51
|
Jha SK, Ji M, Gaffney KJ, Boxer SG. Site-specific measurement of water dynamics in the substrate pocket of ketosteroid isomerase using time-resolved vibrational spectroscopy. J Phys Chem B 2012; 116:11414-21. [PMID: 22931297 DOI: 10.1021/jp305225r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photoexcitation of a nitrile-containing photoacid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. On the basis of this result, we hypothesize that rigid water dipoles at the active site might help in the maintenance of the preorganized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation.
Collapse
Affiliation(s)
- Santosh Kumar Jha
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, USA
| | | | | | | |
Collapse
|
52
|
Levinson NM, Fried SD, Boxer SG. Solvent-induced infrared frequency shifts in aromatic nitriles are quantitatively described by the vibrational Stark effect. J Phys Chem B 2012; 116:10470-6. [PMID: 22448878 PMCID: PMC3404211 DOI: 10.1021/jp301054e] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physical properties of solvents strongly affect the spectra of dissolved solutes, and this phenomenon can be exploited to gain insight into the solvent-solute interaction. The large solvatochromic shifts observed for many dye molecules in polar solvents are due to variations in the solvent reaction field, and these shifts are widely used to estimate the change in the dye's dipole moment upon photoexcitation, which is typically on the order of ∼1-10 D. In contrast, the change in dipole moment for vibrational transitions is approximately 2 orders of magnitude smaller. Nonetheless, vibrational chromophores display significant solvatochromism, and the relative contributions of specific chemical interactions and electrostatic interactions are debated, complicating the interpretation of vibrational frequency shifts in complex systems such as proteins. Here we present a series of substituted benzonitriles that display widely varying degrees of vibrational solvatochromism. In most cases, this variation can be quantitatively described by the experimentally determined Stark tuning rate, coupled with a simple Onsager-like model of solvation, reinforcing the view that vibrational frequency shifts are largely caused by electrostatic interactions. In addition, we discuss specific cases where continuum solvation models fail to predict solvatochromic shifts, revealing the necessity for more advanced theoretical models that capture local aspects of solute-solvent interactions.
Collapse
Affiliation(s)
| | - Stephen D. Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| |
Collapse
|
53
|
Bazewicz CG, Lipkin JS, Smith EE, Liskov MT, Brewer SH. Expanding the Utility of 4-Cyano-l-Phenylalanine As a Vibrational Reporter of Protein Environments. J Phys Chem B 2012; 116:10824-31. [DOI: 10.1021/jp306886s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher G. Bazewicz
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Jacob S. Lipkin
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Emily E. Smith
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Melanie T. Liskov
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| |
Collapse
|
54
|
Bagchi S, Fried SD, Boxer SG. A solvatochromic model calibrates nitriles' vibrational frequencies to electrostatic fields. J Am Chem Soc 2012; 134:10373-6. [PMID: 22694663 DOI: 10.1021/ja303895k] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic interactions provide a primary connection between a protein's three-dimensional structure and its function. Infrared probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile's IR frequency and its (13)C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with molecular dynamics simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|
55
|
Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase. Proc Natl Acad Sci U S A 2012; 109:E299-308. [PMID: 22308339 DOI: 10.1073/pnas.1111566109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.
Collapse
|
56
|
Waegele MM, Culik RM, Gai F. Site-Specific Spectroscopic Reporters of the Local Electric Field, Hydration, Structure, and Dynamics of Biomolecules. J Phys Chem Lett 2011; 2:2598-2609. [PMID: 22003429 PMCID: PMC3192500 DOI: 10.1021/jz201161b] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elucidating the underlying molecular mechanisms of protein folding and function is a very exciting and active research area, but poses significant challenges. This is due in part to the fact that existing experimental techniques are incapable of capturing snapshots along the 'reaction coordinate' in question with both sufficient spatial and temporal resolutions. In this regard, recent years have seen increased interests and efforts in development and employment of site-specific probes to enhance the structural sensitivity of spectroscopic techniques in conformational and dynamical studies of biological molecules. In particular, the spectroscopic and chemical properties of nitriles, thiocyanates, and azides render these groups attractive for the interrogation of complex biochemical constructs and processes. Here, we review their signatures in vibrational, fluorescence and NMR spectra and their utility in the context of elucidating chemical structure and dynamics of protein and DNA molecules.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
57
|
Zimmermann J, Thielges MC, Seo YJ, Dawson PE, Romesberg FE. Cyano Groups as Probes of Protein Microenvironments and Dynamics. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Zimmermann J, Thielges MC, Seo YJ, Dawson PE, Romesberg FE. Cyano groups as probes of protein microenvironments and dynamics. Angew Chem Int Ed Engl 2011; 50:8333-7. [PMID: 21780257 DOI: 10.1002/anie.201101016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/26/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
59
|
Morales CM, Thompson WH. Molecular-level mechanisms of vibrational frequency shifts in a polar liquid. J Phys Chem B 2011; 115:7597-605. [PMID: 21608988 DOI: 10.1021/jp201591c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A molecular-level analysis of the origins of the vibrational frequency shifts of the CN stretching mode in neat liquid acetonitrile is presented. The frequency shifts and infrared spectrum are calculated using a perturbation theory approach within a molecular dynamics simulation and are in good agreement with measured values reported in the literature. The resulting instantaneous frequency of each nitrile group is decomposed into the contributions from each molecule in the liquid and by interaction type. This provides a detailed picture of the mechanisms of frequency shifts, including the number of surrounding molecules that contribute to the shift, the relationship between their position and relative contribution, and the roles of electrostatic and van der Waals interactions. These results provide insight into what information is contained in infrared (IR) and Raman spectra about the environment of the probed vibrational mode.
Collapse
Affiliation(s)
- Christine M Morales
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, USA
| | | |
Collapse
|
60
|
Ringer AL, MacKerell AD. Calculation of the Vibrational Stark Effect Using a First-Principles QM/MM Approach. J Phys Chem Lett 2011; 2011:553-556. [PMID: 21423871 PMCID: PMC3058488 DOI: 10.1021/jz101657s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The proper description of the electric environment of condensed phases is a critical challenge for force field methods. To test and validate the ability of the CHARMM additive force field to describe the electric environment in aqueous solution combined QM/MM calculations have been used to calculate the vibrational Stark effect (VSE). We utilized a first principles methodology using correlated electronic structure techniques to compute the Stark shift between the gas phase and solvent environments and between two different solvent environments of three VSE probes containing acetonitrile or fluorine functionalities which have been well-characterized experimentally. Reasonable agreement with the experimentally determined Stark shifts is obtained when the MM atoms are described by the CHARMM additive force field, though it is essential to employ an anharmonic correction in the frequency calculation. In addition, the electric field created by the solvent is computed along the CN bond and a theoretical Stark tuning rate is determined for acetonitrile and shown to be in satisfactory agreement with experiment.
Collapse
|
61
|
Gai XS, Coutifaris BA, Brewer SH, Fenlon EE. A direct comparison of azide and nitrile vibrational probes. Phys Chem Chem Phys 2011; 13:5926-30. [PMID: 21336362 DOI: 10.1039/c0cp02774j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthesis of 2'-azido-5-cyano-2'-deoxyuridine, N(3)CNdU (1), from trityl-protected 2'-amino-2'-deoxyuridine was accomplished in four steps with a 12.5% overall yield. The IR absorption positions and profiles of the azide and nitrile group of N(3)CNdU were investigated in 14 different solvents and water/DMSO solvent mixtures. The azide probe was superior to the nitrile probe in terms of its extinction coefficient, which is 2-4 times larger. However, the nitrile IR absorbance profile is generally less complicated by accidental Fermi resonance. The IR frequencies of both probes undergo a substantial red shift upon going from water to aprotic solvents such as THF or DMSO. DFT calculations supported the hypothesis that the molecular origin of the higher observed frequency in water is primarily due to hydrogen bonds between the probes and water molecules.
Collapse
Affiliation(s)
- Xin Sonia Gai
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003, USA
| | | | | | | |
Collapse
|
62
|
King JT, Baiz CR, Kubarych KJ. Solvent-dependent spectral diffusion in a hydrogen bonded "vibrational aggregate". J Phys Chem A 2011; 114:10590-604. [PMID: 20831231 DOI: 10.1021/jp106142u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two-dimensional infrared spectroscopy (2DIR) is used to measure the viscosity-dependent spectral diffusion of a model vibrational probe, Mn(2)(CO)(10) (dimanganese decacarbonyl, DMDC), in a series of alcohols with time scales ranging from 2.67 ps in methanol to 5.33 ps in 1-hexanol. Alcohol-alkane solvent mixtures were found to produce indistinguishable linear IR spectra, while still demonstrating viscosity-dependent spectral diffusion. Using a vibrational exciton model to characterize the inhomogeneous energy landscape, several analogies emerge with multichromophoric electronic systems, such as J-aggregates and light-harvesting protein complexes. An excitonic, local vibrational mode Hamiltonian parametrized to reproduce the vibrational structure of DMDC serves as a starting point from which site energies (i.e., local carbonyl frequencies) are given Gaussian distributed disorder. The model gives excellent agreement with both the linear IR spectrum and the inhomogeneous widths extracted from 2DIR, indicating the system can be considered to be a "vibrational aggregate." This model naturally leads to exchange narrowing due to disorder-induced exciton localization, producing line widths consistent with our 1D and 2D measurements. Further, the diagonal disorder alone effectively reduces the molecular symmetry, leading to the appearance of Raman bands in the IR spectrum in accord with the measurements. Here, we show that the static inhomogeneity of the excitonic model with disorder successfully captures the essential details of the 1D spectrum while predicting the degree of IR activity of forbidden modes as well as the inhomogeneous widths and relative magnitudes of the transition moments.
Collapse
Affiliation(s)
- John T King
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
63
|
Pejov L, Spångberg D, Hermansson K. Al3+, Ca2+, Mg2+, and Li+ in aqueous solution: Calculated first-shell anharmonic OH vibrations at 300 K. J Chem Phys 2010; 133:174513. [DOI: 10.1063/1.3460261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
64
|
Abstract
Three different nitrile-containing amino acids, p-cyanophenylalanine, m-cyanophenylalanine, and S-cyanohomocysteine, have been introduced near the active site of the semisynthetic enzyme ribonuclease S (RNase S) to serve as probes of electrostatic fields. Vibrational Stark spectra, measured directly on the probe-modified proteins, confirm the predominance of the linear Stark tuning rate in describing the sensitivity of the nitrile stretch to external electric fields, a necessary property for interpreting observed frequency shifts as a quantitative measure of local electric fields that can be compared with simulations. The X-ray structures of these nitrile-modified RNase variants and enzymatic assays demonstrate minimal perturbation to the structure and function, respectively, by the probes and provide a context for understanding the influence of the environment on the nitrile stretching frequency. We examine the ability of simulation techniques to recapitulate the spectroscopic properties of these nitriles as a means to directly test a computational electrostatic model for proteins, specifically that in the ubiquitous Amber-99 force field. Although qualitative agreement between theory and experiment is observed for the largest shifts, substantial discrepancies are observed in some cases, highlighting the ongoing need for experimental metrics to inform the development of theoretical models of electrostatic fields in proteins.
Collapse
Affiliation(s)
- Aaron Fafarman
- Department of Chemistry Stanford University Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry Stanford University Stanford, California 94305-5080
| |
Collapse
|
65
|
Stafford AJ, Ensign DL, Webb LJ. Vibrational Stark Effect Spectroscopy at the Interface of Ras and Rap1A Bound to the Ras Binding Domain of RalGDS Reveals an Electrostatic Mechanism for Protein−Protein Interaction. J Phys Chem B 2010; 114:15331-44. [DOI: 10.1021/jp106974e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amy J. Stafford
- Department of Chemistry and Biochemistry and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| | - Daniel L. Ensign
- Department of Chemistry and Biochemistry and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| | - Lauren J. Webb
- Department of Chemistry and Biochemistry and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| |
Collapse
|
66
|
Fafarman AT, Sigala PA, Herschlag D, Boxer SG. Decomposition of vibrational shifts of nitriles into electrostatic and hydrogen-bonding effects. J Am Chem Soc 2010; 132:12811-3. [PMID: 20806897 PMCID: PMC2943212 DOI: 10.1021/ja104573b] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infrared (IR) band shifts of isolated vibrational transitions can serve as quantitative and directional probes of local electrostatic fields, due to the vibrational Stark effect. However, departures from the Stark model can arise when the probe participates in specific, chemical interactions, such as direct hydrogen bonding. We present a method to identify and correct for these departures based on comparison of (13)C NMR chemical shifts and IR frequencies each calibrated in turn by a solvatochromic model. We demonstrate how the tandem use of these experimental observables can be applied to a thiocyanate-modified protein, ketosteroid isomerase, and show, by comparison to structural models, that changes in electrostatic field can be measured within the complex protein environment even in the background of direct hydrogen bonding to the probe.
Collapse
Affiliation(s)
- Aaron T Fafarman
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
67
|
Pirc G, Stare J, Mavri J. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate. J Chem Phys 2010; 132:224506. [PMID: 20550407 DOI: 10.1063/1.3429251] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrodinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm(-1) and a half width of about 700 cm(-1), which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm(-1), respectively. The hydrogen probability densities obtained by solving the vibrational Schrodinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.
Collapse
Affiliation(s)
- Gordana Pirc
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
68
|
Miller CS, Corcelli SA. Carbon−Deuterium Vibrational Probes of the Protonation State of Histidine in the Gas-Phase and in Aqueous Solution. J Phys Chem B 2010; 114:8565-73. [DOI: 10.1021/jp1028596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. S. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - S. A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
69
|
Waegele MM, Gai F. Computational Modeling of the Nitrile Stretching Vibration of 5-Cyanoindole in Water. J Phys Chem Lett 2010; 1:781-786. [PMID: 20436926 PMCID: PMC2860969 DOI: 10.1021/jz900429z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The bandwidth of the nitrile (C≡N) stretching vibration of 5-cyanotryptophan shows a significant broadening upon hydration. Thus, it has been proposed to be a useful infrared probe of the local hydration environment of proteins. However, the molecular mechanism underlying this hydration-induced spectral broadening is not known, making interpretation of the experimental results difficult. Herein, we investigate how interactions of water with various sites of 5-cyanoindole, the sidechain of 5-cyanotryptophan, affect its C≡N stretching vibration via a combined electronic structure/molecular dynamics approach. It is found that, besides those interactions with the nitrile group, interactions of water with the indole ring also play a significant role in mediating the C≡N stretching frequency. Thus, this study provides a molecular basis for understanding how hydration affects the C≡N stretching band of 5-cyanotryptophan. In addition, an empirical model, which includes interactions of water with both the nitrile and indole groups, is developed for predicting the C≡N stretching vibrational band via molecular dynamics simulations.
Collapse
|
70
|
Lee H, Choi JH, Cho M. Vibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water. Phys Chem Chem Phys 2010; 12:12658-69. [DOI: 10.1039/c0cp00214c] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
71
|
Urbanek DC, Vorobyev DY, Serrano AL, Gai F, Hochstrasser RM. The Two Dimensional Vibrational Echo of a Nitrile Probe of the Villin HP35 Protein. J Phys Chem Lett 2010; 1:3311-3315. [PMID: 21132120 PMCID: PMC2995499 DOI: 10.1021/jz101367d] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
2D IR spectroscopy was used to probe the hydrophobic core structure of the 35-residue Villin headpiece subdomain, HP35, by monitoring the C≡N vibrational stretching band of a cyano substituted phenylalanine (Phe). The presence of two humps in the vibrational frequency distribution in the folded equilibrium state is revealed. They represent two states that exchange more slowly than ca. 10 ps. The two CN stretch mode peak frequencies (and their equilibrium populations) are 2228.7 (44%) and 2234.5 cm(-1) (56%). The two CN modes have different frequency-frequency correlation times of 7.4 ps and 1.6 ps respectively. These results suggest that the population with the higher frequency CN group is partly exposed whereas the other CN mode experiences a hydrophobic like environment.
Collapse
Affiliation(s)
| | | | | | | | - Robin M. Hochstrasser
- To whom correspondence should be addressed. . Phone: 215-898-8410. Fax: 215-898-0590
| |
Collapse
|
72
|
Ha JH, Lee KK, Park KH, Choi JH, Jeon SJ, Cho M. Integrated and dispersed photon echo studies of nitrile stretching vibration of 4-cyanophenol in methanol. J Chem Phys 2009; 130:204509. [PMID: 19485459 DOI: 10.1063/1.3140402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents.
Collapse
Affiliation(s)
- Jeong-Hyon Ha
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
73
|
Aschaffenburg DJ, Moog RS. Probing Hydrogen Bonding Environments: Solvatochromic Effects on the CN Vibration of Benzonitrile. J Phys Chem B 2009; 113:12736-43. [DOI: 10.1021/jp905802a] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Richard S. Moog
- Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003
| |
Collapse
|
74
|
Miller CS, Ploetz EA, Cremeens ME, Corcelli SA. Carbon-deuterium vibrational probes of peptide conformation: alanine dipeptide and glycine dipeptide. J Chem Phys 2009; 130:125103. [PMID: 19334896 DOI: 10.1063/1.3100185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The utility of alpha-carbon deuterium-labeled bonds (C(alpha)-D) as infrared reporters of local peptide conformation was investigated for two model dipeptide compounds: C(alpha)-D labeled alanine dipeptide (Adp-d(1)) and C(alpha)-D(2) labeled glycine dipeptide (Gdp-d(2)). These model compounds adopt structures that are analogous to the motifs found in larger peptides and proteins. For both Adp-d(1) and Gdp-d(2), we systematically mapped the entire conformational landscape in the gas phase by optimizing the geometry of the molecule with the values of phi and psi, the two dihedral angles that are typically used to characterize the backbone structure of peptides and proteins, held fixed on a uniform grid with 7.5 degrees spacing. Since the conformations were not generally stationary states in the gas phase, we then calculated anharmonic C(alpha)-D and C(alpha)-D(2) stretch transition frequencies for each structure. For Adp-d(1) the C(alpha)-D stretch frequency exhibited a maximum variability of 39.4 cm(-1) between the six stable structures identified in the gas phase. The C(alpha)-D(2) frequencies of Gdp-d(2) show an even more substantial difference between its three stable conformations: there is a 40.7 cm(-1) maximum difference in the symmetric C(alpha)-D(2) stretch frequencies and an 81.3 cm(-1) maximum difference in the asymmetric C(alpha)-D(2) stretch frequencies. Moreover, the splitting between the symmetric and asymmetric C(alpha)-D(2) stretch frequencies of Gdp-d(2) is remarkably sensitive to its conformation.
Collapse
Affiliation(s)
- C S Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
75
|
Waegele MM, Tucker MJ, Gai F. 5-Cyanotryptophan as an Infrared Probe of Local Hydration Status of Proteins. Chem Phys Lett 2009; 478:249-253. [PMID: 20161057 DOI: 10.1016/j.cplett.2009.07.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nitrile (C≡N) stretching vibration is sensitive to environment, making nitrile-derivatized amino acids an increasingly utilized tool to study various biological processes. Herein, we show that the bandwidth of the C≡N stretching vibration of 5-cyanotryptophan is particularly sensitive to water, rendering it an attractive infrared probe of local hydration status. We confirm the utility of this probe in biological applications by using it to examine how the hydration status of individual tryptophan sidechains of an antimicrobial peptide, indolicidin, changes upon peptide binding to model membranes. Furthermore, we show that p-cyanophenylalanine and 5-cyanotryptophan constitute a useful fluorescence energy transfer pair.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
76
|
Andresen ER, Hamm P. Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin. J Phys Chem B 2009; 113:6520-7. [PMID: 19358550 DOI: 10.1021/jp810397u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We demonstrate the extension of the principle of difference Fourier transform infrared (FTIR) spectroscopy to difference 2D-IR spectroscopy. To this end, we measure difference 2D-IR spectra of the protein bacteriorhodopsin in its early J- and K-intermediates. By comparing with the static 2D-IR spectrum of the protonated Schiff base of all-trans retinal, we demonstrate that the 2D-IR spectrum of the all-trans retinal chromophore in bacteriorhodopsin can be measured with the background from the remainder of the protein completely suppressed. We discuss several models to interpret the detailed line shape of the difference 2D-IR spectrum.
Collapse
Affiliation(s)
- Esben Ravn Andresen
- Physikalisch-Chemisches Institut, Universitat Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
77
|
Kim YS, Hochstrasser RM. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J Phys Chem B 2009; 113:8231-51. [PMID: 19351162 PMCID: PMC2845308 DOI: 10.1021/jp8113978] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following a survey of 2D IR principles, this article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils.
Collapse
Affiliation(s)
- Yung Sam Kim
- Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, U.S.A
| | - Robin M. Hochstrasser
- Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, U.S.A
| |
Collapse
|
78
|
Ghosh A, Remorino A, Tucker MJ, Hochstrasser RM. 2D IR photon echo spectroscopy reveals hydrogen bond dynamics of aromatic nitriles. Chem Phys Lett 2009; 469:325-330. [PMID: 20622983 DOI: 10.1016/j.cplett.2008.12.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CN vibrations of two aromatic nitriles, cinnamonitrile, PhCH=CH-CN and benzonitrile, PhCN, representative of components of common enzyme inhibitors, are examined by two dimensional infrared spectroscopy. In methanol, these spectra display cross peaks between the two CN components whose evolution exposes the few picosecond (4.5 ps for CIN and 5.3 ps for BN) equilibrium dynamics of hydrogen bond making and breaking. The main features of the 2D IR spectra are reproduced by simulations only with exchange incorporated. The lowest free energy state is the non-hydrogen bonded form. Both alkyl and aryl nitriles have now shown this picosecond exchange process.
Collapse
Affiliation(s)
- Ayanjeet Ghosh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
79
|
Cai K, Wang J. Multiple Anharmonic Vibrational Probes of Sugar Structure and Dynamics. J Phys Chem B 2009; 113:1681-92. [DOI: 10.1021/jp8070025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaicong Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
80
|
Lindquist BA, Furse KE, Corcelli SA. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview. Phys Chem Chem Phys 2009; 11:8119-32. [DOI: 10.1039/b908588b] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
81
|
Choi JH, Oh KI, Cho M. Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies. J Chem Phys 2008; 129:174512. [DOI: 10.1063/1.3001915] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
82
|
Lindquist BA, Haws RT, Corcelli SA. Optimized Quantum Mechanics/Molecular Mechanics Strategies for Nitrile Vibrational Probes: Acetonitrile and para-Tolunitrile in Water and Tetrahydrofuran. J Phys Chem B 2008; 112:13991-4001. [DOI: 10.1021/jp804900u] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beth A. Lindquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ryan T. Haws
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
83
|
Watson MD, Gai XS, Gillies AT, Brewer SH, Fenlon EE. A vibrational probe for local nucleic acid environments: 5-cyano-2'-deoxyuridine. J Phys Chem B 2008; 112:13188-92. [PMID: 18816094 DOI: 10.1021/jp8067238] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitriles have been shown to be effective vibrational probes of local environments in proteins but have yet to be fully utilized for the study of nucleic acids. The potential utility of 5-cyano-2'-deoxyuridine ( 1) as a probe of local nucleic acid environment was investigated by measuring the dependence of the IR nitrile stretching frequency (nu CN), line shape, and absorbance on solvent and temperature. The nu CN was found to be sensitive to solvent with an observed blue shift of 9.2 cm (-1) in going from THF to water. The dependence of the nitrile IR absorbance band was further investigated in water-THF mixtures. Global line shape analysis, difference FTIR spectroscopy, and singular value decomposition (SVD) were used to show the presence of three distinct local environments around the nitrile group of 1 in these mixtures. A modest blue shift in nu CN was observed upon a hydrogen-bond-mediated heterodimer formation between 2 (a silyl ether analogue of 1) and 2,6-diheptanamido-pyridine ( 3a) in chloroform. The intrinsic temperature dependence of the nu CN was found to be minimal and linear over the temperature range studied. The experimental studies were complemented by density functional theory (DFT) calculations on the dependence of the nitrile stretching frequency on solute-solvent interactions and upon heterodimer formation with model systems.
Collapse
|