51
|
Dumas J, Huille S, Prades C. [Developability assessment]. Med Sci (Paris) 2020; 35:1163-1170. [PMID: 31903932 DOI: 10.1051/medsci/2019231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The therapeutic antibodies and their by-products (antibody fragments, conjugated, etc.) establish one of the most dynamic biopharmaceutical market segments today. Due to their intrinsic properties of specificity towards their target, towards their flexible affinity and due to their stability, antibodies became therapeutic agents of the very first choice. One of the challenges of this sector is to create antibodies of very good quality, more and more quickly, while having less and less consequent development costs in fine.
Collapse
Affiliation(s)
- Jacques Dumas
- Biologics Research/Sanofi R&D, 13 quai Jules Guesde, 94403 Vitry-sur-Seine, France
| | - Sylvain Huille
- Biologics Drug Products Development/Sanofi R&D, 13 quai Jules Guesde, 94403 Vitry-sur-Seine, France
| | - Catherine Prades
- Biologics Research/Sanofi R&D, 13 quai Jules Guesde, 94403 Vitry-sur-Seine, France
| |
Collapse
|
52
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
53
|
Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM. Phage Display Libraries for Antibody Therapeutic Discovery and Development. Antibodies (Basel) 2019; 8:antib8030044. [PMID: 31544850 PMCID: PMC6784186 DOI: 10.3390/antib8030044] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023] Open
Abstract
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.
Collapse
Affiliation(s)
- Juan C Almagro
- GlobalBio, Inc., 320, Cambridge, MA 02138, USA.
- UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico.
| | - Martha Pedraza-Escalona
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Hugo Iván Arrieta
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
54
|
Germinality does not necessarily define mAb expression and thermal stability. Appl Microbiol Biotechnol 2019; 103:7505-7518. [PMID: 31350616 PMCID: PMC6719414 DOI: 10.1007/s00253-019-09998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody’s germline family, highlighting the fact that mAbs should be treated individually.
Collapse
|
55
|
Schrag JD, Picard MÈ, Gaudreault F, Gagnon LP, Baardsnes J, Manenda MS, Sheff J, Deprez C, Baptista C, Hogues H, Kelly JF, Purisima EO, Shi R, Sulea T. Binding symmetry and surface flexibility mediate antibody self-association. MAbs 2019; 11:1300-1318. [PMID: 31318308 PMCID: PMC6748613 DOI: 10.1080/19420862.2019.1632114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solution stability is an important factor in the optimization of engineered biotherapeutic candidates such as monoclonal antibodies because of its possible effects on manufacturability, pharmacology, efficacy and safety. A detailed atomic understanding of the mechanisms governing self-association of natively folded protein monomers is required to devise predictive tools to guide screening and re-engineering along the drug development pipeline. We investigated pairs of affinity-matured full-size antibodies and observed drastically different propensities to aggregate from variants differing by a single amino-acid. Biophysical testing showed that antigen-binding fragments (Fabs) from the aggregating antibodies also reversibly associated with equilibrium dissociation constants in the low-micromolar range. Crystal structures (PDB accession codes 6MXR, 6MXS, 6MY4, 6MY5) and bottom-up hydrogen-exchange mass spectrometry revealed that Fab self-association occurs in a symmetric mode that involves the antigen complementarity-determining regions. Subtle local conformational changes incurred upon point mutation of monomeric variants foster formation of complementary polar interactions and hydrophobic contacts to generate a dimeric Fab interface. Testing of popular in silico tools generally indicated low reliabilities for predicting the aggregation propensities observed. A structure-aggregation data set is provided here in order to stimulate further improvements of in silico tools for prediction of native aggregation. Incorporation of intermolecular docking, conformational flexibility, and short-range packing interactions may all be necessary features of the ideal algorithm.
Collapse
Affiliation(s)
- Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand , Québec City, QC G1V 0A6 , Canada
| | - Francis Gaudreault
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Louis-Patrick Gagnon
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Mahder S Manenda
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand , Québec City, QC G1V 0A6 , Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada , Ottawa , ON K1A 0R6 , Canada
| | - Christophe Deprez
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Cassio Baptista
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Hervé Hogues
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada , Ottawa , ON K1A 0R6 , Canada
| | - Enrico O Purisima
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand , Québec City, QC G1V 0A6 , Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada
| |
Collapse
|
56
|
Gao X, Conard A, Yang C, Zhan Y, Zeng F, Shi J, Li W, Dimitrov DS, Gong R. Optimization of the C-Terminus of an Autonomous Human IgG1 CH2 Domain for Stability and Aggregation Resistance. Mol Pharm 2019; 16:3647-3656. [DOI: 10.1021/acs.molpharmaceut.9b00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alex Conard
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, United States
| | - Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yancheng Zhan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zeng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Wei Li
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, United States
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, United States
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
57
|
Sagendorf JM, Berman HM, Rohs R. DNAproDB: an interactive tool for structural analysis of DNA-protein complexes. Nucleic Acids Res 2019; 45:W89-W97. [PMID: 28431131 PMCID: PMC5570235 DOI: 10.1093/nar/gkx272] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA–protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA–protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA–protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA–protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA–protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu.
Collapse
Affiliation(s)
- Jared M Sagendorf
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Remo Rohs
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
58
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
59
|
Sakhnini LI, Greisen PJ, Wiberg C, Bozoky Z, Lund S, Wolf Perez AM, Karkov HS, Huus K, Hansen JJ, Bülow L, Lorenzen N, Dainiak MB, Pedersen AK. Improving the Developability of an Antigen Binding Fragment by Aspartate Substitutions. Biochemistry 2019; 58:2750-2759. [DOI: 10.1021/acs.biochem.9b00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laila I. Sakhnini
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
- Department of Pure and Applied Biochemistry, Lund University, 223 62 Lund, Sweden
| | - Per J. Greisen
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Charlotte Wiberg
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Zoltan Bozoky
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Søren Lund
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Hanne S. Karkov
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Kasper Huus
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Leif Bülow
- Department of Pure and Applied Biochemistry, Lund University, 223 62 Lund, Sweden
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Maria B. Dainiak
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Anja K. Pedersen
- Chemistry, Manufacturing and Control, Novo Nordisk A/S, 2820 Gentofte, Denmark
| |
Collapse
|
60
|
Sakhnini LI, Pedersen AK, León IR, Greisen PJ, Hansen JJ, Vester-Christensen MB, Bülow L, Dainiak MB. Optimizing selectivity of anion hydrophobic multimodal chromatography for purification of a single-chain variable fragment. Eng Life Sci 2019; 19:490-501. [PMID: 32625026 DOI: 10.1002/elsc.201800207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 04/24/2019] [Indexed: 11/11/2022] Open
Abstract
Single-chain variable fragments (scFv) are widely used in several fields. However, they can be challenging to purify unless using expensive Protein L-based affinity adsorbents or affinity tags. In this work, a purification process for a scFv using mixed-mode (MM) chromatography was developed by design of experiments (DoE) and proteomics for host cell protein (HCP) quantification. Capture of scFv from human embryonic kidney 293 (HEK293) cell feedstocks was performed by hydrophobic charge induction chromatography (MEP HyperCel™), whereafter polishing was performed by anion hydrophobic MM chromatography (Capto Adhere™). The DoE designs of the polishing step included both binding and flow-through modes, the latter being the standard mode for HCP removal. Chromatography with Capto Adhere™ in binding-mode with elution by linear salt gradient at pH 7.5 resulted in optimal yield, purity and HCP reduction factor of 98.9 > 98.5%, and 14, respectively. Totally, 258 different HCPs were removed, corresponding to 84% of identified HCPs. The optimized conditions enabled binding of the scFv to Capto Adhere™ below its theoretical pI, while the majority of HCPs were in the flow-through. Surface property maps indicated the presence of hydrophobic patches in close proximity to negatively charged patches that could potentially play a role in this unique selectivity.
Collapse
Affiliation(s)
- Laila I Sakhnini
- Department of Downstream Technologies Novo Nordisk A/S Måløv Denmark.,Department of Pure and Applied Biochemistry Lund University Lund Sweden
| | - Anja K Pedersen
- Department of Protein Purification Development Novo Nordisk A/S Gentofte Denmark
| | | | - Per J Greisen
- Department of Modelling & Predictive Technologies Novo Nordisk A/S Måløv Denmark
| | - Jens Jacob Hansen
- Department of Expression Technologies Novo Nordisk A/S Måløv Denmark
| | | | - Leif Bülow
- Department of Pure and Applied Biochemistry Lund University Lund Sweden
| | - Maria B Dainiak
- Department of Downstream Technologies Novo Nordisk A/S Måløv Denmark
| |
Collapse
|
61
|
Essential Mycoplasma Glycolipid Synthase Adheres to the Cell Membrane by Means of an Amphipathic Helix. Sci Rep 2019; 9:7085. [PMID: 31068620 PMCID: PMC6506492 DOI: 10.1038/s41598-019-42970-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/22/2022] Open
Abstract
Because of the lack of cell wall, Micoplasma species require a fine control of membrane fluidity and integrity. mg517 is an essential gene of Mycoplasma genitalium responsible for the biosynthesis of membrane glycoglycerolipids. It encodes for a unique glycosyltransferase (MG517) with processive activity, transferring activated glycosyl donors to either nude diacylglycerol or already glycosylated diacylglycerol. This dual activity, asserted to different enzymes in other species, is sensitive to and regulated by the presence of anionic lipid vesicles in vitro. We present here a computational model of the C-terminus domain of MG517 that complements a previous structural model of the N-terminus domain. By means of sequence analysis, molecular dynamics and metadynamics simulations, we have identified a short α-helix at the apical C-terminus of MG517 with clear amphipathic character. Binding to a membrane model is thermodynamically favored which suggests that this structural element guides the adhesion of MG517 to the cell membrane. We have experimentally verified that truncation of part of this helix causes a substantial reduction of glycoglycerolipids synthesis. The model proposes that MG517 recognizes and binds the diacylglycerol substrate embedded in the membrane by means of this α-helix at the C-terminus together with a previously identified binding pocket at the N-terminus.
Collapse
|
62
|
Ranjan S, Chung WK, Zhu M, Robbins D, Cramer SM. Implementation of an experimental and computational tool set to study protein-mAb interactions. Biotechnol Prog 2019; 35:e2825. [PMID: 31017347 DOI: 10.1002/btpr.2825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 11/12/2022]
Abstract
This work focused on the development of a combined experimental and computational tool set to study protein-mAb interactions. A model protein library was first screened using cross interaction chromatography to identify proteins with the strongest retention. Fluorescence polarization was then employed to study the interactions and thermodynamics of the selected proteins-lactoferrin, pyruvate kinase, and ribonuclease B with the mAb. Binding affinities of lactoferrin and pyruvate kinase to the mAb were seen to be relatively salt insensitive in the range examined. Further, a strong entropic contribution was observed, suggesting the importance of hydrophobic interactions. On the other hand, ribonuclease B-mAb binding was seen to be enthalpically driven and salt sensitive, indicating the importance of electrostatic interactions. Protein-protein docking was then carried out and the results identified the CDR region on the mAb as an important binding site for all three proteins. The binding interfaces identified for the mAb-lactoferrin and mAb-pyruvate kinase systems were found to contain complementary hydrophobic and oppositely charged clusters on the interacting regions which were indicative of both hydrophobic and electrostatic interactions. On the other hand, the binding site on ribonuclease B was predominantly positively charged with minimal hydrophobicity. This resulted in an alignment with negatively charged clusters on the mAb, supporting the contention that these interactions were primarily electrostatic in nature. Importantly, these computational results were found to be consistent with the fluorescence polarization data and this combined approach may have utility in examining mAb-HCP interactions which can often complicate the downstream processing of biologics. © 2019 American Institute of Chemical Engineers.
Collapse
Affiliation(s)
- Swarnim Ranjan
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Wai Keen Chung
- Purification Process Sciences, MedImmune LLC, Gaithersburg, Maryland
| | - Min Zhu
- Purification Process Sciences, MedImmune LLC, Gaithersburg, Maryland
| | - David Robbins
- Purification Process Sciences, MedImmune LLC, Gaithersburg, Maryland
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
63
|
Models for Antibody Behavior in Hydrophobic Interaction Chromatography and in Self-Association. J Pharm Sci 2019; 108:1434-1441. [DOI: 10.1016/j.xphs.2018.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022]
|
64
|
Investigation of cathepsin D–mAb interactions using a combined experimental and computational tool set. Biotechnol Bioeng 2019; 116:1684-1697. [DOI: 10.1002/bit.26968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
|
65
|
Investigation of quaternary structure of aggregating 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans: In the pursuit of consensus of various biophysical techniques. Biochim Biophys Acta Gen Subj 2019; 1863:1027-1039. [PMID: 30876874 DOI: 10.1016/j.bbagen.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
Abstract
In this work we analyzed the quaternary structure of FAD-dependent 3-ketosteroid dehydrogenase (AcmB) from Sterolibacterium denitrificans, the protein that in solution forms massive aggregates (>600 kDa). Using size-excursion chromatography (SEC), dynamic light scattering (DLS), native-PAGE and atomic force microscopy (AFM) we studied the nature of enzyme aggregation. Partial protein de-aggregation was facilitated by the presence of non-ionic detergent such as Tween 20 or by a high degree of protein dilution but not by addition of a reducing agent or an increase of ionic strength. De-aggregating influence of Tween 20 had no impact on either enzyme's specific activity or FAD reconstitution to recombinant AcmB. The joint experimental (DLS, isoelectric focusing) and theoretical investigations demonstrated gradual shift of enzyme's isoelectric point upon aggregation from 8.6 for a monomeric form to even 5.0. The AFM imaging on mica or highly oriented pyrolytic graphite (HOPG) surface enabled observation of individual protein monomers deposited from a highly diluted solution (0.2 μg/ml). Such approach revealed that native AcmB can indeed be monomeric. AFM imaging supported by theoretical random sequential adsorption (RSA) kinetics allowed estimation of distribution enzyme forms in the bulk solution: 5%, monomer, 11.4% dimer and 12% trimer. Finally, based on results of AFM as well as analysis of the surface of AcmB homology models we have observed that aggregation is most probably initiated by hydrophobic forces and then assisted by electrostatic attraction between negatively charged aggregates and positively charged monomers.
Collapse
|
66
|
Valadon P, Pérez-Tapia SM, Nelson RS, Guzmán-Bringas OU, Arrieta-Oliva HI, Gómez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries™: antibody libraries for therapeutic antibody discovery. MAbs 2019; 11:516-531. [PMID: 30663541 PMCID: PMC6512909 DOI: 10.1080/19420862.2019.1571879] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe here the design, construction and validation of ALTHEA Gold Libraries™. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries™ with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries™ are a valuable source of specific, high affinity and highly stable antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary Ann Pohl
- c Tri-Institutional Therapeutics Discovery Institute , New York , NY , USA
| | | |
Collapse
|
67
|
Iyer LK, Phanse R, Xu M, Lan W, Krause ME, Bolgar M, Hart S. Pulse Proteolysis: An Orthogonal Tool for Protein Formulation Screening. J Pharm Sci 2019; 108:842-850. [DOI: 10.1016/j.xphs.2018.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/24/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
|
68
|
Buthelezi SG, Dirr HW, Chakauya E, Chikwamba R, Martens L, Tsekoa TL, Vandermarliere E, Stoychev SH. The study of degradation mechanisms of glyco-engineered plant produced anti-rabies monoclonal antibodies E559 and 62-71-3. PLoS One 2018; 13:e0209373. [PMID: 30571707 PMCID: PMC6301680 DOI: 10.1371/journal.pone.0209373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important public health problem as there are cost and health concerns imposed by the current human post exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attractive alternative. Rabies mostly affects people that reside in resource-limited areas where there are occasional failures in the cold-chain. These environmental changes may upset the stability of the mAbs. This study focused on mAbs 62-71-3 and E559; their structures, responses to freeze/thaw (F/T) and exposure to reactive oxygen species were therefore studied with the aid of a wide range of biophysical and in silico techniques in order to elucidate their stability and identify aggregation prone regions. E559 was found to be less stable than 62-71-3. The complementarity determining regions (CDR) contributed the most to its instability, more specifically: peptides 99EIWD102 and 92ATSPYT97 found in CDR3, Trp33 found in CDR1 and the oxidised Met34. The constant region "158SWNSGALTGHTFPAVL175" was also flagged by the special aggregation propensity (SAP) tool and F/T experiments to be highly prone to aggregation. The E559 peptides "4LQESGSVL11 from the heavy chain and 4LTQSPSSL11 from the light chain, were also highly affected by F/T. These residues may serve as good candidates for mutation, in the aim to bring forward more stable therapeutic antibodies, thus paving a way to a more safe and efficacious antibody-based cocktail treatment against rabies.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Antibodies, Viral/therapeutic use
- Cold Temperature/adverse effects
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Computer Simulation
- Drug Stability
- Drug Storage
- Humans
- Neutralization Tests
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Protein Engineering/methods
- Proteolysis
- Rabies/immunology
- Rabies/therapy
- Rabies/virology
- Rabies virus/immunology
- Reactive Oxygen Species/chemistry
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Sindisiwe G. Buthelezi
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Heini W. Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ereck Chakauya
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| | - Rachel Chikwamba
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| | - Lennart Martens
- Unit for Computational Omics and Systems Biology, VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tsepo L. Tsekoa
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| | - Elien Vandermarliere
- Unit for Computational Omics and Systems Biology, VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stoyan H. Stoychev
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| |
Collapse
|
69
|
When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:221-264. [PMID: 30635082 DOI: 10.1016/bs.apcsb.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular redox status is an established player in many different cellular functions. The buildup of oxidants within the cell is tightly regulated to maintain a balance between the positive and negative outcomes of cellular oxidants. Proteins are highly sensitive to oxidation, since modification can cause widespread unfolding and the formation of toxic aggregates. In response, cells have developed highly regulated systems that contribute to the maintenance of both the global redox status and protein homeostasis at large. Changes to these systems have been found to correlate with aging and age-related disorders, such as neurodegenerative pathologies. This raises intriguing questions as to the source of the imbalance in the redox and protein homeostasis systems, their interconnectivity, and their role in disease progression. Here we focus on the crosstalk between the redox and protein homeostasis systems in neurodegenerative diseases, specifically in Alzheimer's, Parkinson's, and ALS. We elaborate on some of the main players of the stress response systems, including the master regulators of oxidative stress and the heat shock response, Nrf2 and Hsf1, which are essential features of protein folding, and mediators of protein turnover. We illustrate the elegant mechanisms used by these components to provide an immediate response, including protein plasticity controlled by redox-sensing cysteines and the recruitment of naive proteins to the redox homeostasis array that act as chaperons in an ATP-independent manner.
Collapse
|
70
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
71
|
Wannier TM, Gillespie SK, Hutchins N, McIsaac RS, Wu SY, Shen Y, Campbell RE, Brown KS, Mayo SL. Monomerization of far-red fluorescent proteins. Proc Natl Acad Sci U S A 2018; 115:E11294-E11301. [PMID: 30425172 PMCID: PMC6275547 DOI: 10.1073/pnas.1807449115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anthozoa-class red fluorescent proteins (RFPs) are frequently used as biological markers, with far-red (λem ∼ 600-700 nm) emitting variants sought for whole-animal imaging because biological tissues are more permeable to light in this range. A barrier to the use of naturally occurring RFP variants as molecular markers is that all are tetrameric, which is not ideal for cell biological applications. Efforts to engineer monomeric RFPs have typically produced dimmer and blue-shifted variants because the chromophore is sensitive to small structural perturbations. In fact, despite much effort, only four native RFPs have been successfully monomerized, leaving the majority of RFP biodiversity untapped in biomarker development. Here we report the generation of monomeric variants of HcRed and mCardinal, both far-red dimers, and describe a comprehensive methodology for the monomerization of red-shifted oligomeric RFPs. Among the resultant variants is mKelly1 (emission maximum, λem = 656 nm), which, along with the recently reported mGarnet2 [Matela G, et al. (2017) Chem Commun (Camb) 53:979-982], forms a class of bright, monomeric, far-red FPs.
Collapse
Affiliation(s)
- Timothy M Wannier
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Sarah K Gillespie
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Nicholas Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - R Scott McIsaac
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Kevin S Brown
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Physics, University of Connecticut, Storrs, CT 06269
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340
| | - Stephen L Mayo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| |
Collapse
|
72
|
Sankar K, Hoi KH, Yin Y, Ramachandran P, Andersen N, Hilderbrand A, McDonald P, Spiess C, Zhang Q. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs 2018; 10:1281-1290. [PMID: 30252602 PMCID: PMC6284603 DOI: 10.1080/19420862.2018.1518887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug's potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs' sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.
Collapse
Affiliation(s)
- Kannan Sankar
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kam Hon Hoi
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Yizhou Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Institute for Bioscience and Biotechnology Research, Biological Sciences Graduate Program, University of Maryland, Rockville, MD, USA
| | - Prasanna Ramachandran
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Nisana Andersen
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Amy Hilderbrand
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Paul McDonald
- Department of Purification Development and Bioprocess Development, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Qing Zhang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
73
|
Sankar K, Krystek SR, Carl SM, Day T, Maier JKX. AggScore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins 2018; 86:1147-1156. [PMID: 30168197 DOI: 10.1002/prot.25594] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/12/2018] [Accepted: 08/24/2018] [Indexed: 02/02/2023]
Abstract
Protein aggregation is a phenomenon that has attracted considerable attention within the pharmaceutical industry from both a developability standpoint (to ensure stability of protein formulations) and from a research perspective for neurodegenerative diseases. Experimental identification of aggregation behavior in proteins can be expensive; and hence, the development of accurate computational approaches is crucial. The existing methods for predicting protein aggregation rely mostly on the primary sequence and are typically trained on amyloid-like proteins. However, the training bias toward beta amyloid peptides may worsen prediction accuracy of such models when applied to larger protein systems. Here, we present a novel algorithm to identify aggregation-prone regions in proteins termed "AggScore" that is based entirely on three-dimensional structure input. The method uses the distribution of hydrophobic and electrostatic patches on the surface of the protein, factoring in the intensity and relative orientation of the respective surface patches into an aggregation propensity function that has been trained on a benchmark set of 31 adnectin proteins. AggScore can accurately identify aggregation-prone regions in several well-studied proteins and also reliably predict changes in aggregation behavior upon residue mutation. The method is agnostic to an amyloid-specific aggregation context and thus may be applied to globular proteins, small peptides and antibodies.
Collapse
Affiliation(s)
| | - Stanley R Krystek
- Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, New Jersey
| | - Stephen M Carl
- Discovery Pharmaceutics and Analytical Sciences and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Tyler Day
- Schrödinger Inc., New York, New York
| | | |
Collapse
|
74
|
An Evaluation of the Potential of NMR Spectroscopy and Computational Modelling Methods to Inform Biopharmaceutical Formulations. Pharmaceutics 2018; 10:pharmaceutics10040165. [PMID: 30248922 PMCID: PMC6320905 DOI: 10.3390/pharmaceutics10040165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Protein-based therapeutics are considered to be one of the most important classes of pharmaceuticals on the market. The growing need to prolong stability of high protein concentrations in liquid form has proven to be challenging. Therefore, significant effort is being made to design formulations which can enable the storage of these highly concentrated protein therapies for up to 2 years. Currently, the excipient selection approach involves empirical high-throughput screening, but does not reveal details on aggregation mechanisms or the molecular-level effects of the formulations under storage conditions. Computational modelling approaches have the potential to elucidate such mechanisms, and rapidly screen in silico prior to experimental testing. Nuclear Magnetic Resonance (NMR) spectroscopy can also provide complementary insights into excipient–protein interactions. This review will highlight the underpinning principles of molecular modelling and NMR spectroscopy. It will also discuss the advancements in the applications of computational and NMR approaches in investigating excipient–protein interactions.
Collapse
|
75
|
In Silico Prediction of Diffusion Interaction Parameter (kD), a Key Indicator of Antibody Solution Behaviors. Pharm Res 2018; 35:193. [DOI: 10.1007/s11095-018-2466-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
76
|
Wen L, Lyu M, Xiao H, Lan H, Zuo Z, Yin Z. Protein Aggregation and Performance Optimization Based on Microconformational Changes of Aromatic Hydrophobic Regions. Mol Pharm 2018; 15:2257-2267. [PMID: 29694051 DOI: 10.1021/acs.molpharmaceut.8b00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lili Wen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Man Lyu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Huashuai Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Hairong Lan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| |
Collapse
|
77
|
Hofmann M, Gieseler H. Predictive Screening Tools Used in High-Concentration Protein Formulation Development. J Pharm Sci 2018; 107:772-777. [DOI: 10.1016/j.xphs.2017.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 01/08/2023]
|
78
|
Sulea T, Hussack G, Ryan S, Tanha J, Purisima EO. Application of Assisted Design of Antibody and Protein Therapeutics (ADAPT) improves efficacy of a Clostridium difficile toxin A single-domain antibody. Sci Rep 2018; 8:2260. [PMID: 29396522 PMCID: PMC5797146 DOI: 10.1038/s41598-018-20599-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Assisted Design of Antibody and Protein Therapeutics (ADAPT) is an affinity maturation platform interleaving predictions and testing that was previously validated on monoclonal antibodies (mAbs). This study expands the applicability of ADAPT to single-domain antibodies (sdAbs), a promising class of recombinant antibody-based biologics. As a test case, we used the camelid sdAb A26.8, a VHH that binds Clostridium difficile toxin A (TcdA) relatively weakly but displays a reasonable level of TcdA neutralization. ADAPT-guided A26.8 affinity maturation resulted in an improvement of one order of magnitude by point mutations only, reaching an equilibrium dissociation constant (KD) of 2 nM, with the best binding mutants having similar or improved stabilities relative to the parent sdAb. This affinity improvement generated a 6-fold enhancement of efficacy at the cellular level; the A26.8 double-mutant T56R,T103R neutralizes TcdA cytotoxicity with an IC50 of 12 nM. The designed mutants with increased affinities are predicted to establish novel electrostatic interactions with the antigen. Almost full additivity of mutation effects is observed, except for positively charged residues introduced at adjacent positions. Furthermore, analysis of false-positive predictions points to general directions for improving the ADAPT platform. ADAPT guided the efficacy enhancement of an anti-toxin sdAb, an alternative therapeutic modality for C. difficile.
Collapse
Affiliation(s)
- Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.,Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Enrico O Purisima
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada. .,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.
| |
Collapse
|
79
|
Understanding the Increased Aggregation Propensity of a Light-Exposed IgG1 Monoclonal Antibody Using Hydrogen Exchange Mass Spectrometry, Biophysical Characterization, and Structural Analysis. J Pharm Sci 2018; 107:1498-1511. [PMID: 29408480 DOI: 10.1016/j.xphs.2018.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
This work compares the conformational stability, backbone flexibility, and aggregation propensity of monomer and dimer fractions of an IgG1 monoclonal antibody (mAb) generated on UVA light exposure for up to 72 h collected by preparative size-exclusion chromatography, compared with unstressed control. UVA light exposure induced covalent aggregation, and fragmentation as measured by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and extensive oxidation of specific methionine residues (Met 257, Met 433, and Met 109) in both size fractions identified by reverse phase chromatography coupled to mass spectrometry. Compared with unstressed mAb, both the monomer and dimer fractionated from 72 h UVA light-exposed mAb had decreased thermal melting temperatures (Tm1) by 1.4°C as measured by differential scanning calorimetry, minor changes in tertiary structure as measured by near-UV CD, increased monomer loss, and aggregation on accelerated storage at 35°C. Hydrogen/deuterium exchange mass spectrometry identified local segments with increased flexibility in CH2 and CH3 domains of both size fractions, and decreased flexibility in few segments of Fab and CH1 domains in the dimer fraction. Segment 247-256 in heavy chain, an established aggregation hotspot in IgG1 mAbs had large increase in flexibility in both size fractions compared with unstressed mAb.
Collapse
|
80
|
Yang C, Gao X, Gong R. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics. Front Immunol 2018; 8:1860. [PMID: 29375551 PMCID: PMC5766897 DOI: 10.3389/fimmu.2017.01860] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
81
|
Abstract
The dynamic native, functional folded forms of proteins are unstable mainly because they readily unfold into flexible unstructured forms.
Collapse
Affiliation(s)
- Romas Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics
- University of Minnesota
- St Paul
- USA
| |
Collapse
|
82
|
Do H, Kang E, Yang B, Cha HJ, Choi YS. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase. Sci Rep 2017; 7:17267. [PMID: 29222480 PMCID: PMC5722948 DOI: 10.1038/s41598-017-17635-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Tyrosinase efficiently catalyzes the ortho-hydroxylation of monophenols and the oxidation of diphenols without any additional cofactors. Although it is of significant interest for the biosynthesis of catechol derivatives, the rapid catechol oxidase activity and inactivation of tyrosinase have hampered its practical utilization as a monophenol monooxygenase. Here, we prepared a functional tyrosinase that exhibited a distinguished monophenolase/diphenolase activity ratio (Vmax mono/ Vmax di = 3.83) and enhanced catalytic efficiency against L-tyrosine (kcat = 3.33 ± 0.18 s−1, Km = 2.12 ± 0.14 mM at 20 °C and pH 6.0). This enzyme was still highly active in ice water (>80%), and its activity was well conserved below 30 °C. In vitro DOPA modification, with a remarkably high yield as a monophenol monooxygenase, was achieved by the enzyme taking advantage of these biocatalytic properties. These results demonstrate the strong potential for this enzyme’s use as a monophenol monooxygenase in biomedical and industrial applications.
Collapse
Affiliation(s)
- Hyunsu Do
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Eungsu Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Byeongseon Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
83
|
The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19. [PMID: 27916504 DOI: 10.1016/j.addr.2016.11.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field.
Collapse
|
84
|
Jain T, Boland T, Lilov A, Burnina I, Brown M, Xu Y, Vásquez M. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 2017; 33:3758-3766. [DOI: 10.1093/bioinformatics/btx519] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tushar Jain
- Computational Biology, Adimab, Palo Alto, CA, USA
| | - Todd Boland
- Computational Biology, Adimab, Palo Alto, CA, USA
| | | | | | | | - Yingda Xu
- Protein Analytics, Adimab, Lebanon, NH, USA
| | | |
Collapse
|
85
|
A molecular modeling based method to predict elution behavior and binding patches of proteins in multimodal chromatography. J Chromatogr A 2017; 1511:45-58. [DOI: 10.1016/j.chroma.2017.06.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023]
|
86
|
Majee SB, Biswas GR. Computational methods in preformulation study for pharmaceutical solid dosage forms of therapeutic proteins. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDesign and delivery of protein-based biopharmaceuticals needs detailed planning and strict monitoring of intermediate processing steps, storage conditions and container-closure system to ensure a stable, elegant and biopharmaceutically acceptable dosage form. Selection of manufacturing process variables and conditions along with packaging specifications can be achieved through properly designed preformulation study protocol for the formulation. Thermodynamic stability and biological activity of therapeutic proteins depend on folding–unfolding and three-dimensional packing dynamics of amino acid network in the protein molecule. Lack of favourable environment may cause protein aggregation with loss in activity and even fatal immunological reaction. Although lyophilization can enhance the stability of protein-based formulations in the solid state, it can induce protein unfolding leading to thermodynamic instability. Formulation stabilizers such as preservatives can also result in aggregation of therapeutic proteins. Modern instrumental techniques in conjunction with computational tools enable rapid and accurate prediction of amino acid sequence, thermodynamic parameters associated with protein folding and detection of aggregation “hot-spots.” Globular proteins pose a challenge during investigations on their aggregation propensity. Biobetter therapeutic monoclonal antibodies with enhanced stability, solubility and reduced immunogenic potential can be designed through mutation of aggregation-prone zones. The objective of the present review article is to focus on the various analytical methods and computational approaches used in the study of thermodynamic stability and aggregation tendency of therapeutic proteins, with an aim to develop optimal and marketable formulation. Knowledge of protein dynamics through application of computational tools will provide the essential inputs and relevant information for successful and meaningful completion of preformulation studies on solid dosage forms of therapeutic proteins.
Collapse
|
87
|
Smith DJ, Shell MS. Can Simple Interaction Models Explain Sequence-Dependent Effects in Peptide Homodimerization? J Phys Chem B 2017; 121:5928-5943. [PMID: 28537734 DOI: 10.1021/acs.jpcb.7b03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of rapid methods to explain and predict peptide interactions, aggregation, and self-assembly has become important to understanding amyloid disease pathology, the shelf stability of peptide therapeutics, and the design of novel peptide materials. Although experimental aggregation databases have been used to develop correlative and statistical models, molecular simulations offer atomic-level details that potentially provide greater physical insight and allow one to single out the most explanatory simple models. Here, we outline one such approach using a case study that develops homodimerization models for serine-glycine peptides with various hydrophobic leucine mutations. Using detailed all-atom simulations, we calculate reference dimerization free energy profiles and binding constants for a small peptide library. We then use statistical methods to systematically assess whether simple interaction models, which do not require expensive simulations and free energy calculation, can capture them. Surprisingly, some combinations of a few simple scaling laws well recapitulate the detailed, all-atom results with high accuracy. Specifically, we find that a recently proposed phenomenological hydrophobic force law and coarse measures of entropic effects in binding offer particularly high explanatory power, underscoring the physical relevance to association that these driving forces can play.
Collapse
Affiliation(s)
- David J Smith
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
88
|
Meric G, Robinson AS, Roberts CJ. Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions. Annu Rev Chem Biomol Eng 2017; 8:139-159. [DOI: 10.1146/annurev-chembioeng-060816-101404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gulsum Meric
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Christopher J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
89
|
Austerberry JI, Dajani R, Panova S, Roberts D, Golovanov AP, Pluen A, van der Walle CF, Uddin S, Warwicker J, Derrick JP, Curtis R. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. Eur J Pharm Biopharm 2017; 115:18-30. [DOI: 10.1016/j.ejpb.2017.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 01/10/2023]
|
90
|
Huang RYC, Iacob RE, Krystek SR, Jin M, Wei H, Tao L, Das TK, Tymiak AA, Engen JR, Chen G. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:795-802. [PMID: 27527097 DOI: 10.1007/s13361-016-1452-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.Graphical Abstract.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Stanley R Krystek
- Molecular Structure and Design, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Mi Jin
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 6000 Thompson Road, Syracuse, NY, 13057, USA
| | - Hui Wei
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Hopewell, NJ, 08534, USA
| | - Li Tao
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Hopewell, NJ, 08534, USA
| | - Tapan K Das
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Hopewell, NJ, 08534, USA
| | - Adrienne A Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA.
| |
Collapse
|
91
|
Yang R, Jain T, Lynaugh H, Nobrega RP, Lu X, Boland T, Burnina I, Sun T, Caffry I, Brown M, Zhi X, Lilov A, Xu Y. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. MAbs 2017; 9:646-653. [PMID: 28281887 DOI: 10.1080/19420862.2017.1290753] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Susceptibility of methionine to oxidation is an important concern for chemical stability during the development of a monoclonal antibody (mAb) therapeutic. To minimize downstream risks, leading candidates are usually screened under forced oxidation conditions to identify oxidation-labile molecules. Here we report results of forced oxidation on a large set of in-house expressed and purified mAbs with variable region sequences corresponding to 121 clinical stage mAbs. These mAb samples were treated with 0.1% H2O2 for 24 hours before enzymatic cleavage below the hinge, followed by reduction of inter-chain disulfide bonds for the detection of the light chain, Fab portion of heavy chain (Fd) and Fc by liquid chromatography-mass spectrometry. This high-throughput, middle-down approach allows detection of oxidation site(s) at the resolution of 3 distinct segments. The experimental oxidation data correlates well with theoretical predictions based on the solvent-accessible surface area of the methionine side-chains within these segments. These results validate the use of upstream computational modeling to predict mAb oxidation susceptibility at the sequence level.
Collapse
Affiliation(s)
- Rong Yang
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | - Tushar Jain
- b Computational Biology, Adimab , Palo Alto , CA , USA
| | | | | | - Xiaojun Lu
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | - Todd Boland
- b Computational Biology, Adimab , Palo Alto , CA , USA
| | | | - Tingwan Sun
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | | | | | - Xiaoyong Zhi
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | | | - Yingda Xu
- a Protein Analytics, Adimab , Lebanon , NH , USA
| |
Collapse
|
92
|
Robinson JR, Karkov HS, Woo JA, Krogh BO, Cramer SM. QSAR models for prediction of chromatographic behavior of homologous Fab variants. Biotechnol Bioeng 2017; 114:1231-1240. [DOI: 10.1002/bit.26236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/16/2016] [Accepted: 12/04/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Julie R. Robinson
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy New York 12180
| | - Hanne S. Karkov
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy New York 12180
- Downstream Technology; Novo Nordisk A/S; DK-2760 Maaloev Denmark
| | - James A. Woo
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy New York 12180
| | - Berit O. Krogh
- Expression Technologies; Novo Nordisk A/S; DK-2760 Maaloev Denmark
| | - Steven M. Cramer
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy New York 12180
| |
Collapse
|
93
|
Courtois F, Agrawal NJ, Lauer TM, Trout BL. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs 2016; 8:99-112. [PMID: 26514585 DOI: 10.1080/19420862.2015.1112477] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.
Collapse
Affiliation(s)
- Fabienne Courtois
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Neeraj J Agrawal
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Timothy M Lauer
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Bernhardt L Trout
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| |
Collapse
|
94
|
Kalonia C, Toprani V, Toth R, Wahome N, Gabel I, Middaugh CR, Volkin DB. Effects of Protein Conformation, Apparent Solubility, and Protein–Protein Interactions on the Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody. J Phys Chem B 2016; 120:7062-75. [DOI: 10.1021/acs.jpcb.6b03878] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cavan Kalonia
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Vishal Toprani
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Ronald Toth
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Newton Wahome
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Ian Gabel
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - C. Russell Middaugh
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B. Volkin
- Department
of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization
Center, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
95
|
Kohli N, Jain N, Geddie ML, Razlog M, Xu L, Lugovskoy AA. A novel screening method to assess developability of antibody-like molecules. MAbs 2016; 7:752-8. [PMID: 25961854 DOI: 10.1080/19420862.2015.1048410] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monoclonal antibodies and antibody-like molecules represent a fast-growing class of bio-therapeutics that has rapidly transformed patient care in a variety of disease indications. The discovery of antibodies that bind to particular targets with high affinity is now a routine exercise and a variety of in vitro and in vivo techniques are available for this purpose. However, it is still challenging to identify antibodies that, in addition to having the desired biological effect, also express well, remain soluble at different pH levels, remain stable at high concentrations, can withstand high shear stress, and have minimal non-specific interactions. Many promising antibody programs have ultimately failed in development due to the problems associated with one of these factors. Here, we present a simple high-performance liquid chromatography (HPLC)-based screening method to assess these developability factors earlier in discovery process. This method is robust and requires only microgram quantities of proteins. Briefly, we show that for antibodies injected on a commercially available pre-packed Zenix HPLC column, the retention times are inversely related to their colloidal stability with antibodies prone to precipitation or aggregation retained longer on the column with broader peaks. By simply varying the salt content of running buffer, we were also able to estimate the nature of interactions between the antibodies and the column. We believe this approach should generally be applicable to assessment of the developability of other classes of bio-therapeutic molecules, and that the addition of this simple tool early in the discovery process will lead to selection of molecules with improved developability characteristics.
Collapse
Affiliation(s)
- Neeraj Kohli
- a Merrimack Pharmaceuticals, Inc. ; Cambridge , MA , USA
| | | | | | | | | | | |
Collapse
|
96
|
Rathore AS, Singh SK. Production of Protein Therapeutics in the Quality by Design (QbD) Paradigm. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_5004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
97
|
Karkov HS, Woo J, Krogh BO, Ahmadian H, Cramer SM. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries. J Chromatogr A 2015; 1426:102-9. [DOI: 10.1016/j.chroma.2015.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
|
98
|
Woo J, Parimal S, Brown MR, Heden R, Cramer SM. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces. J Chromatogr A 2015; 1412:33-42. [DOI: 10.1016/j.chroma.2015.07.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/23/2023]
|
99
|
Quigley A, Williams DR. The second virial coefficient as a predictor of protein aggregation propensity: A self-interaction chromatography study. Eur J Pharm Biopharm 2015; 96:282-90. [PMID: 26259782 PMCID: PMC4644993 DOI: 10.1016/j.ejpb.2015.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
The second osmotic virial coefficients (b2) of four proteins – lysozyme, recombinant human lactoferrin, concanavalin A and catalase were measured by self-interaction chromatography (SIC) in solutions of varying salt type, concentration and pH. Protein aggregate sizes based on the initial hydrodynamic radius of the protein solution species present were measured using dynamic light scattering, and the relationship between b2 and protein aggregate size was studied. A linear correlation was established between b2 values and protein aggregate hydrodynamic size for all proteins, and for almost all solution conditions. Aggregate sizes of <∼10 nm, indicative of non-aggregated protein systems, were consistently observed to have b2 values >0. The observed b2 trends as a function of solution conditions were very much protein dependent, with notable trends including the existence of attractive interactions (negative b2 values) at low ionic strengths for catalase and concanavalin A, and the highly positive b2 values observed for lactoferrin over a wide range of solution conditions, reflecting lactoferrin’s innately high stability. It is concluded that the quantification of protein–protein interactions using SIC based b2 data is a potentially valuable screening tool for predicting protein aggregation propensity.
Collapse
Affiliation(s)
- A Quigley
- Surfaces and Particle Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2BY, UK
| | - D R Williams
- Surfaces and Particle Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2BY, UK.
| |
Collapse
|
100
|
Woo JA, Chen H, Snyder MA, Chai Y, Frost RG, Cramer SM. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. J Chromatogr A 2015; 1407:58-68. [DOI: 10.1016/j.chroma.2015.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
|