51
|
Minelli M, Campagnoli S, De Angelis MG, Doghieri F, Sarti GC. Predictive Model for the Solubility of Fluid Mixtures in Glassy Polymers. Macromolecules 2011. [DOI: 10.1021/ma200602d] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Minelli
- Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali (DICMA), Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - S. Campagnoli
- Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali (DICMA), Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - M. G. De Angelis
- Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali (DICMA), Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - F. Doghieri
- Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali (DICMA), Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - G. C. Sarti
- Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali (DICMA), Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
52
|
Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases. Adv Colloid Interface Sci 2011; 164:89-99. [PMID: 21094931 DOI: 10.1016/j.cis.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022]
Abstract
Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4), C(2)H(6), C(3)H(8), C(4)H(10), C(2)H(4), C(3)H(6), C(4)H(8) - 1, C(2)H(2), C(3)H(4)-m (methylacetylene) and C(3)H(4)-a (allen) is determined by using two above mentioned approaches. All of this allows calculating preliminary the permeability parameters of above mentioned gases for most part of known polymers based on limited experimental data. The new correlations suggested demonstrate that the available free volume of polymeric matrix plays an important role in providing of rate and selectivity of gas diffusion for glassy-like polymers; the rate and selectivity of gas diffusion in rubbers is affected mainly by cohesion energy density (CED) the both polymer parameters being calculated by traditional additive group contributions technique. Results of present study are demonstrated by calculation of expected permeability parameters in relation to lower hydrocarbons and some toxic gases for polynorbornene based polymers, PIM and PTMSP outlining potential of practical application for new membrane polymers.
Collapse
|
53
|
Syromolotov AV, Bermeshev MV, Gringolts ML, Kazmin AG, Finkelshtein ES. Synthesis and polymerization of 3-tris(trimethylsyloxy)silyltricyclononene-7. DOKLADY CHEMISTRY 2011. [DOI: 10.1134/s0012500811030037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
54
|
Jansen JC, Friess K, Drioli E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.10.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Abstract
The unique combination of chemical, thermal, and mechanical stability, high fractional free volume, low refractive index, low surface energy, and wide optical transparency has led to growing interest in Teflon Amorphous Fluoropolymers (AFs) for a wide spectrum of applications ranging from chemical separations and sensors to bioassay platforms. New opportunities arise from the incorporation of nanoscale materials in Teflon AFs. In this chapter, we highlight fractional free volume - the most important property of Teflon AFs - with the aim of clarifying the unique transport behavior through Teflon AF membranes. We then review state-of-the-art developments based on Teflon AF platforms by focusing on the chemistry behind the applications.
Collapse
|
56
|
Affiliation(s)
- Yuri Yampolskii
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, 29, Leninsky Pr., Moscow, Russia
| |
Collapse
|
57
|
Tetsuka H, Hagiwara M, Kaita S. Addition-type poly(norbornene)s with siloxane substituents: synthesis, properties and nanoporous membrane. Polym J 2010. [DOI: 10.1038/pj.2010.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
58
|
Yevlampieva NP, Gringol’ts ML, Zaitseva II, Ryumtsev EI. Molecular properties of silicon-substituted polymers for gas-separation membranes. POLYMER SCIENCE SERIES C 2010. [DOI: 10.1134/s1811238210010108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Feldstein MM, Bermesheva EV, Jean YC, Misra GP, Siegel RA. Free volume, adhesion, and viscoelastic properties of model nanostructured pressure-sensitive adhesive based on stoichiometric complex of poly(N-vinyl pyrrolidone) and poly(ethylene glycol) of disparate chain lengths. J Appl Polym Sci 2010. [DOI: 10.1002/app.32917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
60
|
Gringolts M, Bermeshev M, Yampolskii Y, Starannikova L, Shantarovich V, Finkelshtein E. New High Permeable Addition Poly(tricyclononenes) with Si(CH3)3 Side Groups. Synthesis, Gas Permeation Parameters, and Free Volume. Macromolecules 2010. [DOI: 10.1021/ma100656e] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Gringolts
- A. V. Topchiev Institute of Petrochemical Synthesis, 29, Leninsky Prospekt, 119991, Moscow, Russia
| | - M. Bermeshev
- A. V. Topchiev Institute of Petrochemical Synthesis, 29, Leninsky Prospekt, 119991, Moscow, Russia
| | - Yu. Yampolskii
- A. V. Topchiev Institute of Petrochemical Synthesis, 29, Leninsky Prospekt, 119991, Moscow, Russia
| | - L. Starannikova
- A. V. Topchiev Institute of Petrochemical Synthesis, 29, Leninsky Prospekt, 119991, Moscow, Russia
| | - V. Shantarovich
- N. N. Semenov Institute of Chemical Physics, 4 Kosygina ul., 119334, Moscow, Russia
| | - E. Finkelshtein
- A. V. Topchiev Institute of Petrochemical Synthesis, 29, Leninsky Prospekt, 119991, Moscow, Russia
| |
Collapse
|
61
|
Emmler T, Heinrich K, Fritsch D, Budd PM, Chaukura N, Ehlers D, Rätzke K, Faupel F. Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units. Macromolecules 2010. [DOI: 10.1021/ma1008786] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Thomas Emmler
- GKSS-Forschungszentrum Geesthacht GmbH, Institut für Polymerforschung, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Kathleen Heinrich
- GKSS-Forschungszentrum Geesthacht GmbH, Institut für Polymerforschung, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Detlev Fritsch
- GKSS-Forschungszentrum Geesthacht GmbH, Institut für Polymerforschung, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Peter M. Budd
- Organic Materials Innovation Centre, School of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Nhamo Chaukura
- Organic Materials Innovation Centre, School of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Dennis Ehlers
- Technische Fakultät der Universität Kiel, Institut für Materialwissenschaft, Materialverbunde, Kaiserstrasse 2, 24143 Kiel, Germany
| | - Klaus Rätzke
- Technische Fakultät der Universität Kiel, Institut für Materialwissenschaft, Materialverbunde, Kaiserstrasse 2, 24143 Kiel, Germany
| | - Franz Faupel
- Technische Fakultät der Universität Kiel, Institut für Materialwissenschaft, Materialverbunde, Kaiserstrasse 2, 24143 Kiel, Germany
| |
Collapse
|
62
|
McKeown NB, Budd PM. Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules 2010. [DOI: 10.1021/ma1006396] [Citation(s) in RCA: 677] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neil B. McKeown
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Peter M. Budd
- School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
63
|
Polycarbosilanes Based on Silicon-Carbon Cyclic Monomers. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2009_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
64
|
|
65
|
Volkov AV, Volkov VV, Khotimskii VS. Membranes based on poly[(1-trimethylsilyl)-1-propyne] for liquid-liquid separation. POLYMER SCIENCE SERIES A 2009. [DOI: 10.1134/s0965545x09110212] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Ma R, Hou Y, Gao J, Bao F. Recent Progress in the Vinylic Polymerization and Copolymerization of Norbornene Catalyzed by Transition Metal Catalysts. POLYM REV 2009. [DOI: 10.1080/15583720903048276] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
67
|
Gringolts M, Bermeshev M, Makovetsky K, Finkelshtein E. Effect of substituents on addition polymerization of norbornene derivatives with two Me3Si-groups using Ni(II)/MAO catalyst. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
68
|
Gringolts ML, Bermeshev MV, Kaz’min AG, Finkelshtein ES. New quadricyclane-based cyclic polycarbosilanes. DOKLADY CHEMISTRY 2009. [DOI: 10.1134/s0012500809020074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Yampolskii YP. Amorphous perfluorinated membrane materials: Structure, properties and application. RUSS J GEN CHEM+ 2009. [DOI: 10.1134/s1070363209030475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Tetsuka H, Isobe K, Hagiwara M. Synthesis and Properties of Addition-Type Poly(norbornene)s with Siloxane Substituents. Polym J 2009. [DOI: 10.1295/polymj.pj2009010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Evlampieva NP, Gringol’ts ML, Zaitseva II, Okatova OV, Dmitrieva TS, Khlyabich PP, Ryumtsev EI. Conformational properties of metathesis poly(trimethylsilylnorbornene) in solutions. RUSS J APPL CHEM+ 2008. [DOI: 10.1134/s1070427208110281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
72
|
Liu B, Li Y, Mathews AS, Wang Y, Yan W, Abraham S, Ha CS, Park DW, Kim I. Synthesis of vinyl-type functionalized polynorbornenes with cyclic pendant imide side groups by using palladium-based catalyst for low dielectric constant materials. REACT FUNCT POLYM 2008. [DOI: 10.1016/j.reactfunctpolym.2008.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Carrera N, Gutiérrez E, Benavente R, Villavieja M, Albéniz A, Espinet P. Stannylated Polynorbornenes as New Reagents for a Clean Stille Reaction. Chemistry 2008; 14:10141-8. [DOI: 10.1002/chem.200800558] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Yevlampieva NP, Zaitseva II, Gringolts ML, Khlyabich PP, Rogan YV, Ryumtsev EI. Hydrodynamic and conformational properties of silicon-substituted addition-type polynorbornene macromolecules. POLYMER SCIENCE SERIES A 2008. [DOI: 10.1134/s0965545x0810009x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
75
|
Makovetskii KL. Catalytic addition polymerization of norbornene and its derivatives and copolymerization of norbornene with olefins. POLYMER SCIENCE SERIES C 2008. [DOI: 10.1134/s1811238208010025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
76
|
Sujith S, Noh EK, Lee BY, Han JW. Synthesis, characterization, and norbornene polymerization of η3-benzylnickel(II) complexes of N-heterocyclic carbenes. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.03.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Rudel M, Kruse J, Rätzke K, Faupel F, Yampolskii YP, Shantarovich VP, Dlubek G. Temperature Dependence of Positron Annihilation Lifetimes in High Permeability Polymers: Amorphous Teflons AF. Macromolecules 2008. [DOI: 10.1021/ma071563z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
78
|
Tokarev AV, Bondarenko GN, Yampol’skii YP. Chain structure and stiffness of Teflon AF glassy amorphous fluoropolymers. POLYMER SCIENCE SERIES A 2007. [DOI: 10.1134/s0965545x0708007x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|