhorn J, Götz A, Hübner H, Thompson D, Whistler J, Gmeiner P. Development of a bivalent dopamine D₂ receptor agonist. J Med Chem 2011; 54:7911-9. [PMID: 21999579 DOI: 10.1021/jm2009919] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bivalent D₂ agonists may function as useful molecular probes for the discovery of novel neurological therapeutics. On the basis of our recently developed bivalent dopamine D₂ receptor antagonists of type 1, the bivalent agonist 2 was synthesized when a spacer built from 22 atoms was employed. Compared to the monovalent control compound 6 containing a capped spacer, the bis-aminoindane derivative 2 revealed substantial steepening of the competition curve, indicating a bivalent binding mode. Dimer-specific Hill slopes were not a result of varying functional properties because both the dopaminergic 2 and the monovalent control agent 6 proved to be D₂ agonists substantially inhibiting cAMP accumulation and inducing D₂ receptor internalization. Investigation of the heterobivalent ligands 8 and 9, containing an agonist and a phenylpiperazine-based antagonist pharmacophore, revealed moderate steepening of the displacement curves and antagonist to very weak partial agonist properties.
Collapse
Affiliation(s)
- Julia Kühhorn
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, D-91052 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Fulp A, Bortoff K, Zhang Y, Seltzman H, Snyder R, Maitra R. Towards rational design of cannabinoid receptor 1 (CB1) antagonists for peripheral selectivity. Bioorg Med Chem Lett 2011; 21:5711-4. [PMID: 21875798 DOI: 10.1016/j.bmcl.2011.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 11/26/2022]
Abstract
CB1 receptor antagonists that are peripherally restricted were targeted. Compounds with permanent charge as well as compounds that have increased polar surface area were made and tested against CB1 for binding and activity. Sulfonamide and sulfamide with high polar surface area and good activity at CB1 were rationally designed and pharmacologically tested. Further optimization of these compounds and testing could lead to the development of a new class of therapeutics to treat disorders where the CB1 receptor system has been implicated.
Collapse
Affiliation(s)
- Alan Fulp
- Pharmacology and Toxicology, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709-2194, USA
| | | | | | | | | | | |
Collapse
|
60
|
Kühhorn J, Hübner H, Gmeiner P. Bivalent dopamine D2 receptor ligands: synthesis and binding properties. J Med Chem 2011; 54:4896-903. [PMID: 21599022 DOI: 10.1021/jm2004859] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine D(2) receptor homodimers might be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising target proteins for the discovery of atypical antipsychotics. A highly attractive approach to investigate and control GPCR dimerization may be provided by the exploration and characterization of bivalent ligands, which can act as molecular probes simultaneously binding two adjacent binding sites of a dimer. The synthesis of bivalent dopamine D(2) receptor ligands of type 1 is presented, incorporating the privileged structure of 1,4-disubstituted aromatic piperidines/piperazines (1,4-DAPs) and triazolyl-linked spacer elements. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for bivalent ligands with particular spacer lengths and a comparative analysis with respective monovalent control ligands and unsymmetrically substituted analogues indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites.
Collapse
Affiliation(s)
- Julia Kühhorn
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Erlangen, Germany
| | | | | |
Collapse
|
61
|
Shonberg J, Scammells PJ, Capuano B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 2011; 6:963-74. [PMID: 21520422 DOI: 10.1002/cmdc.201100101] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 01/20/2023]
Abstract
Specifically designed bivalent ligands targeting G protein-coupled receptor (GPCR) dimeric structures have become increasingly popular in recent literature. The advantages of the bivalent approach are numerous, including enhanced potency and receptor subtype specificity. However, the use of bivalent ligands as potential pharmacotherapeutics is limited by problematic molecular properties, such as high molecular weight and lipophilicity. This minireview focuses on the design of bivalent ligands recently described in the literature; discussing the choice of lead pharmacophore, the position and nature of the attachment point for linking the two pharmacophore units, and the length and composition of the spacer group. Furthermore, this minireview distils the molecular descriptors of the bivalent ligands that exhibit in vivo activity, as well as highlights their ability to access the central nervous system.
Collapse
Affiliation(s)
- Jeremy Shonberg
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, 381 Royal Pde, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
62
|
Perrey DA, Gilmour BP, Runyon SP, Thomas BF, Zhang Y. Diaryl urea analogues of SB-334867 as orexin-1 receptor antagonists. Bioorg Med Chem Lett 2011; 21:2980-5. [PMID: 21478014 DOI: 10.1016/j.bmcl.2011.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
As a part of our program to develop OX1-CB1 bivalent ligands, we required a better understanding of the basic structure-activity relationships (SARs) of orexin antagonists. A series of SB-334867 analogues were synthesized and evaluated in calcium mobilization assays. SAR results suggest that the 2-methylbenzoxazole moiety may be replaced with a disubstituted 4-aminophenyl group without loss of activity and an electron-deficient system is generally preferred at the 1,5-naphthyridine moiety for OX1 antagonist activity. In particular, substitution of larger potential linkers such as n-hexyl provided compound 33 with equivalent activity at the OX1 receptor compared to the lead compound SB-334867. These compounds should be of value in the development of ligands targeting the orexin-1 receptor and its potential heterodimers.
Collapse
Affiliation(s)
- David A Perrey
- Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|