51
|
Wei T, Carignano MA, Szleifer I. Molecular dynamics simulation of lysozyme adsorption/desorption on hydrophobic surfaces. J Phys Chem B 2012; 116:10189-94. [PMID: 22882159 DOI: 10.1021/jp304057e] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present a series of fully atomistic molecular dynamics (MD) simulations to study lysozyme's orientation-dependent adsorption on polyethylene (PE) surface in explicit water. The simulations show that depending on the orientation of the initial approach to the surface the protein may adsorb or bounce from the surface. The protein may completely leave the surface or reorient and approach the surface resulting in adsorption. The success of the trajectory to adsorb on the surface is the result of different competing interactions, including protein-surface interactions and the hydration of the protein and the hydrophobic PE surface. The difference in the hydration of various protein sites affects the protein's orientation-dependent behavior. Side-on orientation is most likely to result in adsorption as the protein-surface exhibits the strongest attraction. However, adsorption can also happen when lysozyme's longest axis is tilted on the surface if the protein-surface interaction is large enough to overcome the energy barrier that results from dehydrating both the protein and the surface. Our study demonstrates the significant role of dehydration process on hydrophobic surface during protein adsorption.
Collapse
Affiliation(s)
- Tao Wei
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University , Evanston, Illinois 60208, United States
| | | | | |
Collapse
|
52
|
Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS NANO 2012; 6:4585-602. [PMID: 22621430 DOI: 10.1021/nn300415x] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The interaction of proteins in living cells is one of the key processes in the maintenance of their homeostasis. Introduction of additional agents into the chain of these interactions may influence homeostatic processes. Recent advances in nanotechnologies have led to a wide use of nanoparticles (NPs) in industrial and biomedical applications. NPs are small enough to enter almost all compartments of the body, including cells and organelles, and to complicate the pattern of protein interactions. In some cases, interaction of nanoscale objects with proteins leads to hazardous consequences, such as abnormal conformational changes leading to exposure of cryptic peptide epitopes or the appearance of abnormal functions caused by structural modifications. In addition, the high local protein concentration resulting from protein adsorption on NPs may provoke avidity effects arising from close spatial repetition of the same protein. Finally, the interaction of NPs with proteins is known to induce cooperative effects, such as promotion or inhibition of protein fibrillation or self-assembling of NPs on macromolecules serving as a template. It is obvious that better understanding of the molecular mechanisms of nano-bio interactions is crucial for further advances in all nanotechnological applications. This review summarizes recent progress in understanding the molecular mechanisms of the interactions between proteins or peptides and NPs in order to predict the structural, functional, and/or nanotoxic consequences of these interactions.
Collapse
Affiliation(s)
- Anton A Shemetov
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, 31 Kashirskoe shosse, 115409 Moscow, Russian Federation
| | | | | |
Collapse
|
53
|
Abstract
All-atom molecular dynamics simulations for proteins placed near a model mica surface indicate existence of two types of evolution. One type leads to the surface-induced unfolding and the other just to a deformation. The two behaviors are characterized by distinct properties of the radius of gyration and of a novel distortion parameter that distinguishes between elongated, globular, and planar shapes. They also differ in the nature of their single site diffusion and two-site distance fluctuations. The four proteins chosen for the studies, the tryptophan cage, protein G, hydrophobin and lyzozyme, are small to allow for a fair determination of the forces generated by the surface as the effects of finite cutoffs in the Coulombic interactions are thus minimized. When the net charge on the surface is set to zero artificially, infliction of deformation is seen to persists but no unfolding takes place. Unfolding may also be prevented by a cluster of disulfide bonds, as we observe in simulations of hydrophobin.
Collapse
Affiliation(s)
- Anna Starzyk
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
54
|
Raffaini G, Ganazzoli F. Molecular modelling of protein adsorption on the surface of titanium dioxide polymorphs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1444-62. [PMID: 22349250 DOI: 10.1098/rsta.2011.0266] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper reports a molecular modelling study of the adsorption of protein subdomains with unlike secondary structures on different surfaces of ceramic titanium dioxide (TiO(2)), forming a passivating film on titanium biomaterials that provides the interface between the bulk metal and the physiological environment, affecting its biocompatibility and performance. Using molecular dynamics methods, we study the effect of the nanoscale structure of the common TiO(2) polymorphs (rutile, anatase and brookite) on the adsorption of an albumin subdomain and on two connected fibronectin modules, respectively containing α-helices and β-sheets. We find that the larger protein subdomain shows a stronger adsorption, as expected because of its size, but also that the three surfaces behave differently. In particular, brookite shows the weakest adsorption, whereas anatase leads to the strongest intrinsic adsorption, in particular for the fibronectin modules. Moreover, the simulations indicate a significant conformational change of the adsorbed protein subdomains with extensive surface nanopatterning. These results show that classical molecular dynamics methods can provide useful information about the influence of nanostructure and topology on protein physisorption at a fixed surface chemistry.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | |
Collapse
|
55
|
Giussani L, Tabacchi G, Gianotti E, Coluccia S, Fois E. Disentangling protein-silica interactions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1463-1477. [PMID: 22349251 DOI: 10.1098/rsta.2011.0267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present the results of modelling studies aimed at the understanding of the interaction of a 7 nm sized water droplet containing a negatively charged globular protein with flat silica surfaces. We show how the droplet interaction with the surface depends on the electrostatic surface charge, and that adhesion of the droplet occurs when the surface is negatively charged as well. The key role of water and of the charge-balancing counter ions in mediating the surface-protein adhesion is highlighted. The relevance of the present results with respect to the production of bioinorganic hybrids via encapsulation of proteins inside mesoporous silica materials is discussed.
Collapse
Affiliation(s)
- Lara Giussani
- Dipartimento Chimica IFM and Centro di Eccellenza NIS, Università di Torino, Via P. Giuria 7, 10125 Turin, Italy
| | | | | | | | | |
Collapse
|
56
|
Alvarez de Eulate E, Arrigan DWM. Adsorptive Stripping Voltammetry of Hen-Egg-White-Lysozyme via Adsorption–Desorption at an Array of Liquid–Liquid Microinterfaces. Anal Chem 2012; 84:2505-11. [DOI: 10.1021/ac203249p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Eva Alvarez de Eulate
- Nanochemistry Research
Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Damien W. M. Arrigan
- Nanochemistry Research
Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
57
|
Modelling of lysozyme binding to a cation exchange surface at atomic detail: the role of flexibility. Biophys J 2011; 100:3016-24. [PMID: 21689536 DOI: 10.1016/j.bpj.2011.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/21/2022] Open
Abstract
Different approaches were made to predict the adsorbed orientation based on rigid, flexible, or a mixture of both models. To determine the role of flexibility during adsorption, the orientation of lysozyme adsorbed to a negatively charged ligand surface was predicted by a rigid and a flexible model based on two differing protein structures at atomic resolution. For the rigid model, the protein structures were placed at different distances from the ligand surface and the electrostatic interaction energy was calculated for all possible orientations. The results were compared to a flexible model where the binding to the ligand surface was modeled by multiple molecular dynamics simulations starting with 14 initial orientations. Different aspects of the adsorption process were not covered by the rigid model and only detectable by the flexible model. Whereas the results of the rigid model depended sensitively on the protein-surface distance and the protein structure, the preferred orientation obtained by the flexible model was closer to a previous experimental determined orientation, robust toward the initial orientation and independent of the initial protein structure. Additionally, it was possible to obtain insights into the preferred binding process of lysozyme on a negatively charged surface by the flexible model.
Collapse
|
58
|
Wei T, Carignano MA, Szleifer I. Lysozyme adsorption on polyethylene surfaces: why are long simulations needed? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12074-81. [PMID: 21846132 PMCID: PMC3183366 DOI: 10.1021/la202622s] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The adsorption of lysozyme onto a polyethylene (PE) surface in an aqueous environment was investigated via molecular dynamics (MD) simulation. The adsorption can be divided into three processes: diffusion to the surface, dehydration induced by hydrophobic surface-protein interactions, and denaturation. The dehydration process is very long, around 70 ns. Structural deformations start soon after the protein reaches the surface and continue during the whole trajectory. The hydrophobic residues are slowly driven toward the surface, inducing changes in the protein's secondary structure. The protein's secondary structural components near the surface are more disturbed than those farther away from the surface. The lysozyme is adsorbed with its long axis parallel to the surface and displays an anisotropic mobility on the surface that is probably due to the intrinsic structure of the PE surface. Our study demonstrates the need for long-time atomistic simulation in order to gain a complete understanding of the adsorption process.
Collapse
|
59
|
Vaitheeswaran S, Garcia AE. Protein stability at a carbon nanotube interface. J Chem Phys 2011; 134:125101. [PMID: 21456701 DOI: 10.1063/1.3558776] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interactions of proteins with solid surfaces occur in a variety of situations. Motivated by the many nanoengineering applications of protein-carbon nanotube hybrids, we investigate the conformational transitions of hen egg white lysozyme adsorbed on a carbon nanotube. Using a C(α) structure-based model and replica exchange molecular dynamics, we show how the folding/unfolding equilibrium of the adsorbed protein varies with the strength of its coupling to the surface. The stability of the native state depends on the balance between the favorable entropy and unfavorable enthalpy change on adsorption. In the case of a weakly attractive surface when the former dominates, the protein is stabilized. In this regime, the protein can fold and unfold while maintaining the same binding fraction. With increasing surface attraction, the unfavorable enthalpic effect dominates, the native state is destabilized, and the protein has to extensively unbind before changing states from unfolded to folded. At the highest surface coupling, the entropic penalty of folding vanishes, and a folding intermediate is strongly stabilized. In this intermediate state, the α-domain of lysozyme is disrupted, while the β-sheet remains fully structured. We rationalize the relative stability of the two domains on the basis of the residue contact order.
Collapse
Affiliation(s)
- S Vaitheeswaran
- Department of Physics, Applied Physics and Astronomy, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, USA
| | | |
Collapse
|
60
|
Kubiak-Ossowska K, Mulheran PA. Multiprotein interactions during surface adsorption: a molecular dynamics study of lysozyme aggregation at a charged solid surface. J Phys Chem B 2011; 115:8891-900. [PMID: 21671567 PMCID: PMC3662390 DOI: 10.1021/jp1121239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/28/2011] [Indexed: 11/30/2022]
Abstract
Multiprotein adsorption of hen egg white lysozyme at a model charged ionic surface is studied using fully atomistic molecular dynamics simulations. Simulations with two, three, and five proteins, in various orientations with respect the surface, are performed over a 100 ns time scale. Mutated proteins with point mutations at the major (Arg128 and Arg125) and minor (Arg68) surface adsorption sites are also studied. The 100 ns time scale used is sufficient to observe protein translations, rotations, adsorption, and aggregation. Two competing processes of particular interest are observed, namely surface adsorption and protein-protein aggregation. At low protein concentration, the proteins first adsorb in isolation and can then reorientate on the surface to aggregate. At high concentration, the proteins aggregate in the solution and then adsorb in nonspecific ways. This work demonstrates the role of protein concentration in adsorption, indicates the residues involved in both types of interaction (protein-protein and protein-surface), and gives an insight into processes to be considered in the development of new functionalized material systems.
Collapse
Affiliation(s)
- Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, 87-100 Torun, Poland
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| |
Collapse
|
61
|
Zhang L, Bai S, Sun Y. Modification of Martini force field for molecular dynamics simulation of hydrophobic charge induction chromatography of lysozyme. J Mol Graph Model 2011; 29:906-14. [DOI: 10.1016/j.jmgm.2011.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
|
62
|
Neogi P, Wang JC. Stability of two-dimensional growth of a packed body of proteins on a solid surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5347-5353. [PMID: 21473573 DOI: 10.1021/la104616b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Adsorption of proteins from the bulk is at times accompanied by a rearrangement which leads to the formation of closed packed bodies, that may or may not be crystalline. Mass transfer of protein molecules on a surface is modeled. Forced diffusion by van der Waals and electrostatic forces leads to segregation, which is eventually a different phase that is assumed to be thermodynamically favored. The net effective force in two-dimensions has been modeled approximately and shown to be much stronger and more long ranged than in the bulk: that is, under the same conditions, the protein molecules may not aggregate in the bulk they may aggregate on a surface. These forces have been used only indirectly but equivalently as an adsorption-desorption step at the interline. Eventually, a linear stability analysis of the growing body shows it to be unstable and would give rise to whiskers that are one molecule thick. This is what is observed experimentally. The conditions that give rise to the instability have been determined. The reverse case of rinsing of the protein molecules has also been studied experimentally and has been analyzed using the same mechanisms. Here it is seen that thicker inroads into the packed body cause the interline to take on a spongy appearance. It is conjectured that eventually islands will appear as seen in the experiments.
Collapse
Affiliation(s)
- P Neogi
- Chemical and Biological Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States.
| | | |
Collapse
|
63
|
|
64
|
Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 2011; 162:87-106. [PMID: 21295764 DOI: 10.1016/j.cis.2010.12.007] [Citation(s) in RCA: 992] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 11/21/2022]
Abstract
Protein adsorption at solid surfaces plays a key role in many natural processes and has therefore promoted a widespread interest in many research areas. Despite considerable progress in this field there are still widely differing and even contradictive opinions on how to explain the frequently observed phenomena such as structural rearrangements, cooperative adsorption, overshooting adsorption kinetics, or protein aggregation. In this review recent achievements and new perspectives on protein adsorption processes are comprehensively discussed. The main focus is put on commonly postulated mechanistic aspects and their translation into mathematical concepts and model descriptions. Relevant experimental and computational strategies to practically approach the field of protein adsorption mechanisms and their impact on current successes are outlined.
Collapse
|
65
|
Nanomaterials in biological environment: a review of computer modelling studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:103-15. [DOI: 10.1007/s00249-010-0651-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 01/13/2023]
|
66
|
Protein Adsorption on Biomaterial and Nanomaterial Surfaces: A Molecular Modeling Approach to Study Non-Covalent Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.5301/jabb.2010.6093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Kubiak-Ossowska K, Mulheran PA. Mechanism of hen egg white lysozyme adsorption on a charged solid surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15954-65. [PMID: 20873744 DOI: 10.1021/la102960m] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanism of hen egg white lysozyme (HEWL) adsorption on a negatively charged, hydrophilic surface has been studied using atomistic molecular dynamics (MD) simulation. Sixteen 90 ns trajectories provide adequate data to allow a detailed description of the adsorption process to be formulated. Two distinct adsorption sites have been identified. The main one is located on the N,C-terminal protein face and comprises Arg128 (the crucial one), supplemented by Arg125, Arg5, and Lys1; the minor one is used accidentally and contains only Arg68. Adsorption of this protein is driven by electrostatics, where the orientation of the protein dipole moment defines the direction of protein movement. The diffusion range on the surface depends on protein side-chain penetration through the surface water layers. This is facilitated by the long-range electric field of the charged surface, which can align polar side chains to be perpendicular to the surface. A simulation of adsorption onto a neutral ionic surface shows no such surface water layer penetration. Therefore, protein flexibility is seen to be an important factor, and to adsorb the HEWL has to adjust its structure. Nevertheless, at a flat surface only a slight loss of α-helical content is required. The adsorbed HEWL molecule is oriented between side-on and end-on ways, where the angle between the protein long axis (which mostly approximates the dipole moment) and the surface varies between 45° and 90°. Simulations with targeted mutations confirm the picture that emerges from these studies. The active site is located on the opposite face to the main adsorption site; hence, the activity of the immobilized HEWL should not be affected by the surface interactions. Our results provide a detailed insight into the adsorption mechanism and protein mobility at the surface. This knowledge will aid the proper interpretation of experimental results and the design of new experiments and functional systems.
Collapse
Affiliation(s)
- Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | | |
Collapse
|
68
|
Kubiak-Ossowska K, Mulheran PA. What governs protein adsorption and immobilization at a charged solid surface? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7690-4. [PMID: 20433191 PMCID: PMC3689231 DOI: 10.1021/la101276v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The adsorption of hen egg white lysozyme at a model charged surface is studied using fully atomistic molecular dynamics simulations. The simulations are performed over a 90 ns time scale which is sufficient to observe rotational and translational steps in the adsorption process. Electrostatics is found to play a key role in guiding the protein to the favorable binding orientation with the N,C-terminal face against the substrate. However, full immobilization appears to only occur through the strong interaction of Arg128 with the surface, facilitated by the protein's flexibility at the terminal face. Simulated mutation at this residue confirms its crucial role. This work demonstrates that electrostatics alone might not be sufficient to guide the development of material systems that exploit protein adsorption and immobilization.
Collapse
Affiliation(s)
- Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, 87-100 Torun, Poland
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
- To whom correspondence should be addressed. E-mail: . Telephone: +44 (0)141 548 2385
| |
Collapse
|
69
|
Raffaini G, Ganazzoli F. Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5679-5689. [PMID: 20041676 DOI: 10.1021/la903769c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adsorption of human lysozyme on hydrophobic graphite is investigated through atomistic computer simulations with molecular mechanics (MM) and molecular dynamics (MD) techniques. The chosen strategy follows a simulation protocol proposed by the authors to model the initial and the final adsorption stage on a bare surface. Adopting an implicit solvent and considering 10 starting molecular orientations so that all the main sides of the protein can face the surface, we first carry out an energy minimization to investigate the initial adsorption stage, and then long MD runs of selected arrangements to follow the surface spreading of the protein maximizing its adsorption strength. The results are discussed in terms of the kinetics of surface spreading, the interaction energy, and the molecular size, considering both the footprint and the final thickness of the adsorbed protein. The structural implications of the final adsorption geometry for surface aggregation and nanoscale structural organization are also pointed out. Further MD runs are carried out in explicit water for the native structure and the most stable adsorption state to assess the local stability of the geometry obtained in implicit solvent, and to calculate the statistical distribution of the water molecules around the whole lysozyme and its backbone.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy.
| | | |
Collapse
|
70
|
Protein adsorption and desorption on lipid bilayers. Biophys Chem 2009; 146:60-4. [PMID: 19903579 DOI: 10.1016/j.bpc.2009.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/22/2022]
Abstract
The protein surface usually exhibits one or a few charged spots. If a lipid bilayer contains a significant amount of lipids with oppositely charged head groups, protein adsorption on a bilayer may be energetically favourable due to the protein-lipid electrostatic interaction. The specifics of this case are that the lipids are highly mobile and the protein adsorption is accompanied by the redistribution of lipids between the areas covered and not covered by protein. We present a kinetic model illustrating that this effect is especially interesting if the fraction of the surface covered by charged lipids is relatively low. In this situation, with increasing protein coverage, the protein desorption rate constant rapidly increases while the adsorption rate constant drops, so that there is critical fraction of the area covered by protein. Adsorption above this fraction is hindered both kinetically and thermodynamically.
Collapse
|