51
|
Abstract
High sensitivity nanosensors utilize optical, mechanical, electrical, and magnetic relaxation properties to push detection limits of biomarkers below previously possible concentrations. The unique properties of nanomaterials and nanotechnology are exploited to design biomarker diagnostics. High-sensitivity recognition is achieved by signal and target amplification along with thorough pre-processing of samples. In this tutorial review, we introduce the type of detection signals read by nanosensors to detect extremely small concentrations of biomarkers and provide distinctive examples of high-sensitivity sensors. The use of such high-sensitivity nanosensors can offer earlier detection of disease than currently available to patients and create significant improvements in clinical outcomes.
Collapse
Affiliation(s)
- Magdalena Swierczewska
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr 1C22, Bethesda, MD 20892, USA. Fax: +1-301-480-1613; Tel: +1-301-451-4246
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Stony Brook, NY 11794, USA
| | - Gang Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr 1C22, Bethesda, MD 20892, USA. Fax: +1-301-480-1613; Tel: +1-301-451-4246
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637007, China
| | - Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr 1C22, Bethesda, MD 20892, USA. Fax: +1-301-480-1613; Tel: +1-301-451-4246
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr 1C22, Bethesda, MD 20892, USA. Fax: +1-301-480-1613; Tel: +1-301-451-4246
| |
Collapse
|
52
|
Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012; 41:4306-34. [PMID: 22481569 DOI: 10.1039/c2cs15337h] [Citation(s) in RCA: 706] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.
Collapse
Affiliation(s)
- Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hui W, Shi F, Yan K, Peng M, Cheng X, Luo Y, Chen X, Roy VAL, Cui Y, Wang Z. Fe3O4/Au/Fe3O4 nanoflowers exhibiting tunable saturation magnetization and enhanced bioconjugation. NANOSCALE 2012; 4:747-751. [PMID: 22193883 DOI: 10.1039/c2nr11489e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Composite nanoparticles have proved to be promising in a wide range of biotechnological applications. In this paper, we report on a facile method to synthesize novel Fe(3)O(4)/Au/Fe(3)O(4) nanoparticles (nanoflowers) that integrate hybrid components and surface types. We demonstrate that relative to conventional nanoparticles with core/shell configuration, such nanoflowers not only retain their surface plasmon property but also allow for 170% increase in the saturation magnetization and 23% increase in the conjugation efficiency due to the synergistic co-operation between the hierarchical structures. Moreover, we demonstrate that the magnetic properties of such composite nanoparticles can be tuned by controlling the size of additional petals (Fe(3)O(4) phase). These novel building blocks could open up novel and exciting vistas in nanomedicine for broad applications such as biosensing, cancer diagnostics and therapeutics, targeted delivery, and imaging.
Collapse
Affiliation(s)
- Wenli Hui
- The College of Life Sciences Northwest University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wang J, Xia T, Wu C, Feng J, Meng F, Shi Z, Meng J. Self-assembled magnetite peony structures with petal-like nanoslices: one-step synthesis, excellent magnetic and water treatment properties. RSC Adv 2012. [DOI: 10.1039/c2ra01229d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
55
|
Ji X, Lu W, Ma H. Shape-controlled synthesis of porous screw-cap-like indium tin oxide and its application for gas sensing. CrystEngComm 2012. [DOI: 10.1039/c2ce26181b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Aronova M, Leapman R. Development of Electron Energy Loss Spectroscopy in the Biological Sciences. MRS BULLETIN 2012; 37:53-62. [PMID: 23049161 PMCID: PMC3465455 DOI: 10.1557/mrs.2011.329] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The high sensitivity of electron energy loss spectroscopy (EELS) for detecting light elements at the nanoscale makes it a valuable technique for application to biological systems. In particular, EELS provides quantitative information about elemental distributions within subcellular compartments, specific atoms bound to individual macromolecular assemblies, and the composition of bionanoparticles. The EELS data can be acquired either in the fixed beam energy-filtered transmission electron microscope (EFTEM) or in the scanning transmission electron microscope (STEM), and recent progress in the development of both approaches has greatly expanded the range of applications for EELS analysis. Near single atom sensitivity is now achievable for certain elements bound to isolated macromolecules, and it becomes possible to obtain three-dimensional compositional distributions from sectioned cells through EFTEM tomography.
Collapse
Affiliation(s)
- M.A. Aronova
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - R.D. Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
57
|
Wang H, Shrestha TB, Basel MT, Dani RK, Seo GM, Balivada S, Pyle MM, Prock H, Koper OB, Thapa PS, Moore D, Li P, Chikan V, Troyer DL, Bossmann SH. Magnetic-Fe/Fe(3)O(4)-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2012; 3:444-55. [PMID: 23016149 PMCID: PMC3388369 DOI: 10.3762/bjnano.3.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/24/2012] [Indexed: 05/20/2023]
Abstract
The targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe(3)O(4) magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field. For the purpose of targeted delivery, this nanoplatform was loaded into tumor-homing double-stable RAW264.7 cells (mouse monocyte/macrophage-like cells (Mo/Ma)), which have been engineered to express intracellular carboxylesterase (InCE) upon addition of doxycycline by a Tet-On Advanced system. The nanoplatform was taken up efficiently by these tumor-homing cells. They showed low toxicity even at high nanoplatform concentration. SN38 was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating and by activating the immune system.
Collapse
Affiliation(s)
- Hongwang Wang
- Kansas State University, Department of Chemistry, CBC 201, Manhattan, KS 66506
| | - Tej B Shrestha
- Kansas State University, Anatomy & Physiology, Coles 228, Manhattan, KS 66506
| | - Matthew T Basel
- Kansas State University, Anatomy & Physiology, Coles 228, Manhattan, KS 66506
| | - Raj Kumar Dani
- Kansas State University, Department of Chemistry, CBC 201, Manhattan, KS 66506
| | - Gwi-Moon Seo
- Kansas State University, Anatomy & Physiology, Coles 228, Manhattan, KS 66506
| | - Sivasai Balivada
- Kansas State University, Anatomy & Physiology, Coles 228, Manhattan, KS 66506
| | - Marla M Pyle
- Kansas State University, Anatomy & Physiology, Coles 228, Manhattan, KS 66506
| | - Heidy Prock
- Kansas State University, Department of Chemistry, CBC 201, Manhattan, KS 66506
| | - Olga B Koper
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201
| | - Prem S Thapa
- University of Kansas, KU Microscopy & Analytical Imaging Laboratory, 1043 Haworth, Lawrence, KS 66045
| | - David Moore
- University of Kansas, KU Microscopy & Analytical Imaging Laboratory, 1043 Haworth, Lawrence, KS 66045
| | - Ping Li
- Kansas State University, Department of Chemistry, CBC 201, Manhattan, KS 66506
| | - Viktor Chikan
- Kansas State University, Department of Chemistry, CBC 201, Manhattan, KS 66506
| | - Deryl L Troyer
- Kansas State University, Anatomy & Physiology, Coles 228, Manhattan, KS 66506
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, CBC 201, Manhattan, KS 66506
| |
Collapse
|
58
|
Rajendran R, Muralidharan R, Santhana Gopalakrishnan R, Chellamuthu M, Ponnusamy SU, Manikandan E. Controllable Synthesis of Single-Crystalline Fe3O4 Nanorice by a One-Pot, Surfactant-Assisted Hydrothermal Method and Its Properties. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100840] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
59
|
Leung KCF, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Ho WKW, Chung BCT. Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 2011; 41:1911-28. [PMID: 22037623 DOI: 10.1039/c1cs15213k] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This critical review provides an overview of current research activities that focused on the synthesis and application of multi-functional gold and iron oxide (Au-Fe(x)O(y)) hybrid nanoparticles and nanocomposites. An introduction of synthetic strategies that have been developed for generating Au-Fe(x)O(y) nanocomposites with different nanostructures is presented. Surface functionalisation and bioconjugation of these hybrid nanoparticles and nanocomposites are also reviewed. A variety of applications such as theranostics, gene delivery, biosensing, cell sorting, bio-separation, and catalysis is discussed and highlighted. Finally, future trends and perspectives of these sophisticated nanocomposites are outlined. Underpinning the fundamental requirements for effectively forming Au-Fe(x)O(y) hybrid nanocomposite materials would shed light on future development of nanotheranostics, nanomedicines, and chemical technologies. It would be interesting to investigate such multi-component composite nanomaterials with different novel morphologies in the near future to advance chemistry, biology, medicine, and engineering multi-disciplinary research (120 references).
Collapse
Affiliation(s)
- Ken Cham-Fai Leung
- Institute of Creativity and Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Chi X, Huang D, Zhao Z, Zhou Z, Yin Z, Gao J. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 2011; 33:189-206. [PMID: 21959007 DOI: 10.1016/j.biomaterials.2011.09.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/13/2011] [Indexed: 12/21/2022]
Abstract
The successful and explosive development of nanotechnology is significantly impacting the fields of biology and medicine. Among the spectacular developments of nanobiotechnology, interest has grown in the use of nanomaterials as nanoprobes for bioanalysis and diagnosis. Herein, we review state-of-the-art nanomaterial-based probes and discuss their applications in in vitro diagnostics (IVD) and challenges in bringing these fields together. Major classes of nanoprobes include quantum dots (QDs), plasmonic nanoparticles, magnetic nanoparticles, nanotubes, nanowires, and multifunctional nanomaterials. With the advantages of high volume/surface ratio, surface tailorability, multifunctionality, and intrinsic properties, nanoprobes have tremendous applications in the areas of biomarker discovery, diagnostics of infectious diseases, and cancer detection. The distinguishing features of nanoprobes for in vitro use, such as harmlessness, ultrasensitivity, multiplicity, and point-of-care use, will bring a bright future of nanodiagnosis.
Collapse
Affiliation(s)
- Xiaoqin Chi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
61
|
Beveridge JS, Buck MR, Bondi JF, Misra R, Schiffer P, Schaak RE, Williams ME. Purification and Magnetic Interrogation of Hybrid Au-Fe3O4 and FePt-Fe3O4 Nanoparticles. Angew Chem Int Ed Engl 2011; 50:9875-9. [DOI: 10.1002/anie.201104829] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Indexed: 11/08/2022]
|
62
|
Beveridge JS, Buck MR, Bondi JF, Misra R, Schiffer P, Schaak RE, Williams ME. Purification and Magnetic Interrogation of Hybrid Au-Fe3O4 and FePt-Fe3O4 Nanoparticles. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|