Siu SC, Boushaba R, Topoyassakul V, Graham A, Choudhury S, Moss G, Titchener-Hooker NJ. Visualising fouling of a chromatographic matrix using confocal scanning laser microscopy.
Biotechnol Bioeng 2006;
95:714-23. [PMID:
16817189 DOI:
10.1002/bit.21028]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Confocal scanning laser microscopy (CSLM) was used to visualise the spatial location of foulants during the fouling of Q Sepharose FF matrix in finite batch experiments and for examining the subsequent effectiveness of clean-in-place (CIP) treatments in cleaning the heavily fouled beads. Beads were severely fouled with partially clarified E. coli homogenate by contacting the beads with the foulant for contact times of 5 min, 1 or 12 h. The use of two different fluorescent dyes, PicoGreen and Cy5.5, for labelling genomic PicoGreen-labelled dsDNA and protein respectively, allowed the direct observation of the chromatographic beads. The extent of fouling was assessed by measuring the subsequent adsorption of Cy5.5-labelled BSA to the beads. Control studies established that the labelling of BSA did not affect significantly the protein properties. In the control case of contacting the unfouled matrix with Cy5.5-labelled BSA, protein was able to penetrate the entire matrix volume. After fouling, Cy5.5-labelled BSA was unable to penetrate the bead but only to bind near the bead surface where it slowly displaced PicoGreen-conjugated dsDNA, which bound only at the exterior of the beads. Labelled host cell proteins bound throughout the bead interior but considerably less at the core; suggesting that other species might have occupied that space. The gross levels of fouling achieved drastically reduced the binding capacity and maximum Cy5.5-labelled BSA uptake rate. The capacity of the resin was reduced by 2.5-fold when incubated with foulant for up to 1 h. However, when the resin was fouled for a prolonged time of 12 h a further sixfold decrease in capacity was seen. The uptake rate of Cy5.5-labelled BSA decreased with increased fouling time of the resin. Incubating the fouled beads in 1 M NaCl dissociated PicoGreen-labelled dsDNA from the bead exterior within 15 min of incubation but proved ineffective in removing all the foulant protein. Cy5.5-labelled BSA was still unable to bind beyond the outer region of the beads. A harsher CIP treatment of 1 M NaCl dissolved in 1 M NaOH was also ineffective in removing all the foulant protein but did remove PicoGreen-conjugated dsDNA within 15 min of incubation. Cy5.5-labelled BSA was able to bind throughout the bead interior after this more aggressive CIP treatment but at a lower capacity than in the case of fresh beads. The competitive adsorption of BacLight Red-labelled whole cells or cell debris and PicoGreen-conjugated dsDNA was also visualised using CSLM.
Collapse