51
|
Brooks WLA, Sumerlin BS. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem Rev 2015; 116:1375-97. [DOI: 10.1021/acs.chemrev.5b00300] [Citation(s) in RCA: 552] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
52
|
Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery. Acta Biomater 2015; 17:193-200. [PMID: 25662913 DOI: 10.1016/j.actbio.2015.01.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
Redox-responsive micelles self-assembled from dynamic covalent block copolymers with double disulfide linkage in the backbone have been developed successfully. The amphiphilic block copolymers PEG-PLA associated with complementary H-bonding sequences can self-assemble into spherical micelles in aqueous media with sizes from 34 nm to 107 nm with different molar mass of PEG and PLA. Moreover, in vitro drug release analyses indicate that reductive environment can result in triggered drug release profiles. The glutathione (GSH) mediated intracellular drug delivery was investigated against HeLa human cervical carcinoma cell line. Flow cytometry and fluorescence microscopy measurements demonstrated that the micelles exhibited faster drug release in glutathione monoester (GSH-OEt) pretreated HeLa cells than that in the nonpretreated cells. Cytotoxicity assay of DOX-loaded micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated HeLa cells than that of the nonpretreated ones. These reduction-responsive, biodegradable and biocompatibility micelles could provide a favorable platform to construct excellent drug delivery systems for cancer therapy.
Collapse
|
53
|
Yang H, Zhang C, Li C, Liu Y, An Y, Ma R, Shi L. Glucose-responsive polymer vesicles templated by α-CD/PEG inclusion complex. Biomacromolecules 2015; 16:1372-81. [PMID: 25803265 DOI: 10.1021/acs.biomac.5b00155] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymeric nanoparticles with glucose-responsiveness are of great interest in developing a self-regulated drug delivery system. In this work, glucose-responsive polymer vesicles were fabricated based on the complexation between a glucosamine (GA)-containing block copolymer PEG45-b-P(Asp-co-AspGA) and a phenylboronic acid (PBA)-containing block copolymer PEG114-b-P(Asp-co-AspPBA) with α-CD/PEG45 inclusion complex as the sacrificial template. The obtained polymer vesicles composed of cross-linked P(Asp-co-AspGA)/P(Asp-co-AspPBA) layer as wall and PEG chains as both inner and outer coronas. The vesicular morphology was observed by transmission electron microscopy (TEM), and the glucose-responsiveness was investigated by monitoring the variations of hydrodynamic diameter (Dh) and light scattering intensity (LSI) in the polymer vesicle solution with glucose using dynamic light scattering (DLS). Vancomycin as a model drug was encapsulated in the polymer vesicles and sugar-triggered drug release was carried out. This kind of polymer vesicle may be a promising candidate for glucose-responsive drug delivery.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chang Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
54
|
Dai C, Yang D, Fu X, Chen Q, Zhu C, Cheng Y, Wang L. A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging. Polym Chem 2015. [DOI: 10.1039/c5py00733j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, four boron ketoiminate-based conjugated polymers P1–P4 are designed and synthesized via Suzuki polymerization.
Collapse
Affiliation(s)
- Chunhui Dai
- Key Lab of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Dongliang Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Xiao Fu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Qingmin Chen
- Key Lab of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Chengjian Zhu
- Key Lab of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
55
|
Cheng F, Wan WM, Zhou Y, Sun XL, Bonder EM, Jäkle F. Borinic acid block copolymers: new building blocks for supramolecular assembly and sensory applications. Polym Chem 2015. [DOI: 10.1039/c5py00607d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Borinic acid functional groups were incorporated into block copolymers via RAFT polymerization and their supramolecular assembly and sensor applications were investigated.
Collapse
Affiliation(s)
- Fei Cheng
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
| | - Wen-Ming Wan
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology
| | - Yan Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Xiao-Li Sun
- Department of Material Physics and Chemistry
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Edward M. Bonder
- Department of Biological Sciences
- Rutgers University-Newark
- 195 University Avenue
- Newark
- USA
| | - Frieder Jäkle
- Department of Chemistry
- Rutgers University Newark
- Newark
- USA
| |
Collapse
|
56
|
Jeong ES, Park C, Kim KT. Doubly responsive polymersomes towards monosaccharides and temperature under physiologically relevant conditions. Polym Chem 2015. [DOI: 10.1039/c5py00302d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new class of doubly-responsive block copolymers could be utilized as new delivery vehicles for cargo molecules such as insulin.
Collapse
Affiliation(s)
- Eun Sun Jeong
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 689-798
- Korea
| | - Chiyoung Park
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 689-798
- Korea
| | - Kyoung Taek Kim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 689-798
- Korea
| |
Collapse
|
57
|
|
58
|
Yang Q, He C, Xu Y, Liu B, Shao Z, Zhu Z, Hou Y, Gong B, Shen YM. Chitosan oligosaccharide copolymer micelles with double disulphide linkage in the backbone associated by H-bonding duplexes for targeted intracellular drug delivery. Polym Chem 2015. [DOI: 10.1039/c4py01473a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folic acid conjugated block copolymer micelles with H-bonding associated double disulphide linkage in the backbone were developed.
Collapse
Affiliation(s)
- Qinglai Yang
- Shanghai Center for Systems Biomedicine
- Key Laboratory of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Changyu He
- Shanghai Key Laboratory of Gastric Neoplasms
- Department of Surgery
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Yuhong Xu
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Bingya Liu
- Shanghai Center for Systems Biomedicine
- Key Laboratory of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhifeng Shao
- Bio-ID Center
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms
- Department of Surgery
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Yongtai Hou
- Shanghai Qisheng Company
- Shanghai 201106
- China
| | - Bing Gong
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
- Department of Chemistry
| | - Yu-Mei Shen
- Shanghai Center for Systems Biomedicine
- Key Laboratory of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
59
|
Yang H, Ma R, Yue J, Li C, Liu Y, An Y, Shi L. A facile strategy to fabricate glucose-responsive vesicles via a template of thermo-sensitive micelles. Polym Chem 2015. [DOI: 10.1039/c5py00170f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Polymer vesicles fabricated based on the complexation between PBA- and GA containing block copolymers exhibited glucose-responsiveness at physiological pH.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Jing Yue
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Chang Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|
60
|
Aguirre-Chagala YE, Santos JL, Huang Y, Herrera-Alonso M. Phenylboronic Acid-Installed Polycarbonates for the pH-Dependent Release of Diol-Containing Molecules. ACS Macro Lett 2014; 3:1249-1253. [PMID: 35610834 DOI: 10.1021/mz500594m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Environmental responsiveness is an appealing trait of emerging polymeric materials, as shown for a variety of pH-responsive drug delivery systems. The chemical versatility of the conjugation site and conjugate lability to physiologically relevant changes in pH will largely determine their applicability. Herein, we report on the use of a drug-polymer complex based on boronic acid-functionalized polycarbonates (PPBC) as the substrate for the pH-sensitive delivery of a diol-containing drug, capecitabine (CAPE). Complexation of CAPE with a PEGylated-PPBC block copolymer, via boronic ester formation, resulted in amphiphiles capable of self-assembling into spherical nanoparticles. We examined nanoparticle stability and release kinetics in neutral and acidic media and relate differences in release profiles and particle stability with changes to polymer chemistry. Comparison of complexed nanoparticles with their noncomplex analogues revealed striking differences in release rate and particle stability. Illustrated herein for capecitabine, the pH-sensitive dissociation of boronate esters from PPBCs can be applied in a general manner to diol- or catechol-containing solutes, demonstrating the utility of these polymers for biomedical applications.
Collapse
Affiliation(s)
- Yanet E. Aguirre-Chagala
- Department of Materials
Science
and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - José L. Santos
- Department of Materials
Science
and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuxuan Huang
- Department of Materials
Science
and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Margarita Herrera-Alonso
- Department of Materials
Science
and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
61
|
Lee SY, Lee H, In I, Park SY. pH/redox/photo responsive polymeric micelle via boronate ester and disulfide bonds with spiropyran-based photochromic polymer for cell imaging and anticancer drug delivery. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
62
|
Watahiki R, Sato K, Suwa K, Niina S, Egawa Y, Seki T, Anzai JI. Multilayer films composed of phenylboronic acid-modified dendrimers sensitive to glucose under physiological conditions. J Mater Chem B 2014; 2:5809-5817. [DOI: 10.1039/c4tb00676c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
63
|
Wan WM, Cheng F, Jäkle F. A Borinic Acid Polymer with Fluoride Ion- and Thermo-responsive Properties that are Tunable over a Wide Temperature Range. Angew Chem Int Ed Engl 2014; 53:8934-8. [DOI: 10.1002/anie.201403703] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/13/2014] [Indexed: 11/11/2022]
|
64
|
Wan WM, Cheng F, Jäkle F. A Borinic Acid Polymer with Fluoride Ion- and Thermo-responsive Properties that are Tunable over a Wide Temperature Range. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
65
|
Zhu F, Yang Q, Zhuang Y, Zhang Y, Shao Z, Gong B, Shen YM. Self-assembled polymeric micelles based on THP and THF linkage for pH-responsive drug delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
66
|
Yang T, Ji R, Deng XX, Du FS, Li ZC. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation. SOFT MATTER 2014; 10:2671-2678. [PMID: 24647364 DOI: 10.1039/c3sm53059k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel glucose-responsive hydrogel system based on dynamic covalent chemistry and inclusion complexation was described. Hydrogels are formed by simply mixing the solutions of three components: poly(ethylene oxide)-b-poly vinyl alcohol (PEO-b-PVA) diblock polymer, α-cyclodextrin (α-CD) and phenylboronic acid (PBA)-terminated PEO crosslinker. Dynamic covalent bonds between PVA and PBA provide sugar-responsive crosslinking, and the inclusion complexation between PEO and α-CD can promote hydrogel formation and enhance hydrogel stability. The ratios of the three components have a remarkable effect on the gelation time and the mechanical properties of the final gels. In rheological measurements, the hydrogels are demonstrated to possess solid-like behaviour and good structural recovery ability after yielding. The sugar-responsiveness of the hydrogels was examined by protein loading and release experiments, and the results indicate that this property is also dependent on the compositions of the gels; at a proper component ratio, a new glucose-responsive hydrogel system operating at physiological pH can be obtained. The combination of good biocompatibility of the three components and the easy preparation of hydrogels with tunable glucose-responsiveness may enable an alternative design of hydrogel systems that finds potential applications in biomedical and pharmaceutical fields, such as treatment of diabetes.
Collapse
Affiliation(s)
- Ting Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
67
|
Ye T, Jiang X, Xu W, Zhou M, Hu Y, Wu W. Tailoring the glucose-responsive volume phase transition behaviour of Ag@poly(phenylboronic acid) hybrid microgels: from monotonous swelling to monotonous shrinking upon adding glucose at physiological pH. Polym Chem 2014. [DOI: 10.1039/c3py01564e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
68
|
Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 2014. [DOI: 10.1039/c3py01202f] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
69
|
Ye T, Yan S, Hu Y, Ding L, Wu W. Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polym Chem 2014. [DOI: 10.1039/c3py00778b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A glucose-responsive nanogel that can undergo reversible and rapid volume phase transitions is made of ConA interpenetrated in a poly(NIPAM) network.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Suting Yan
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Yumei Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Li Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
70
|
Yuan W, Shen T, Wang J, Zou H. Formation–dissociation of glucose, pH and redox triply responsive micelles and controlled release of insulin. Polym Chem 2014. [DOI: 10.1039/c4py00463a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. NATURE MATERIALS 2013; 12:991-1003. [PMID: 24150417 DOI: 10.1038/nmat3776] [Citation(s) in RCA: 4072] [Impact Index Per Article: 370.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/10/2013] [Indexed: 05/17/2023]
Abstract
Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
Collapse
Affiliation(s)
- Simona Mura
- Institut Galien Paris-Sud, Université Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | | | | |
Collapse
|
72
|
Wu W, Zhou S. Responsive materials for self-regulated insulin delivery. Macromol Biosci 2013; 13:1464-77. [PMID: 23839986 DOI: 10.1002/mabi.201300120] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/11/2013] [Indexed: 01/17/2023]
Abstract
With diabetes mellitus becoming an important public health concern, insulin-delivery systems are attracting increasing interest from both scientific and technological researchers. This feature article covers the present state-of-the-art glucose-responsive insulin-delivery system (denoted as GRIDS), based on responsive polymer materials, a promising system for self-regulated insulin delivery. Three types of GRIDS are discussed, based on different fundamental mechanisms of glucose-recognition, with: a) glucose enzyme, b) glucose binding protein, and c) synthetic boronic acid as the glucose-sensitive component. At the end, a personal perspective on the major issues yet to be worked out in future research is provided.
Collapse
Affiliation(s)
- Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | | |
Collapse
|