51
|
Patuwo MY, Lee SY. Probing non-adiabatic conical intersections using absorption, spontaneous Raman, and femtosecond stimulated Raman spectroscopy. J Chem Phys 2013; 139:234101. [DOI: 10.1063/1.4843395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
52
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
53
|
Kraack JP, Buckup T, Motzkus M. Coherent High-Frequency Vibrational Dynamics in the Excited Electronic State of All-Trans Retinal Derivatives. J Phys Chem Lett 2013; 4:383-387. [PMID: 26281728 DOI: 10.1021/jz302001m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coherent vibrational dynamics of retinal in excited electronic states are of primary importance in the understanding of photobiology. Using pump-DFWM, we demonstrate for the first time the existence of coherent double-bond high-frequency modulations (>1300 cm(-1)) in the excited electronic state of different retinal derivatives. All-trans retinal as well as retinal Schiff bases exhibit a partial frequency downshift of the C═C double-bond mode from ∼1580 cm(-1) in the ground state to 1510 cm(-1) in the excited state. In addition, a new vibrational band at ∼1700 cm(-1) assigned to the C═N stretching mode in retinal Schiff bases in the excited state is detected. The newly reported bands are observed only in specific spectral regions of excited-state absorption. Implications regarding the observation of vibrational coherences in naturally occurring retinal protonated Schiff bases in rhodopsins are discussed.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210 Heidelberg, Germany
| |
Collapse
|
54
|
Dobryakov AL, Ioffe I, Granovsky AA, Ernsting NP, Kovalenko SA. Femtosecond Raman spectra of cis-stilbene and trans-stilbene with isotopomers in solution. J Chem Phys 2012; 137:244505. [DOI: 10.1063/1.4769971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
55
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:14768-75. [PMID: 23210980 DOI: 10.1021/jp308433a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast structural dynamics in the electronic excited state of photoactive yellow protein (PYP) is studied by femtosecond stimulated Raman spectroscopy. Stimulated Raman spectra in the electronic excited state, S(1), can be obtained by using a Raman pump pulse in resonance with the S(1)-S(0) transition. This is confirmed by comparing the experimental results with numerical calculations based on the density matrix treatment. We also investigate the hydrogen-bonding network surrounding the wild-type (WT)-PYP chromophore in the ground and excited states by comparing its stimulated Raman spectra with those of the E46Q-PYP mutant. We focus on the relative intensity of the Raman band at 1555 cm(-1), which includes both vinyl bond C═C stretching and ring vibrations and is sensitive to the hydrogen-bonding network around the phenolic oxygen of the chromophore. The relative intensity for the WT-PYP decreases after actinic excitation within the 150 fs time resolution and reaches a similar intensity to that for E46Q-PYP. These observations indicate that the WT-PYP hydrogen-bonding network is immediately rearranged in the electronic excited state to form a structure similar to that of E46Q-PYP.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Science and Technology Entrepreneurship Laboratory, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
56
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
57
|
Liu W, Han F, Smith C, Fang C. Ultrafast conformational dynamics of pyranine during excited state proton transfer in aqueous solution revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:10535-50. [PMID: 22671279 DOI: 10.1021/jp3020707] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proton transfer reaction plays an essential role in a myriad of chemical and biological processes, and to reveal the choreography of the proton motion intra- and intermolecularly, a spectroscopic technique capable of capturing molecular structural snapshots on the intrinsic time scale of proton transfer motions is needed. The photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) serves as a paradigm case to dissect excited state proton transfer (ESPT) events in aqueous solution, triggered precisely by photoexcitation. We have used femtosecond stimulated Raman spectroscopy (FSRS) to yield novel insights into the ultrafast conformational dynamics of photoexcited HPTS in complex with water and acetate molecules. Marker bands attributed to the deprotonated form of HPTS (1139 cm(-1), ∼220 fs rise) appear earlier and faster than the monomer acetic acid peak (864 cm(-1), ∼530 fs rise), indicating that water molecules actively participate in the ESPT chain. Several key low-frequency modes at 106, 150, 195, and 321 cm(-1) have been identified to facilitate ESPT at different stages from 300 fs, 1 ps, to 6 ps and beyond, having distinctive dynamics contributing through hydrogen bonds with 0, 1, and more intervening water molecules. The time-resolved FSRS spectroscopy renders a direct approach to observe the reactive coupling between the vibrational degrees of freedom of photoexcited HPTS in action, therefore revealing the anharmonicity matrix both within HPTS and between HPTS and the neighboring acceptor molecules. The observed excited state conformational dynamics are along the ESPT multidimensional reaction coordinate and are responsible for the photoacidity of HPTS in aqueous solution.
Collapse
Affiliation(s)
- Weimin Liu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | | | | |
Collapse
|
58
|
Wand A, Friedman N, Sheves M, Ruhman S. Ultrafast Photochemistry of Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial Retinal Configuration. J Phys Chem B 2012; 116:10444-52. [DOI: 10.1021/jp2125284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| |
Collapse
|
59
|
Challa JR, Du Y, McCamant DW. Femtosecond stimulated Raman spectroscopy using a scanning multichannel technique. APPLIED SPECTROSCOPY 2012; 66:227-232. [PMID: 22449287 DOI: 10.1366/11-06457] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A scanning multichannel technique (SMT) has been implemented in femtosecond stimulated Raman spectroscopy (FSRS). By combining several FSRS spectra detected at slightly different positions of the spectrograph via SMT, we have eliminated the systematic noise patterns ("fixed pattern noise") due to the variation in sensitivity and noise characteristics of the individual charge-coupled device (CCD) pixels. In nonresonant FSRS, solvent subtraction can effectively remove the systematic noise pattern even without SMT. However, in the case of resonant FSRS, we show that a similar solvent subtraction procedure is ineffective at removing the noise patterns without SMT. Application of SMT results in averaged FSRS spectra with improved signal-to-noise ratios that approach the shot-noise limit.
Collapse
Affiliation(s)
- J Reddy Challa
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, New York 14627, USA
| | | | | |
Collapse
|
60
|
Frontiera RR, Fang C, Dasgupta J, Mathies RA. Probing structural evolution along multidimensional reaction coordinates with femtosecond stimulated Raman spectroscopy. Phys Chem Chem Phys 2012; 14:405-14. [DOI: 10.1039/c1cp22767j] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
61
|
Hoffman DP, Mathies RA. Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman. Phys Chem Chem Phys 2012; 14:6298-306. [DOI: 10.1039/c2cp23468h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
|
63
|
Slouf V, Balashov SP, Lanyi JK, Pullerits T, Polívka T. Carotenoid response to retinal excitation and photoisomerization dynamics in xanthorhodopsin. Chem Phys Lett 2011; 516:96-101. [PMID: 22102759 DOI: 10.1016/j.cplett.2011.09.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a comparative study of xanthorhodopsin, a proton pump with the carotenoid salinixanthin serving as an antenna, and the closely related bacteriorhodopsin. Upon excitation of retinal, xanthorhodopsin exhibits a wavy transient absorption pattern in the region between 470 and 540 nm. We interpret this signal as due to electrochromic effect of the transient electric field of excited retinal on salinixanthin. The spectral shift decreases during the retinal dynamics through the ultrafast part of the photocycle. Differences in dynamics of bacteriorhodopsin and xanthorhodopsin are discussed.
Collapse
Affiliation(s)
- Václav Slouf
- Institute of Physical Biology, University of South Bohemia, Zámek 136, 373 33 Nové Hrady, Czech Republic
| | | | | | | | | |
Collapse
|
64
|
Qiu X, Li X, Niu K, Lee SY. Inverse Raman bands in ultrafast Raman loss spectroscopy. J Chem Phys 2011; 135:164502. [DOI: 10.1063/1.3653940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
65
|
Fábián L, Heiner Z, Mero M, Kiss M, Wolff EK, Ormos P, Osvay K, Dér A. Protein-based ultrafast photonic switching. OPTICS EXPRESS 2011; 19:18861-18870. [PMID: 21996828 DOI: 10.1364/oe.19.018861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Several inorganic and organic materials have been suggested for utilization as nonlinear optical material performing light-controlled active functions in integrated optical circuits, however, none of them is considered to be the optimal solution. Here we present the first demonstration of a subpicosecond photonic switch by an alternative approach, where the active role is performed by a material of biological origin: the chromoprotein bacteriorhodopsin, via its ultrafast BR->K and BR->I transitions. The results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunications technologies.
Collapse
Affiliation(s)
- László Fábián
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Groma GI, Colonna A, Martin JL, Vos MH. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys J 2011; 100:1578-86. [PMID: 21402041 DOI: 10.1016/j.bpj.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process.
Collapse
Affiliation(s)
- Géza I Groma
- Laboratory for Optical Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | |
Collapse
|
67
|
Kraack JP, Buckup T, Hampp N, Motzkus M. Ground- and Excited-State Vibrational Coherence Dynamics in Bacteriorhodopsin Probed With Degenerate Four-Wave-Mixing Experiments. Chemphyschem 2011; 12:1851-9. [DOI: 10.1002/cphc.201100032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022]
|
68
|
Kovalenko SA, Dobryakov AL, Ernsting NP. An efficient setup for femtosecond stimulated Raman spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:063102. [PMID: 21721669 DOI: 10.1063/1.3596453] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present an efficient and robust setup for femtosecond stimulated Raman (FSR) spectroscopy with 60 fs and 10 cm(-1) resolution. Raman pulses of 0.5-5 ps are tunable between 450-750 nm with energies 1-10 μJ. Experimental features of the setup, signal processing, and data treatment are discussed in detail to be readily reproduced in other labs. The setup is tested by measuring FSR spectra of stilbene in solution.
Collapse
Affiliation(s)
- S A Kovalenko
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| | | | | |
Collapse
|
69
|
Zhao B, Sun Z, Lee SY. Quantum theory of time-resolved femtosecond stimulated Raman spectroscopy: direct versus cascade processes and application to CDCl3. J Chem Phys 2011; 134:024307. [PMID: 21241099 DOI: 10.1063/1.3525100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present a quantum mechanical wave packet treatment of time-resolved femtosecond stimulated Raman spectroscopy (FSRS), or two-dimensional (2D) FSRS, where a vibrational coherence is initiated with an impulsive Raman pump which is subsequently probed by FSRS. It complements the recent classical treatment by Mehlenbacher et al. [J. Chem. Phys. 131, 244512 (2009)]. In this 2D-FSRS, two processes can occur concurrently but with different intensities: a direct fifth-order process taking place on one molecule, and a cascade process comprising two third-order processes on two different molecules. The cascade process comprises a parallel and a sequential cascade. The theory is applied to the 2D-FSRS of CDCl(3) where calculations showed that: (a) the cascade process is stronger than the direct fifth-order process by one order of magnitude, (b) the sidebands assigned to C-Cl E and A(1) bends, observed on both sides of the Stokes C-D stretch frequency, are not due to anharmonic coupling between the C-D stretch and the C-Cl bends, but are instead due to the coherent anti-Stokes Raman spectroscopy (CARS) and coherent Stokes Raman spectroscopy (CSRS) fields produced in the first step of the cascade process, (c) for each delay time between the femtosecond impulsive pump and FSRS probe pulses, the line shape of the sidebands shows an inversion symmetry about the C-D stretch frequency, and this is due to the 180(∘) phase difference between the CARS and CSRS fields that produced the left and right sidebands, and (d) for each sideband, the line shape changes from positive Lorentzian to dispersive to negative Lorentzian, then to negative dispersive and back to positive Lorentzian with the period of the bending vibration, and it is correlated with the momentum of the wave packet prepared on the ground-state surface by the impulsive pump along the sideband normal coordinate.
Collapse
Affiliation(s)
- Bin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
70
|
Pontecorvo E, Kapetanaki SM, Badioli M, Brida D, Marangoni M, Cerullo G, Scopigno T. Femtosecond stimulated Raman spectrometer in the 320-520nm range. OPTICS EXPRESS 2011; 19:1107-1112. [PMID: 21263650 DOI: 10.1364/oe.19.001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multi-µJ narrow-bandwidth (≈ 10 cm(-1)) picosecond pulses, broadly tunable in the visible-UV range (320-520 nm), are generated by spectral compression of femtosecond pulses emitted by an amplified Ti:sapphire system. Such pulses provide the ideal Raman pump for broadband femtosecond stimulated Raman spectroscopy, as here demonstrated on a heme protein.
Collapse
Affiliation(s)
- E Pontecorvo
- Dipartimento di Fisica, Universitá Roma Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
71
|
Rostov IV, Amos RD, Kobayashi R, Scalmani G, Frisch MJ. Studies of the ground and excited-state surfaces of the retinal chromophore using CAM-B3LYP. J Phys Chem B 2010; 114:5547-55. [PMID: 20369810 DOI: 10.1021/jp911329g] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isomerization of the 11-cis isomer (PSB11) of the retinal chromophore to its all-trans isomer (PSBT) is examined. Optimized structures on both the ground state and the excited state are calculated, and the dependence on torsional angles in the carbon chain is investigated. Time-dependent density functional theory is used to produce excitation energies and the excited-state surface. To avoid problems with the description of excited states that can arise with standard DFT methods, the CAM-B3LYP functional was used. Comparing CAM-B3LYP with B3LYP results indicates that the former is significantly more accurate, as a consequence of which detailed cross sections of the retinal excited-state surface are obtained.
Collapse
Affiliation(s)
- Ivan V Rostov
- Australian National University Supercomputer Facility, Mills Road, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
72
|
Weigel A, Ernsting N. Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2010; 114:7879-93. [DOI: 10.1021/jp100181z] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- A. Weigel
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - N.P. Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
73
|
Valsson O, Filippi C. Photoisomerization of Model Retinal Chromophores: Insight from Quantum Monte Carlo and Multiconfigurational Perturbation Theory. J Chem Theory Comput 2010. [DOI: 10.1021/ct900692y] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Omar Valsson
- Faculty of Science and Technology and MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Filippi
- Faculty of Science and Technology and MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
74
|
Niu K, Zhao B, Sun Z, Lee SY. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin. J Chem Phys 2010; 132:084510. [DOI: 10.1063/1.3330818] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
75
|
Rupenyan A, van Stokkum IHM, Arents JC, van Grondelle R, Hellingwerf KJ, Groot ML. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy. J Phys Chem B 2010; 113:16251-6. [PMID: 19928893 DOI: 10.1021/jp9065289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).
Collapse
Affiliation(s)
- Alisa Rupenyan
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
76
|
Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 2010; 462:200-4. [PMID: 19907490 DOI: 10.1038/nature08527] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 09/09/2009] [Indexed: 11/08/2022]
Abstract
Tracing the transient atomic motions that lie at the heart of chemical reactions requires high-resolution multidimensional structural information on the timescale of molecular vibrations, which commonly range from 10 fs to 1 ps. For simple chemical systems, it has been possible to map out in considerable detail the reactive potential-energy surfaces describing atomic motions and resultant reaction dynamics, but such studies remain challenging for complex chemical and biological transformations. A case in point is the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, which is a widely used gene expression marker owing to its efficient bioluminescence. This feature is known to arise from excited-state proton transfer (ESPT), yet the atomistic details of the process are still not fully understood. Here we show that femtosecond stimulated Raman spectroscopy provides sufficiently detailed and time-resolved vibrational spectra of the electronically excited chromophore of GFP to reveal skeletal motions involved in the proton transfer that produces the fluorescent form of the protein. In particular, we observe that the frequencies and intensities of two marker bands, the C-O and C = N stretching modes at opposite ends of the conjugated chromophore, oscillate out of phase with a period of 280 fs; we attribute these oscillations to impulsively excited low-frequency phenoxyl-ring motions, which optimize the geometry of the chromophore for ESPT. Our findings illustrate that femtosecond simulated Raman spectroscopy is a powerful approach to revealing the real-time nuclear dynamics that make up a multidimensional polyatomic reaction coordinate.
Collapse
|
77
|
Niu K, Cong S, Lee SY. Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: application to rhodamine 6G. J Chem Phys 2009; 131:054311. [PMID: 19673566 DOI: 10.1063/1.3198473] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The perturbation theory of stimulated Raman scattering (SRS), with Raman pump on minus pump off and heterodyne detection along the probe direction, is reviewed. It has four third-order polarization terms, labeled as SRS or inverse Raman scattering (IRS): SRS(I), SRS(II), IRS(I), and IRS(II). These four polarizations have a wave packet interpretation. The polarizations, with homogenous and inhomogeneous broadening included, can be written as integrals over four-time correlation functions, and analytic formulas are derived for the latter for multidimensional harmonic potential surfaces with Franck-Condon displacements in the modes which facilitates the calculation of the SRS cross sections. The theory is applied to understand recent experimental results on the femtosecond SRS (FSRS) of a fluorescent dye, rhodamine 6G (R6G), where the Raman pump pulse is about 1 ps long, and the probe pulse is about 10 fs. The calculations compared very well with the R6G experimental results for off-resonance and resonance FSRS spectra spanning both Stokes and anti-Stokes bands, and for negative and positive pump-probe delay times on resonance.
Collapse
Affiliation(s)
- Kai Niu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
78
|
Fournier F, Guo R, Gardner EM, Donaldson PM, Loeffeld C, Gould IR, Willison KR, Klug DR. Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Acc Chem Res 2009; 42:1322-31. [PMID: 19548660 DOI: 10.1021/ar900074p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the last 10 years, several forms of two-dimensional infrared (2DIR) spectroscopy have been developed, such as IR pump-probe spectroscopy and photon-echo techniques. In this Account, we describe a doubly vibrationally enhanced four-wave mixing method, in which a third-order nonlinear signal is generated from the interaction of two independently tunable IR beams and an electron-polarizing visible beam at 790 nm. When the IR beams are independently in resonance with coupled vibrational transitions, the signal is enhanced and cross-peaks appear in the spectrum. This method is known as either DOVE (doubly vibrationally enhanced) four-wave mixing or EVV (electron-vibration-vibration) 2DIR spectroscopy. We begin by discussing the basis and properties of EVV 2DIR. We then discuss several biological and potential biomedical applications. These include protein identification and quantification, as well as the potential of this label-free spectroscopy for protein and peptide structural analysis. In proteomics, we also show how post-translational modifications in peptides (tyrosine phosphorylation) can be detected by EVV 2DIR spectroscopy. The feasibility of EVV 2DIR spectroscopy for tissue imaging is also evaluated. Preliminary results were obtained on a mouse kidney histological section that was stained with hematoxylin (a small organic molecule). We obtained images by setting the IR frequencies to a specific cross-peak (the strongest for hematoxylin was obtained from its analysis in isolation; a general CH(3) cross-peak for proteins was also used) and then spatially mapping as a function of the beam position relative to the sample. Protein and hematoxylin distribution in the tissue were measured and show differential contrast, which can be entirely explained by the different tissue structures and their functions. The possibility of triply resonant EVV 2DIR spectroscopy was investigated on the retinal chromophore at the centre of the photosynthetic protein bacteriorhodopsin (bR). By putting the visible third beam in resonance with an electronic transition, we were able to enhance the signal and increase the sensitivity of the method by several orders of magnitude. This increase in sensitivity is of great importance for biological applications, in which the number of proteins, metabolites, or drug molecules to be detected is low (typically pico- to femtomoles). Finally, we present theoretical investigations for using EVV 2DIR spectroscopy as a structural analysis tool for inter- and intramolecular interaction geometries.
Collapse
Affiliation(s)
- Frederic Fournier
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Rui Guo
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Elizabeth M. Gardner
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Paul M. Donaldson
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Christian Loeffeld
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Ian R. Gould
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Keith R. Willison
- Institute of Cancer Research, Chester Beatty Laboratories, Cancer Research U.K., Centre of Cellular and Molecular Biology, London SW3 6JB, U.K
| | - David R. Klug
- Department of Chemistry and Chemical Biology Centre, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| |
Collapse
|
79
|
Szymczak JJ, Barbatti M, Lischka H. Is the Photoinduced Isomerization in Retinal Protonated Schiff Bases a Single- or Double-Torsional Process? J Phys Chem A 2009; 113:11907-18. [DOI: 10.1021/jp903329j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jaroslaw J. Szymczak
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090, Vienna, Austria, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090, Vienna, Austria, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090, Vienna, Austria, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
80
|
Babitzki G, Denschlag R, Tavan P. Polarization Effects Stabilize Bacteriorhodopsin’s Chromophore Binding Pocket: A Molecular Dynamics Study. J Phys Chem B 2009; 113:10483-95. [DOI: 10.1021/jp902428x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Babitzki
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| | - R. Denschlag
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| | - P. Tavan
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| |
Collapse
|
81
|
Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys J 2009; 96:2268-77. [PMID: 19289053 DOI: 10.1016/j.bpj.2009.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022] Open
Abstract
Xanthorhodopsin of the extremely halophilic bacterium Salinibacter ruber represents a novel antenna system. It consists of a carbonyl carotenoid, salinixanthin, bound to a retinal protein that serves as a light-driven transmembrane proton pump similar to bacteriorhodopsin of archaea. Here we apply the femtosecond transient absorption technique to reveal the excited-state dynamics of salinixanthin both in solution and in xanthorhodopsin. The results not only disclose extremely fast energy transfer rates and pathways, they also reveal effects of the binding site on the excited-state properties of the carotenoid. We compared the excited-state dynamics of salinixanthin in xanthorhodopsin and in NaBH(4)-treated xanthorhodopsin. The NaBH(4) treatment prevents energy transfer without perturbing the carotenoid binding site, and allows observation of changes in salinixanthin excited-state dynamics related to specific binding. The S(1) lifetimes of salinixanthin in untreated and NaBH(4)-treated xanthorhodopsin were identical (3 ps), confirming the absence of the S(1)-mediated energy transfer. The kinetics of salinixanthin S(2) decay probed in the near-infrared region demonstrated a change of the S(2) lifetime from 66 fs in untreated xanthorhodopsin to 110 fs in the NaBH(4)-treated protein. This corresponds to a salinixanthin-retinal energy transfer time of 165 fs and an efficiency of 40%. In addition, binding of salinixanthin to xanthorhodopsin increases the population of the S(*) state that decays in 6 ps predominantly to the ground state, but a small fraction (<10%) of the S(*) state generates a triplet state.
Collapse
Affiliation(s)
- Tomás Polívka
- Institute of Physical Biology, University of South Bohemia, Nové Hrady, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
82
|
Shim S, Dasgupta J, Mathies RA. Femtosecond Time-Resolved Stimulated Raman Reveals the Birth of Bacteriorhodopsin’s J and K Intermediates. J Am Chem Soc 2009; 131:7592-7. [DOI: 10.1021/ja809137x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangdeok Shim
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Jyotishman Dasgupta
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
83
|
Gross R, Schumann C, Wolf MMN, Herbst J, Diller R, Friedman N, Sheves M. Ultrafast Protein Conformational Alterations in Bacteriorhodopsin and Its Locked Analogue BR5.12. J Phys Chem B 2009; 113:7851-60. [PMID: 19422251 DOI: 10.1021/jp810042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth Gross
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Schumann
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias M. N. Wolf
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Herbst
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rolf Diller
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Friedman
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Sheves
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
84
|
Hayashi S, Tajkhorshid E, Schulten K. Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophys J 2009; 96:403-16. [PMID: 19167292 DOI: 10.1016/j.bpj.2008.09.049] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022] Open
Abstract
The photoisomerization reaction dynamics of a retinal chromophore in the visual receptor rhodopsin was investigated by means of hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations. The photoisomerization reaction of retinal constitutes the primary step of vision and is known as one of the fastest reactions in nature. To elucidate the molecular mechanism of the high efficiency of the reaction, we carried out hybrid ab initio QM/MM MD simulations of the complete reaction process from the vertically excited state to the photoproduct via electronic transition in the entire chromophore-protein complex. An ensemble of reaction trajectories reveal that the excited-state dynamics is dynamically homogeneous and synchronous even in the presence of thermal fluctuation of the protein, giving rise to the very fast formation of the photoproduct. The synchronous nature of the reaction dynamics in rhodopsin is found to originate from weak perturbation of the protein surroundings and from dynamic regulation of volume-conserving motions of the chromophore. The simulations also provide a detailed view of time-dependent modulations of hydrogen-out-of-plane vibrations during the reaction process, and identify molecular motions underlying the experimentally observed dynamic spectral modulations.
Collapse
Affiliation(s)
- Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
85
|
Nakamura T, Takeuchi S, Shibata M, Demura M, Kandori H, Tahara T. Ultrafast Pump−Probe Study of the Primary Photoreaction Process in pharaonis Halorhodopsin: Halide Ion Dependence and Isomerization Dynamics. J Phys Chem B 2008; 112:12795-800. [DOI: 10.1021/jp803282s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Takumi Nakamura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Mikihiro Shibata
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Makoto Demura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Kandori
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
86
|
Szymczak JJ, Barbatti M, Lischka H. Mechanism of Ultrafast Photodecay in Restricted Motions in Protonated Schiff Bases: The Pentadieniminium Cation. J Chem Theory Comput 2008; 4:1189-99. [DOI: 10.1021/ct800148n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jaroslaw J. Szymczak
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
87
|
Sun Z, Lu J, Zhang DH, Lee SY. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering. J Chem Phys 2008; 128:144114. [PMID: 18412430 DOI: 10.1063/1.2888551] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a complete perturbation theory of stimulated Raman scattering (SRS), which includes the new experimental technique of femtosecond stimulated Raman scattering (FSRS), where a picosecond Raman pump pulse and a femtosecond probe pulse simultaneously act on a stationary or nonstationary vibrational state. It is shown that eight terms in perturbation theory are required to account for SRS, with observation along the probe pulse direction, and they can be grouped into four nonlinear processes which are labeled as stimulated Raman scattering or inverse Raman scattering (IRS): SRS(I), SRS(II), IRS(I), and IRS(II). Previous FSRS theories have used only the SRS(I) process or only the "resonance Raman scattering" term in SRS(I). Each process can be represented by an overlap between a wave packet in the initial electronic state and a wave packet in the excited Raman electronic state. Calculations were performed with Gaussian Raman pump and probe pulses on displaced harmonic potentials to illustrate various features of FSRS, such as high time and frequency resolution; Raman gain for the Stokes line, Raman loss for the anti-Stokes line, and absence of the Rayleigh line in off-resonance FSRS from a stationary or decaying v=0 state; dispersive line shapes in resonance FSRS; and the possibility of observing vibrational wave packet motion with off-resonance FSRS.
Collapse
Affiliation(s)
- Zhigang Sun
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | | | |
Collapse
|
88
|
Oskouei AA, Bräm O, Cannizzo A, van Mourik F, Tortschanoff A, Chergui M. Ultrafast UV photon echo peak shift and fluorescence up conversion studies of non-polar solvation dynamics. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
89
|
Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys J 2008; 95:2402-14. [PMID: 18515390 DOI: 10.1529/biophysj.108.132175] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell membrane of Salinibacter ruber contains xanthorhodopsin, a light-driven transmembrane proton pump with two chromophores: a retinal and the carotenoid, salinixanthin. Action spectra for transport had indicated that light absorbed by either is utilized for function. If the carotenoid is an antenna in this protein, its excited state energy has to be transferred to the retinal and should be detected in the retinal fluorescence. From fluorescence studies, we show that energy transfer occurs from the excited singlet S(2) state of salinixanthin to the S(1) state of the retinal. Comparison of the absorption spectrum with the excitation spectrum for retinal emission yields 45 +/- 5% efficiency for the energy transfer. Such high efficiency would require close proximity and favorable geometry for the two polyene chains, but from the heptahelical crystallographic structure of the homologous retinal protein, bacteriorhodopsin, it is not clear where the carotenoid can be located near the retinal. The fluorescence excitation anisotropy spectrum reveals that the angle between their transition dipole moments is 56 +/- 3 degrees . The protein accommodates the carotenoid as a second chromophore in a distinct binding site to harvest light with both extended wavelength and polarization ranges. The results establish xanthorhodopsin as the simplest biological excited-state donor-acceptor system for collecting light.
Collapse
|
90
|
Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophys J 2008; 94:3217-26. [PMID: 18199669 DOI: 10.1529/biophysj.107.105163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the low-frequency terahertz spectroscopy of two photoactive protein systems, rhodopsin and bacteriorhodopsin, as a means to characterize collective low-frequency motions in helical transmembrane proteins. From this work, we found that the nature of the vibrational motions activated by terahertz radiation is surprisingly similar between these two structurally similar proteins. Specifically, at the lowest frequencies probed, the cytoplasmic loop regions of the proteins are highly active; and at the higher terahertz frequencies studied, the extracellular loop regions of the protein systems become vibrationally activated. In the case of bacteriorhodopsin, the calculated terahertz spectra are compared with the experimental terahertz signature. This work illustrates the importance of terahertz spectroscopy to identify vibrational degrees of freedom which correlate to known conformational changes in these proteins.
Collapse
|
91
|
|
92
|
Amsden JJ, Kralj JM, Chieffo LR, Wang X, Erramilli S, Spudich EN, Spudich JL, Ziegler LD, Rothschild KJ. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction. J Phys Chem B 2007; 111:11824-31. [PMID: 17880126 DOI: 10.1021/jp073490r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.
Collapse
Affiliation(s)
- Jason J Amsden
- Department of Physics, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Send R, Sundholm D. Stairway to the conical intersection: a computational study of the retinal isomerization. J Phys Chem A 2007; 111:8766-73. [PMID: 17713894 DOI: 10.1021/jp073908l] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential-energy surface of the first excited state of the 11-cis-retinal protonated Schiff base (PSB11) chromophore has been studied at the density functional theory (DFT) level using the time-dependent perturbation theory approach (TDDFT) in combination with Becke's three-parameter hybrid functional (B3LYP). The potential-energy curves for torsion motions around single and double bonds of the first excited state have also been studied at the coupled-cluster approximate singles and doubles (CC2) level. The corresponding potential-energy curves for the ground state have been calculated at the B3LYP DFT and second-order Møller-Plesset (MP2) levels. The TDDFT study suggests that the electronic excitation initiates a turn of the beta-ionone ring around the C6-C7 bond. The torsion is propagating along the retinyl chain toward the cis to trans isomerization center at the C11=C12 double bond. The torsion twist of the C10-C11 single bond leads to a significant reduction in the deexcitation energy indicating that a conical intersection is being reached by an almost barrierless rotation around the C10-C11 single bond. The energy released when passing the conical intersection can assist the subsequent cis to trans isomerization of the C11=C12 double bond. The CC2 calculations also show that the torsion barrier for the twist of the retinyl C10-C11 single bond adjacent to the isomerization center almost vanishes for the excited state. Because of the reduced torsion barriers of the single bonds, the retinyl chain can easily deform in the excited state. Thus, the CC2 and TDDFT calculations suggest similar reaction pathways on the potential-energy surface of the excited state leading toward the conical intersection and resulting in a cis to trans isomerization of the retinal chromophore. According to the CC2 calculations the cis to trans isomerization mechanism does not involve any significant torsion motion of the beta-ionone ring.
Collapse
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
94
|
Kühn O, Wöste L. Biological systems: Applications and perspectives. ANALYSIS AND CONTROL OF ULTRAFAST PHOTOINDUCED REACTIONS 2007. [PMCID: PMC7122019 DOI: 10.1007/978-3-540-68038-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Oliver Kühn
- Institut f. Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Ludger Wöste
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
95
|
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) is a new ultrafast spectroscopic technique that provides vibrational structural information with high temporal (50-fs) and spectral (10-cm(1)) resolution. As a result of these unique capabilities, FSRS studies of chemical and biochemical reaction dynamics are expected to grow rapidly, giving previously unattainable insight into the structural dynamics of reactively evolving systems with atomic spatial and femtosecond temporal resolution. This review discusses the experimental and theoretical concepts behind FSRS, with an emphasis on the origins of its unique temporal and spectral capabilities. We illustrate these capabilities with vibrational studies of ultrafast electronic dynamics, as well as the direct structural observation of nonstationary vibrational wave-packet motion in small molecules and in complex biochemical reaction dynamics.
Collapse
Affiliation(s)
- Philipp Kukura
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
96
|
Bismuth O, Friedman N, Sheves M, Ruhman S. Photochemistry of a Retinal Protonated Schiff-Base Analogue Mimicking the Opsin Shift of Bacteriorhodopsin. J Phys Chem B 2007; 111:2327-34. [PMID: 17298090 DOI: 10.1021/jp0669308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A retinal Schiff base analogue which artificially mimics the protein-induced red shifting of absorption in bacteriorhodopsin (BR) has been investigated with femtosecond multichannel pump probe spectroscopy. The objective is to determine if the catalysis of retinal internal conversion in the native protein BR, which absorbs at 570 nm, is directly correlated with the protein-induced Stokes shifting of this absorption band otherwise known as the "opsin shift". Results demonstrate that the red shift afforded in the model system does not hasten internal conversion relative to that taking place in a free retinal-protonated Schiff base (RPSB) in methanol solution, and stimulated emission takes place with biexponential kinetics and characteristic timescales of approximately 2 and 10.5 ps. This shows that interactions between the prosthetic group and the protein that lead to the opsin shift in BR are not directly involved in reducing the excited-state lifetime by nearly an order of magnitude. A sub-picosecond phase of spectral evolution, analogues of which are detected in photoexcited retinal proteins and RPSBs in solution, is observed after excitation anywhere within the intense visible absorption band. It consists of a large and discontinuous spectral shift in excited-state absorption and is assigned to electronic relaxation between excited states, a scenario which might also be relevant to those systems as well. Finally, a transient excess bleach component that tunes with the excitation wavelength is detected in the data and tentatively assigned to inhomogeneous broadening in the ground state absorption band. Possible sources of such inhomogeneity and its relevance to native RPSB photochemistry are discussed.
Collapse
Affiliation(s)
- Oshrat Bismuth
- Department of Physical Chemistry, Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
97
|
Send R, Sundholm D. Coupled-cluster studies of the lowest excited states of the 11-cis-retinal chromophore. Phys Chem Chem Phys 2007; 9:2862-7. [PMID: 17538731 DOI: 10.1039/b616137e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first few excited states of the 11-cis-retinal (PSB11) chromophore have been studied at the coupled-cluster approximative singles and doubles (CC2) level using triple-zeta quality basis sets augmented with double sets of polarisation functions. The two lowest vertical excitation energies of 2.14 and 3.21 eV are in good agreement with recently reported experimental values of 2.03 and 3.18 eV obtained in molecular beam measurements. Calculations at the time-dependent density functional theory (TDDFT) level using the B3LYP hybrid functional yield vertical excitation energies of 2.34 and 3.10 eV for the two lowest states. Zero-point vibrational energy (ZPVE) corrections of -0.09 and -0.17 eV were deduced from the harmonic vibrational frequencies for the ground and excited states calculated at the density functional theory (DFT) and TDDFT level, respectively, using the B3LYP hybrid functional.
Collapse
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, 76128, Karlsruhe, Germany
| | | |
Collapse
|
98
|
Kahan A, Nahmias O, Friedman N, Sheves M, Ruhman S. Following Photoinduced Dynamics in Bacteriorhodopsin with 7-fs Impulsive Vibrational Spectroscopy. J Am Chem Soc 2006; 129:537-46. [PMID: 17227016 DOI: 10.1021/ja064910d] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sub-10-fs laser pulses are used to impulsively photoexcite bacteriorhodopsin (BR) suspensions and probe the evolution of the resulting vibrational wave packets. Fourier analysis of the spectral modulations induced by transform-limited as well as linearly chirped excitation pulses allows the delineation of excited- and ground-state contributions to the data. On the basis of amplitude and phase variations of the modulations as a function of the dispersed probe wavelength, periodic modulations in absorption above 540 nm are assigned to ground-state vibrational coherences induced by resonance impulsive Raman spectral activity (RISRS). Probing at wavelengths below 540 nm-the red edge of the intense excited-state absorption band-uncovers new vibrational features which are accordingly assigned to wave packet motions along bound coordinates on the short-lived reactive electronic surface. They consist of high- and low-frequency shoulders adjacent to the strong C=C stretching and methyl rock modes, respectively, which have ground-state frequencies of 1008 and 1530 cm-1. Brief activity centered at approximately 900 cm-1, which is characteristic of ground-state HOOP modes, and strong modulations in the torsional frequency range appear as well. Possible assignments of the bands and their implication to photoinduced reaction dynamics in BR are discussed. Reasons for the absence of similar signatures in the pump-probe spectral modulations at longer probing wavelengths are considered as well.
Collapse
Affiliation(s)
- Anat Kahan
- Department of Physical Chemistry and the Farkas Center for Light Induced Processes, Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
99
|
Send R, Sundholm D. The Role of the β-Ionone Ring in the Photochemical Reaction of Rhodopsin. J Phys Chem A 2006; 111:27-33. [PMID: 17201384 DOI: 10.1021/jp065510f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Time-dependent density functional theory (TDDFT) calculations on the photoabsorption process of the 11-cis retinal protonated Schiff base (PSB) chromophore show that the Franck-Condon relaxation of the first excited state of the chromophore involves a torsional twist motion of the beta-ionone ring relative to the conjugated retinyl chain. For the ground state, the beta-ionone ring and the retinyl chain of the free retinal PSB chromophore form a -40 degrees dihedral angle as compared to -94 degrees for the first excited state. The double bonds of the retinal are shorter for the fully optimized structure of the excited state than for the ground state suggesting a higher cis-trans isomerization barrier for the excited state than for the ground state. According to the present TDDFT calculations, the excitation of the retinal PSB chromophore does not primarily lead to a reaction along the cis-trans torsional coordinate at the C11-C12 bond. The activation of the isomerization center seems to occur at a later stage of the photo reaction. The results obtained at the TDDFT level are supported by second-order Møller-Plesset (MP2) and approximate singles and doubles-coupled cluster (CC2) calculations on retinal chromophore models; the MP2 and CC2 calculations yield for them qualitatively the same ground state and excited-state structures as obtained in the density functional theory and TDDFT calculations.
Collapse
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
100
|
Wasielewski MR. Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis. J Org Chem 2006; 71:5051-66. [PMID: 16808492 DOI: 10.1021/jo060225d] [Citation(s) in RCA: 481] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electron transfer in biological molecules provides both insight and inspiration for developing chemical systems having similar functionality. Photosynthesis is an example of an integrated system in which light harvesting, photoinduced charge separation, and catalysis combine to carry out two thermodynamically demanding processes, the oxidation of water and the reduction of carbon dioxide. The development of artificial photosynthetic systems for solar energy conversion requires a fundamental understanding of electron-transfer reactions between organic molecules. Since these reactions most often involve single-electron transfers, the spin dynamics of photogenerated radical ion pairs provide important information on how the rates and efficiencies of these reactions depend on molecular structure. Given this knowledge, the design and synthesis of large integrated structures to carry out artificial photosynthesis is moving forward. An important approach to achieving this goal is the development of small, functional building blocks, having a minimum number of covalent bonds, which also have the appropriate molecular recognition sites to facilitate self-assembly into a complete, functional artificial photosynthetic system.
Collapse
Affiliation(s)
- Michael R Wasielewski
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA.
| |
Collapse
|