51
|
Do TN, Khyasudeen MF, Nowakowski PJ, Zhang Z, Tan HS. Measuring Ultrafast Spectral Diffusion and Correlation Dynamics by Two-Dimensional Electronic Spectroscopy. Chem Asian J 2019; 14:3992-4000. [PMID: 31595651 DOI: 10.1002/asia.201900994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/07/2022]
Abstract
The frequency fluctuation correlation function (FFCF) measures the spectral diffusion of a state's transition while the frequency fluctuation cross-correlation function (FXCF) measures the correlation dynamics between the transitions of two separate states. These quantities contain a wealth of information on how the chromophores or excitonic states interact and couple with its environment and with each other. We summarize the experimental implementations and theoretical considerations of using two-dimensional electronic spectroscopy to characterize FFCFs and FXCFs. Applications can be found in systems such as the chlorophyll pigment molecules in light-harvesting complexes and CdSe nanomaterials.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - M Faisal Khyasudeen
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore.,Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Paweł J Nowakowski
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Zhengyang Zhang
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Howe-Siang Tan
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| |
Collapse
|
52
|
Roget SA, Kramer PL, Thomaz JE, Fayer MD. Bulk-like and Interfacial Water Dynamics in Nafion Fuel Cell Membranes Investigated with Ultrafast Nonlinear IR Spectroscopy. J Phys Chem B 2019; 123:9408-9417. [PMID: 31580076 DOI: 10.1021/acs.jpcb.9b07592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The water confined in the hydrophilic domains of Nafion fuel cell membranes is central to its primary function of ion transport. Water dynamics are intimately linked to proton transfer and are sensitive to the structural features and length scales of confinement. Here, ultrafast polarization-selective pump-probe and two-dimensional infrared vibrational echo (2D IR) experiments were performed on fully hydrated Nafion membranes with sodium counterions to explicate the water dynamics. Like aerosol-OT reverse micelles (AOT RMs), the water dynamics in Nafion are attributed to bulk-like core water in the central region of the hydrophilic domains and much slower interfacial water. Population and orientational dynamics of water in Nafion are slowed by polymer confinement. Comparison of the observed dynamics to those of AOT RMs helps identify local interactions between water and sulfonate anions at the interface and among water molecules in the core. This comparison also demonstrates that the well-known spherical cluster morphology of Nafion is not appropriate. Spectral diffusion of the interfacial water, which arises from structural dynamics, was obtained from the 2D IR experiments taking the core water to have dynamics similar to bulk water. Like the orientational dynamics, spectral diffusion was found to be much slower at the interface compared to bulk water. Together, the dynamics indicate slow reorganization of weakly hydrogen-bonded water molecules at the interface of Nafion. These results provide insights into proton transport mechanisms in fuel cell membranes, and more generally, water dynamics near the interface of confining systems.
Collapse
Affiliation(s)
- Sean A Roget
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Patrick L Kramer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Joseph E Thomaz
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Michael D Fayer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
53
|
Biswas A, Priyadarsini A, Mallik BS. Dynamics and Spectral Response of Water Molecules around Tetramethylammonium Cation. J Phys Chem B 2019; 123:8753-8766. [DOI: 10.1021/acs.jpcb.9b05466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana India
| | - Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana India
| |
Collapse
|
54
|
Ojha D, Chandra A. Vibrational echo spectroscopy of aqueous sodium bromide solutions from first principles simulations. J Comput Chem 2019; 40:2086-2095. [PMID: 31099905 DOI: 10.1002/jcc.25860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Abstract
A theoretical study of the time-dependent vibrational echo spectroscopy of sodium bromide solutions in deuterated water at two different concentrations of 0.5 and 5.0 M and at temperatures of 300 and 350 K is presented using the method of ab initio molecular dynamics simulations. The instantaneous fluctuations in frequencies of local OD stretch modes are calculated using time-series analysis of the simulated trajectories. The third-order polarization and intensities of three pulse photon-echo are calculated from ab initio simulations. The timescales of vibrational spectral diffusion are determined from the frequency time correlation functions (FTCF) and short-time slope of three pulse photon echo (S3PE) calculated within the second-order cumulant and Condon approximations. It is found that under ambient conditions, the rate of vibrational spectral diffusion becomes slower with increase in ionic concentration. Decay of S3PE calculated for different systems give timescales, which are in close agreement with those of FTCF and also with the results of experimental time-dependent vibrational spectroscopic experiments. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deepak Ojha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| |
Collapse
|
55
|
Yuan R, Napoli JA, Yan C, Marsalek O, Markland TE, Fayer MD. Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations. ACS CENTRAL SCIENCE 2019; 5:1269-1277. [PMID: 31403075 PMCID: PMC6661862 DOI: 10.1021/acscentsci.9b00447] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 05/26/2023]
Abstract
Proton transfer in water is ubiquitous and a critical elementary event that, via proton hopping between water molecules, enables protons to diffuse much faster than other ions. The problem of the anomalous nature of proton transport in water was first identified by Grotthuss over 200 years ago. In spite of a vast amount of modern research effort, there are still many unanswered questions about proton transport in water. An experimental determination of the proton hopping time has remained elusive due to its ultrafast nature and the lack of direct experimental observables. Here, we use two-dimensional infrared spectroscopy to extract the chemical exchange rates between hydronium and water in acid solutions using a vibrational probe, methyl thiocyanate. Ab initio molecular dynamics (AIMD) simulations demonstrate that the chemical exchange is dominated by proton hopping. The observed experimental and simulated acid concentration dependence then allow us to extrapolate the measured single step proton hopping time to the dilute limit, which, within error, gives the same value as inferred from measurements of the proton mobility and NMR line width analysis. In addition to obtaining the proton hopping time in the dilute limit from direct measurements and AIMD simulations, the results indicate that proton hopping in dilute acid solutions is induced by the concerted multi-water molecule hydrogen bond rearrangement that occurs in pure water. This proposition on the dynamics that drive proton hopping is confirmed by a combination of experimental results from the literature.
Collapse
Affiliation(s)
- Rongfeng Yuan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Joseph A. Napoli
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ondrej Marsalek
- Charles
University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
56
|
Dutta C, Mammetkuliyev M, Benderskii AV. Re-orientation of water molecules in response to surface charge at surfactant interfaces. J Chem Phys 2019; 151:034703. [DOI: 10.1063/1.5066597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Chayan Dutta
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Muhammet Mammetkuliyev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alexander V. Benderskii
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
57
|
Kananenka AA, Hestand NJ, Skinner JL. OH-Stretch Raman Multivariate Curve Resolution Spectroscopy of HOD/H2O Mixtures. J Phys Chem B 2019; 123:5139-5146. [DOI: 10.1021/acs.jpcb.9b02686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexei A. Kananenka
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas J. Hestand
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - J. L. Skinner
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
58
|
Ojha D, Chandra A. Urea in Water: Structure, Dynamics, and Vibrational Echo Spectroscopy from First-Principles Simulations. J Phys Chem B 2019; 123:3325-3336. [DOI: 10.1021/acs.jpcb.9b01904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deepak Ojha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
59
|
Biswas S, Mallik BS. Vibration Spectral Dynamics of Weakly Coordinating Water Molecules near an Anion: FPMD Simulations of an Aqueous Solution of Tetrafluoroborate. J Phys Chem B 2019; 123:2135-2146. [PMID: 30759344 DOI: 10.1021/acs.jpcb.9b00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extent to which the ions affect the nearby water molecules will decide the structure-making or breaking nature of those ions in aqueous solutions. The effects of a weakly coordinating anion on the structure, dynamics, and vibrational properties of water molecules are not so significant as compared to an anion capable of making strong ion-water hydrogen bonds. The present work deals with the first-principles molecular dynamics study of an aqueous solution of such a weakly coordinating anion, tetrafluoroborate (BF4-), using dispersion-corrected DFT-based first-principles molecular dynamics (FPMD) simulations. Various structural, dynamical, and spectral properties, such as radial distribution functions (RDFs), rotational dynamics, vibrational density of states (VDOS), hydrogen bond as well as dangling OH autocorrelation functions, and residence dynamics, were calculated to investigate the effects of the anion on nearby water molecules. The process of spectral diffusion was assessed through a time series wavelet transformation of trajectories obtained from FPMD simulations. The first ion-water solvation shell extends up to 5.5 Å, containing around 20 water molecules. The lifetime of the ion-water hydrogen bond is found to be 1.19 ps, whereas the water-water hydrogen bond lifetime is found to be 1.13 ps. Inside the solvation shell, the persistence time of dangling OH chromophores and the average frequency of OH modes inside the solvation shell are found to be more compared to bulk. Three time scales are found for solvation shell OH modes from the frequency-frequency correlation function. A very short time scale is found for the intact ion-water interaction; the short time scale is for the ion-water hydrogen bond, and the long time scale is for escape dynamics of water molecules from the ion solvation shell. From the mean squared displacement, it is found that solvation water molecules diffuse slower than the bulk. However, solvation shell water molecules show faster relaxation from the analysis of rotational anisotropy. Within the longer time scale of spectral diffusion, this process (which is related to various dynamics of the molecules) is not yet complete, as compared to fast anisotropic decay. This fact is similar to the experimental finding of spectral diffusion and anisotropy time scales in the aqueous solution of borohydride anion. The calculated results are also compared with available experimental data wherever possible.
Collapse
Affiliation(s)
- Sohag Biswas
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , 502 285 Telangana , India
| | - Bhabani S Mallik
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , 502 285 Telangana , India
| |
Collapse
|
60
|
Jain A, Petit AS, Anna JM, Subotnik JE. Simple and Efficient Theoretical Approach To Compute 2D Optical Spectra. J Phys Chem B 2019; 123:1602-1617. [DOI: 10.1021/acs.jpcb.8b08674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92834, United States
| | - Jessica M. Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
61
|
Hestand NJ, Strong SE, Shi L, Skinner JL. Mid-IR spectroscopy of supercritical water: From dilute gas to dense fluid. J Chem Phys 2019; 150:054505. [DOI: 10.1063/1.5079232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicholas J. Hestand
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Steven E. Strong
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Liang Shi
- School of Natural Sciences, University of California, Merced, California 95344, USA
| | - J. L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
62
|
Shin JY, Wang YL, Yamada SA, Hung ST, Fayer MD. Imidazole and 1-Methylimidazole Hydrogen Bonding and Nonhydrogen Bonding Liquid Dynamics: Ultrafast IR Experiments. J Phys Chem B 2019; 123:2094-2105. [DOI: 10.1021/acs.jpcb.8b11299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Samantha T. Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
63
|
Zhou D, Wei Q, Wang S, Li X, Bian H. Counterion Effect on Vibrational Relaxation and the Rotational Dynamics of Interfacial Water and an Anionic Vibrational Probe in the Confined Reverse Micelles Environment. J Phys Chem Lett 2019; 10:176-182. [PMID: 30582817 DOI: 10.1021/acs.jpclett.8b03389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational relaxation and the rotational dynamics of water molecules encapsulated in reverse micelles (RMs) have been investigated by ultrafast infrared (IR) spectroscopy and two-dimensional IR (2D IR) spectroscopy. By changing the counterion of the hydrophilic headgroup in the RMs formed by Aerosol-OT (AOT) from Na+ to K+, Cs+ and Ca2+, we could determine the specific counterion effects on the rotational dynamics of water molecules. The orientational relaxation time constant of water decreases in the order Ca2+ > Na+ > K+ > Cs+. The SCN- anionic probe and counterion can form ion pairs at the interfacial region of the RMs. The rotational dynamics of SCN- anion significantly decreases because of the synergistic effects of confinement and the surface interactions in the interfacial region of the RMs. The results can provide a new understanding of the cationic Hofmeister effect at the molecular level observed in biological studies.
Collapse
Affiliation(s)
- Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Qianshun Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Shuyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Xiaoqian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| |
Collapse
|
64
|
Ojha D, Chandra A. Temperature dependence of the ultrafast vibrational echo spectroscopy of OD modes in liquid water from first principles simulations. Phys Chem Chem Phys 2019; 21:6485-6498. [DOI: 10.1039/c8cp07121g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature dependence of the vibrational spectral diffusion of OD modes in liquid water is investigated through calculations of vibrational echo spectral observables from first principles molecular dynamics.
Collapse
Affiliation(s)
- Deepak Ojha
- Department of Chemistry
- Indian Institute of Technology Kanpur
- India
| | - Amalendu Chandra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- India
| |
Collapse
|
65
|
Ohto T, Dodia M, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation. J Chem Theory Comput 2018; 15:595-602. [DOI: 10.1021/acs.jctc.8b00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
66
|
Hunter KM, Shakib FA, Paesani F. Disentangling Coupling Effects in the Infrared Spectra of Liquid Water. J Phys Chem B 2018; 122:10754-10761. [DOI: 10.1021/acs.jpcb.8b09910] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kelly M. Hunter
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093, United States
| | - Farnaz A. Shakib
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093, United States
| |
Collapse
|
67
|
Yuan R, Yan C, Fayer M. Ion–Molecule Complex Dissociation and Formation Dynamics in LiCl Aqueous Solutions from 2D IR Spectroscopy. J Phys Chem B 2018; 122:10582-10592. [DOI: 10.1021/acs.jpcb.8b08743] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
68
|
Yadav VK, Chandra A. Dynamics of vibrational frequency fluctuations in deuterated liquid ammonia: roles of fluctuating hydrogen bonds and free ND modes. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1475739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Vivek Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur, India
- Department of Theoretical and Computational Molecular Science, Institute of Molecular Science , Okazaki, Japan
| |
Collapse
|
69
|
Nishida J, Breen JP, Lindquist KP, Umeyama D, Karunadasa HI, Fayer MD. Dynamically Disordered Lattice in a Layered Pb-I-SCN Perovskite Thin Film Probed by Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2018; 140:9882-9890. [PMID: 30024160 DOI: 10.1021/jacs.8b03787] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dynamically flexible lattices in lead halide perovskites may play important roles in extending carrier recombination lifetime in 3D perovskite solar-cell absorbers and in exciton self-trapping in 2D perovskite white-light phosphors. Two-dimensional infrared (2D IR) spectroscopy was applied to study a recently reported Pb-I-SCN layered perovskite. The Pb-I-SCN perovskite was spin-coated on a SiO2 surface as a thin film, with a thickness of ∼100 nm, where the S12CN- anions were isotopically diluted with the ratio of S12CN:S13CN = 5:95 to avoid vibrational coupling and excitation transfer between adjacent SCN- anions. The 12CN stretch mode of the minor S12CN- component was the principal vibrational probe that reported on the structural evolution through 2D IR spectroscopy. Spectral diffusion was observed with a time constant of 4.1 ± 0.3 ps. Spectral diffusion arises from small structural changes that result in sampling of frequencies within the distribution of frequencies comprising the inhomogeneously broadened infrared absorption band. These transitions among discrete local structures are distinct from oscillatory phonon motions of the lattice. To accurately evaluate the structural dynamics through measurement of spectral diffusion, the vibrational coupling between adjacent SCN- anions had to be carefully treated. Although the inorganic layers of typical 2D perovskites are structurally isolated from each other, the 2D IR data demonstrated that the layers of the Pb-I-SCN perovskite are vibrationally coupled. When both S12CN- and S13CN- were pumped simultaneously, cross-peaks between S12CN and S13CN vibrations and an oscillating 2D band shape of the S12CN- vibration were observed. Both observables demonstrate vibrational coupling between the closest SCN- anions, which reside in different inorganic layers. The thin films and the isotopic dilution produced exceedingly small vibrational echo signal fields; measurements were made possible using the near-Brewster's angle reflection pump-probe geometry.
Collapse
Affiliation(s)
- Jun Nishida
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - John P Breen
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kurt P Lindquist
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Daiki Umeyama
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Hemamala I Karunadasa
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Michael D Fayer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
70
|
Yan C, Kramer PL, Yuan R, Fayer MD. Water Dynamics in Polyacrylamide Hydrogels. J Am Chem Soc 2018; 140:9466-9477. [DOI: 10.1021/jacs.8b03547] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Patrick L. Kramer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
71
|
Kananenka AA, Skinner JL. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer. J Chem Phys 2018; 148:244107. [DOI: 10.1063/1.5037113] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexei A. Kananenka
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. L. Skinner
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
72
|
He X, Xu F, Yu P, Wu Y, Wang F, Zhao Y, Wang J. Solvent-dependent structural dynamics of an azido-platinum complex revealed by linear and nonlinear infrared spectroscopy. Phys Chem Chem Phys 2018; 20:9984-9996. [PMID: 29619447 DOI: 10.1039/c7cp08606g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The vibrational and anisotropic relaxation dynamics and structural dynamics of a potential anticancer prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2], were investigated using time-resolved infrared pump-probe spectroscopy and ultrafast two-dimensional infrared (2D IR) spectroscopy. Herein, two representative bio-friendly solvents, H2O and DMSO, were used, in which the local structural and dynamical variations were monitored using the antisymmetric linear combination of the two N3 stretching vibrational modes as an infrared probe. It was found that the vibrational relaxation process of the N3 antisymmetric stretching (as) mode in H2O is two to three times faster than that in DMSO. The anisotropic relaxation process of the anticancer prodrug was observed to be hindered in DMSO; this indicated a tighter solvent environment around the sample molecule in this solvent. The vibrational frequency time correlation of the N3 antisymmetric stretching mode in H2O decays with a time constant of 1.94 ps, in agreement with the hydrogen bond formation and breaking times of water. In DMSO, the frequency time correlation of the N3 as mode decays on a much longer time scale; this further indicates its sensitivity to the out-layer DMSO structural dynamics, which are relatively static in the experimental time window.
Collapse
Affiliation(s)
- Xuemei He
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
73
|
Karmakar A, Chandra A. Water under Supercritical Conditions: Hydrogen Bonds, Polarity, and Vibrational Frequency Fluctuations from Ab Initio Simulations with a Dispersion Corrected Density Functional. ACS OMEGA 2018; 3:3453-3462. [PMID: 31458597 PMCID: PMC6641502 DOI: 10.1021/acsomega.7b02036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/09/2018] [Indexed: 05/27/2023]
Abstract
We have studied the effects of dispersion interactions on the dynamics of vibrational frequency fluctuations, hydrogen bonds, and free OD modes in supercritical heavy water at three different densities by means of ab initio molecular dynamics simulations. The vibrational spectral diffusion, as described by the frequency fluctuations, is studied through calculations of frequency time correlation of stretch modes of deuterated water, and its relations to the dynamics of hydrogen bonds and free OD modes are described. In addition, some of the other dynamical, structural, and electronic properties such as diffusion, rotational relaxation, radial distribution functions, hydrogen bond and coordination numbers, and dipole moments are also investigated from the perspectives of their variation with inclusion of dispersion interactions at varying density of the solvent. Although some changes in the structural properties are found on inclusion of dispersion corrections, no significant difference in the fluctuation dynamics of OD stretching frequencies and also in other dynamical quantities of supercritical water are found because of dispersion effects. The dynamics of water molecules under supercritical conditions is very fast compared to the corresponding dynamics under ambient conditions. The large thermal effects at such a high temperature seem to take over any relatively minor changes that might be introduced by weak dispersion interaction.
Collapse
|
74
|
Sanders SE, Vanselous H, Petersen PB. Water at surfaces with tunable surface chemistries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:113001. [PMID: 29393860 DOI: 10.1088/1361-648x/aaacb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Collapse
Affiliation(s)
- Stephanie E Sanders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | | | | |
Collapse
|
75
|
Backus EHG, Cyran JD, Grechko M, Nagata Y, Bonn M. Time-Resolved Sum Frequency Generation Spectroscopy: A Quantitative Comparison Between Intensity and Phase-Resolved Spectroscopy. J Phys Chem A 2018; 122:2401-2410. [DOI: 10.1021/acs.jpca.7b12303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ellen H. G. Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jenée D. Cyran
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maksim Grechko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
76
|
Koeppe B, Pylaeva SA, Allolio C, Sebastiani D, Nibbering ETJ, Denisov GS, Limbach HH, Tolstoy PM. Polar solvent fluctuations drive proton transfer in hydrogen bonded complexes of carboxylic acid with pyridines: NMR, IR and ab initio MD study. Phys Chem Chem Phys 2018; 19:1010-1028. [PMID: 27942642 DOI: 10.1039/c6cp06677a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We study a series of intermolecular hydrogen-bonded 1 : 1 complexes formed by chloroacetic acid with 19 substituted pyridines and one aliphatic amine dissolved in CD2Cl2 at low temperature by 1H and 13C NMR and FTIR spectroscopy. The hydrogen bond geometries in these complexes vary from molecular (O-HN) to zwitterionic (O-H-N+) ones, while NMR spectra show the formation of short strong hydrogen bonds in intermediate cases. Analysis of C[double bond, length as m-dash]O stretching and asymmetric CO2- stretching bands in FTIR spectra reveal the presence of proton tautomerism. On the basis of these data, we construct the overall proton transfer pathway. In addition to that, we also study by use of ab initio molecular dynamics the complex formed by chloroacetic acid with 2-methylpyridine, surrounded by 71 CD2Cl2 molecules, revealing a dual-maximum distribution of hydrogen bond geometries in solution. The analysis of the calculated trajectory shows that the proton jumps between molecular and zwitterionic forms are indeed driven by dipole-dipole solvent-solute interactions, but the primary cause of the jumps is the formation/breaking of weak CHO bonds from solvent molecules to oxygen atoms of the carboxylate group.
Collapse
Affiliation(s)
- B Koeppe
- Department of Chemistry, Humboldt-Universität zu Berlin, Germany
| | - S A Pylaeva
- Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg, Germany.
| | - C Allolio
- Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg, Germany.
| | - D Sebastiani
- Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg, Germany.
| | - E T J Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany.
| | - G S Denisov
- Department of Physics, St.Petersburg State University, Russia
| | - H-H Limbach
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - P M Tolstoy
- Center for Magnetic Resonance, St. Petersburg State University, Russia.
| |
Collapse
|
77
|
Roy Choudhuri J, Chandra A. Effects of dispersion interactions on the structure, polarity, and dynamics of liquid-vapor interface of an aqueous NaCl solution: Results of first principles simulations at room temperature. J Chem Phys 2018; 148:024702. [DOI: 10.1063/1.5005951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jyoti Roy Choudhuri
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
78
|
Karmakar A, Chandra A. Dynamics of vibrational spectral diffusion in water: Effects of dispersion interactions, temperature, density, system size and fictitious orbital mass. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
79
|
Yan C, Thomaz JE, Wang YL, Nishida J, Yuan R, Breen JP, Fayer MD. Ultrafast to Ultraslow Dynamics of a Langmuir Monolayer at the Air/Water Interface Observed with Reflection Enhanced 2D IR Spectroscopy. J Am Chem Soc 2017; 139:16518-16527. [DOI: 10.1021/jacs.7b06602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Joseph E. Thomaz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John P. Breen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
80
|
Verma PK, Kundu A, Puretz MS, Dhoonmoon C, Chegwidden OS, Londergan CH, Cho M. The Bend+Libration Combination Band Is an Intrinsic, Collective, and Strongly Solute-Dependent Reporter on the Hydrogen Bonding Network of Liquid Water. J Phys Chem B 2017; 122:2587-2599. [DOI: 10.1021/acs.jpcb.7b09641] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pramod Kumar Verma
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Achintya Kundu
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Matthew S. Puretz
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Charvanaa Dhoonmoon
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Oriana S. Chegwidden
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
81
|
Lee Y, Das S, Malamakal RM, Meloni S, Chenoweth DM, Anna JM. Ultrafast Solvation Dynamics and Vibrational Coherences of Halogenated Boron-Dipyrromethene Derivatives Revealed through Two-Dimensional Electronic Spectroscopy. J Am Chem Soc 2017; 139:14733-14742. [PMID: 28945085 PMCID: PMC6598204 DOI: 10.1021/jacs.7b08558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Boron-dipyrromethene (BODIPY) chromophores have a wide range of applications, spanning areas from biological imaging to solar energy conversion. Understanding the ultrafast dynamics of electronically excited BODIPY chromophores could lead to further advances in these areas. In this work, we characterize and compare the ultrafast dynamics of halogenated BODIPY chromophores through applying two-dimensional electronic spectroscopy (2DES). Through our studies, we demonstrate a new data analysis procedure for extracting the dynamic Stokes shift from 2DES spectra revealing an ultrafast solvent relaxation. In addition, we extract the frequency of the vibrational modes that are strongly coupled to the electronic excitation, and compare the results of structurally different BODIPY chromophores. We interpret our results with the aid of DFT calculations, finding that structural modifications lead to changes in the frequency, identity, and magnitude of Franck-Condon active vibrational modes. We attribute these changes to differences in the electron density of the electronic states of the structurally different BODIPY chromophores.
Collapse
Affiliation(s)
- Yumin Lee
- University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Saptaparna Das
- University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Roy M Malamakal
- University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Stephen Meloni
- University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - David M Chenoweth
- University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Jessica M Anna
- University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
82
|
He X, Yu P, Zhao J, Wang J. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy. J Phys Chem B 2017; 121:9411-9421. [DOI: 10.1021/acs.jpcb.7b06766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuemei He
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
83
|
Olson CM, Grofe A, Huber CJ, Spector IC, Gao J, Massari AM. Enhanced vibrational solvatochromism and spectral diffusion by electron rich substituents on small molecule silanes. J Chem Phys 2017; 147:124302. [PMID: 28964044 PMCID: PMC5848733 DOI: 10.1063/1.5003908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023] Open
Abstract
Fourier transform infrared and two-dimensional IR (2D-IR) spectroscopies were applied to two different silanes in three different solvents. The selected solutes exhibit different degrees of vibrational solvatochromism for the Si-H vibration. Density functional theory calculations confirm that this difference in sensitivity is the result of higher mode polarization with more electron withdrawing ligands. This mode sensitivity also affects the extent of spectral diffusion experienced by the silane vibration, offering a potential route to simultaneously optimize the sensitivity of vibrational probes in both steady-state and time-resolved measurements. Frequency-frequency correlation functions obtained by 2D-IR show that both solutes experience dynamics on similar time scales and are consistent with a picture in which weakly interacting solvents produce faster, more homogeneous fluctuations. Molecular dynamics simulations confirm that the frequency-frequency correlation function obtained by 2D-IR is sensitive to the presence of hydrogen bonding dynamics in the surrounding solvation shell.
Collapse
Affiliation(s)
- Courtney M Olson
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Adam Grofe
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | | | - Ivan C Spector
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Aaron M Massari
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
84
|
Abstract
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
Collapse
Affiliation(s)
- Damien Laage
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - James T. Hynes
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
85
|
Laage D, Elsaesser T, Hynes JT. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044018. [PMID: 28470026 PMCID: PMC5398927 DOI: 10.1063/1.4981019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 05/25/2023]
Abstract
The structure and function of biomolecules can be strongly influenced by their hydration shells. A key challenge is thus to determine the extent to which these shells differ from bulk water, since the structural fluctuations and molecular excitations of hydrating water molecules within these shells can cover a broad range in both space and time. Recent progress in theory, molecular dynamics simulations, and ultrafast vibrational spectroscopy has led to new and detailed insight into the fluctuations of water structure, elementary water motions, and electric fields at hydrated biointerfaces. Here, we discuss some central aspects of these advances, focusing on elementary molecular mechanisms and processes of hydration on a femto- to picosecond time scale, with some special attention given to several issues subject to debate.
Collapse
Affiliation(s)
- Damien Laage
- Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Départment de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | |
Collapse
|
86
|
Chalyavi F, Hogle DG, Tucker MJ. Tyrosine as a Non-perturbing Site-Specific Vibrational Reporter for Protein Dynamics. J Phys Chem B 2017; 121:6380-6389. [DOI: 10.1021/acs.jpcb.7b04999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - David G. Hogle
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
87
|
Yamada SA, Thompson WH, Fayer MD. Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations. J Chem Phys 2017. [DOI: 10.1063/1.4984766] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
88
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
89
|
Błasiak B, Londergan CH, Webb LJ, Cho M. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems. Acc Chem Res 2017; 50:968-976. [PMID: 28345879 DOI: 10.1021/acs.accounts.7b00002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vibrational frequency of a chosen normal mode is one of the most accurately measurable spectroscopic properties of molecules in condensed phases. Accordingly, infrared absorption and Raman scattering spectroscopy have provided valuable information on both distributions and ensemble-average values of molecular vibrational frequencies, and these frequencies are now routinely used to investigate structure, conformation, and even absolute configuration of chemical and biological molecules of interest. Recent advancements in coherent time-domain nonlinear vibrational spectroscopy have allowed the study of heterogeneous distributions of local structures and thermally driven ultrafast fluctuations of vibrational frequencies. To fully utilize IR probe functional groups for quantitative bioassays, a variety of biological and chemical techniques have been developed to site-specifically introduce vibrational probe groups into proteins and nucleic acids. These IR-probe-labeled biomolecules and chemically reactive systems are subject to linear and nonlinear vibrational spectroscopic investigations and provide information on the local electric field, conformational changes, site-site protein contacts, and/or function-defining features of biomolecules. A rapidly expanding library of data from such experiments requires an interpretive method with atom-level chemical accuracy. However, despite prolonged efforts to develop an all-encompassing theory for describing vibrational solvatochromism and electrochromism as well as dynamic fluctuations of instantaneous vibrational frequencies, purely empirical and highly approximate theoretical models have often been used to interpret experimental results. They are, in many cases, based on the simple assumption that the vibrational frequency of an IR reporter is solely dictated by electric potential or field distribution around the vibrational chromophore. Such simplified description of vibrational solvatochromism generally referred to as vibrational Stark effect theory has been considered to be quite appealing and, even in some cases, e.g., carbonyl stretch modes in amide, ester, ketone, and carbonate compounds or proteins, it works quantitatively well, which makes it highly useful in determining the strength of local electric field around the IR chromophore. However, noting that the vibrational frequency shift results from changes of solute-solvent intermolecular interaction potential along its normal coordinate, Pauli exclusion repulsion, polarization, charge transfer, and dispersion interactions, in addition to the electrostatic interaction between distributed charges of both vibrational chromophore and solvent molecules, are to be properly included in the theoretical description of vibrational solvatochromism. Since the electrostatic and nonelectrostatic intermolecular interaction components have distinctively different distance and orientation dependences, they affect the solvatochromic vibrational properties in a completely different manner. Over the past few years, we have developed a systematic approach to simulating vibrational solvatochromic data based on the effective fragment potential approach, one of the most accurate and rigorous theories on intermolecular interactions. We have further elucidated the interplay of local electric field with the general vibrational solvatochromism of small IR probes in either solvents or complicated biological systems, with emphasis on contributions from non-Coulombic intermolecular interactions to vibrational frequency shifts and fluctuations. With its rigorous foundation and close relation to quantitative interpretation of experimental data, this and related theoretical approaches and experiments will be of use in studying and quantifying the structure and dynamics of biomolecules with unprecedented time and spatial resolution when combined with time-resolved vibrational spectroscopy and chemically sensitive vibrational imaging techniques.
Collapse
Affiliation(s)
- Bartosz Błasiak
- Center
of Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Casey H. Londergan
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Lauren J. Webb
- Department
of Chemistry, Center for Nano- and Molecular Science and Technology,
and Institute for Cell and Molecular Biology, The University of Texas at Austin, 105
E. 24th Street, STOP A5300, Austin, Texas 78712, United States
| | - Minhaeng Cho
- Center
of Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
90
|
Nishida J, Yan C, Fayer MD. Enhanced nonlinear spectroscopy for monolayers and thin films in near-Brewster’s angle reflection pump-probe geometry. J Chem Phys 2017. [DOI: 10.1063/1.4977508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
91
|
Dutta C, Benderskii AV. On the Assignment of the Vibrational Spectrum of the Water Bend at the Air/Water Interface. J Phys Chem Lett 2017; 8:801-804. [PMID: 28067525 DOI: 10.1021/acs.jpclett.6b02678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We previously reported the spectrum of the water bend vibrational mode (ν2) at the air/water interface measured using sum-frequency generation (SFG). Here, we present experimental evidence to aid the assignment of the ν2 spectral features to H-bonded classes of interfacial water, which is in general agreement with two recent independently published theoretical studies. The dispersive line shape shows an apparent frequency shift between SSP and PPP polarization combinations (SFG-visible-infrared). This is naturally explained as an interference effect between the negative (1630 cm-1) and positive (1662 cm-1) peaks corresponding to "free-OH" and "H-bonded" species, respectively, which have different orientations and thus different amplitudes in SSP and PPP spectra. A surfactant monolayer of sodium dodecyl sulfate (SDS) was used to suppress the free OH species at the surface, and the corresponding SFG spectral changes indicate that these water molecules with one of the hydrogens pointing up into the air phase contribute to the negative peak at 1630 cm-1.
Collapse
Affiliation(s)
- Chayan Dutta
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Alexander V Benderskii
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
92
|
Kundu A, Verma PK, Ha JH, Cho M. Studying Water Hydrogen-Bonding Network near the Lipid Multibilayer with Multiple IR Probes. J Phys Chem A 2017; 121:1435-1441. [DOI: 10.1021/acs.jpca.6b12152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Achintya Kundu
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Pramod Kumar Verma
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Hyon Ha
- Space-Time
Resolved Molecular Imaging Research Team, Korea Basic Science Institute (KBSI), Seoul 136-075, Republic of Korea
| | - Minhaeng Cho
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
93
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
94
|
Biswas S, Mallik BS. Ultrafast Vibrational Spectroscopy of Aqueous Solution of Methylamine from First Principles MD Simulations. ChemistrySelect 2017. [DOI: 10.1002/slct.201601391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sohag Biswas
- Department of Chemistry; Indian Institute of Technology Hyderabad, Kandi, Sangareddy -; 502285 Telangana India
| | - Bhabani S. Mallik
- Department of Chemistry; Indian Institute of Technology Hyderabad, Kandi, Sangareddy -; 502285 Telangana India
| |
Collapse
|
95
|
Chen X, Choing SN, Aschaffenburg DJ, Pemmaraju CD, Prendergast D, Cuk T. The Formation Time of Ti–O• and Ti–O•–Ti Radicals at the n-SrTiO3/Aqueous Interface during Photocatalytic Water Oxidation. J Am Chem Soc 2016; 139:1830-1841. [DOI: 10.1021/jacs.6b09550] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xihan Chen
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Stephanie N. Choing
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel J. Aschaffenburg
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | | | | | - Tanja Cuk
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
96
|
Verma PK, Kundu A, Ha JH, Cho M. Water Dynamics in Cytoplasm-Like Crowded Environment Correlates with the Conformational Transition of the Macromolecular Crowder. J Am Chem Soc 2016; 138:16081-16088. [DOI: 10.1021/jacs.6b10164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pramod Kumar Verma
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Achintya Kundu
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Hyon Ha
- Space-Time
Resolved Molecular Imaging Research Team, Korea Basic Science Institute, Seoul 136-075, Republic of Korea
| | - Minhaeng Cho
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
97
|
Daly CA, Berquist EJ, Brinzer T, Garrett-Roe S, Lambrecht DS, Corcelli SA. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map. J Phys Chem B 2016; 120:12633-12642. [DOI: 10.1021/acs.jpcb.6b09509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clyde A. Daly
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46656, United States
| | - Eric J. Berquist
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Thomas Brinzer
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Sean Garrett-Roe
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel S. Lambrecht
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Steven A. Corcelli
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46656, United States
| |
Collapse
|
98
|
Giammanco CH, Kramer PL, Wong DB, Fayer MD. Water Dynamics in 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids. J Phys Chem B 2016; 120:11523-11538. [DOI: 10.1021/acs.jpcb.6b08410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chiara H. Giammanco
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Patrick L. Kramer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Daryl B. Wong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
99
|
Livingstone RA, Zhang Z, Piatkowski L, Bakker HJ, Hunger J, Bonn M, Backus EHG. Water in Contact with a Cationic Lipid Exhibits Bulklike Vibrational Dynamics. J Phys Chem B 2016; 120:10069-10078. [DOI: 10.1021/acs.jpcb.6b07085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruth A. Livingstone
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhen Zhang
- FOM Institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
- Chinese Academy of Sciences, 1st North Street, ZhongGuanCun, HaiDian District, Beijing 100080, China
| | - Lukasz Piatkowski
- FOM Institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
- The Institute of Photonic Sciences, Mediterranean Technology Park, 08860 Castelldefels, Spain
| | - Huib J. Bakker
- FOM Institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H. G. Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
100
|
Lapini A, Pagliai M, Fanetti S, Citroni M, Scandolo S, Bini R, Righini R. Pressure Dependence of Hydrogen-Bond Dynamics in Liquid Water Probed by Ultrafast Infrared Spectroscopy. J Phys Chem Lett 2016; 7:3579-3584. [PMID: 27560355 DOI: 10.1021/acs.jpclett.6b01375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clarifying the structure/dynamics relation of water hydrogen-bond network has been the aim of extensive research over many decades. By joining anvil cell high-pressure technology, femtosecond 2D infrared spectroscopy, and molecular dynamics simulations, we studied, for the first time, the spectral diffusion of the stretching frequency of an HOD impurity in liquid water as a function of pressure. Our experimental and simulation results concordantly demonstrate that the rate of spectral diffusion is almost insensitive to the applied pressure. This behavior is in contrast with the previously reported pressure-induced speed up of the orientational dynamics, which can be rationalized in terms of large angular jumps involving sudden switching between two hydrogen-bonded configurations. The different trend of the spectral diffusion can be, instead, inferred considering that the first solvation shell preserves the tetrahedral structure with pressure and the OD stretching frequency is only slight perturbed.
Collapse
Affiliation(s)
- Andrea Lapini
- LENS, European Laboratory for Nonlinear Spectroscopy , Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze , Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
- Istituto Nazionale di Ottica INO-CNR , Largo Fermi 6, 50125 Firenze, Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze , Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- Istituto di Chimica dei Composti Organometallici ICCOM-CNR , Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Margherita Citroni
- LENS, European Laboratory for Nonlinear Spectroscopy , Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze , Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Sandro Scandolo
- The Abdus Salam International Centre for Theoretical Physics (ICTP) , I-34151 Trieste, Italy
| | - Roberto Bini
- LENS, European Laboratory for Nonlinear Spectroscopy , Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze , Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Roberto Righini
- LENS, European Laboratory for Nonlinear Spectroscopy , Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze , Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|