51
|
Loretan M, Domljanovic I, Lakatos M, Rüegg C, Acuna GP. DNA Origami as Emerging Technology for the Engineering of Fluorescent and Plasmonic-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2185. [PMID: 32397498 PMCID: PMC7254321 DOI: 10.3390/ma13092185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology is a powerful and promising tool for the development of nanoscale devices for numerous and diverse applications. One of the greatest potential fields of application for DNA nanotechnology is in biomedicine, in particular biosensing. Thanks to the control over their size, shape, and fabrication, DNA origami represents a unique opportunity to assemble dynamic and complex devices with precise and predictable structural characteristics. Combined with the addressability and flexibility of the chemistry for DNA functionalization, DNA origami allows the precise design of sensors capable of detecting a large range of different targets, encompassing RNA, DNA, proteins, small molecules, or changes in physico-chemical parameters, that could serve as diagnostic tools. Here, we review some recent, salient developments in DNA origami-based sensors centered on optical detection methods (readout) with a special emphasis on the sensitivity, the selectivity, and response time. We also discuss challenges that still need to be addressed before this approach can be translated into robust diagnostic devices for bio-medical applications.
Collapse
Affiliation(s)
- Morgane Loretan
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| | - Ivana Domljanovic
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland;
| | - Mathias Lakatos
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland;
| | - Guillermo P. Acuna
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| |
Collapse
|
52
|
Chen YF, Hsu MW, Su YC, Chang HM, Chang CH, Jan JS. Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111025. [PMID: 32994007 DOI: 10.1016/j.msec.2020.111025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapeutic drugs are nonselective and harmful toward normal tissues, causing severe side effects. Therefore, the development of chemotherapeutics that can target cancer cells and improve therapeutic efficacy is of high priority. Biomolecules isolated from nature serve as green solutions for biomedical use, solving biocompatibility and cytotoxicity issues in human bodies. Herein, we use kiwifruit-derived DNA to encapsulate doxorubicin (DOX) using crosslinkers, eventually forming DNA-DOX nanogels (NGs). Drug releasing assays, cell viability and anticancer effects were analyzed to evaluate the DNA NGs' applications. The amount of DOX released by the DOX-loaded DNA (DNA-DOX) NGs at acidic pH was higher than that of neutral pH, and high glutathione (GSH) concentration also triggered more DOX to release in cancer cells, demonstrating pH- and GSH-triggered drug release characteristics of the DNA NGs. The IC50 of DNA-DOX NGs in cancer cells was lower than that of free DOX. Moreover, DOX uptake of cancer cells and apoptotic death were enhanced by the DNA-DOX NGs compared to free DOX. The results suggest that the DNA NGs cross-linked via nitrogen bases of the nucleotides in DNA and presenting pH- and GSH-dependent drug releasing behavior can be alternative biocompatible drug delivery systems for anticancer strategies and other biomedical applications.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Ming-Wei Hsu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chu Su
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Ho-Min Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.
| |
Collapse
|
53
|
Xie N, Wang H, Quan K, Feng F, Huang J, Wang K. Self-assembled DNA-Based geometric polyhedrons: Construction and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Fu J, Wang Z, Liang XH, Oh SW, St Iago-McRae E, Zhang T. DNA-Scaffolded Proximity Assembly and Confinement of Multienzyme Reactions. Top Curr Chem (Cham) 2020; 378:38. [PMID: 32248317 PMCID: PMC7127875 DOI: 10.1007/s41061-020-0299-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Cellular functions rely on a series of organized and regulated multienzyme cascade reactions. The catalytic efficiencies of these cascades depend on the precise spatial organization of the constituent enzymes, which is optimized to facilitate substrate transport and regulate activities. Mimicry of this organization in a non-living, artificial system would be very useful in a broad range of applications—with impacts on both the scientific community and society at large. Self-assembled DNA nanostructures are promising applications to organize biomolecular components into prescribed, multidimensional patterns. In this review, we focus on recent progress in the field of DNA-scaffolded assembly and confinement of multienzyme reactions. DNA self-assembly is exploited to build spatially organized multienzyme cascades with control over their relative distance, substrate diffusion paths, compartmentalization and activity actuation. The combination of addressable DNA assembly and multienzyme cascades can deliver breakthroughs toward the engineering of novel synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA. .,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA.
| | - Zhicheng Wang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA.,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Xiao Hua Liang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ezry St Iago-McRae
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ting Zhang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| |
Collapse
|
55
|
Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids. Nat Commun 2020; 11:1518. [PMID: 32251279 PMCID: PMC7089997 DOI: 10.1038/s41467-020-15297-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Size selectivity is an important mechanism for molecular recognition based on the size difference between targets and non-targets. However, rational design of an artificial size-selective molecular recognition system for biological targets in living cells remains challenging. Herein, we construct a DNA molecular sieve for size-selective molecular recognition to improve the biosensing selectivity in living cells. The system consists of functional nucleic acid probes (e.g., DNAzymes, aptamers and molecular beacons) encapsulated into the inner cavity of framework nucleic acid. Thus, small target molecules are able to enter the cavity for efficient molecular recognition, while large molecules are prohibited. The system not only effectively protect probes from nuclease degradation and nonspecific proteins binding, but also successfully realize size-selective discrimination between mature microRNA and precursor microRNA in living cells. Therefore, the DNA molecular sieve provides a simple, general, efficient and controllable approach for size-selective molecular recognition in biomedical studies and clinical diagnoses. Size-selective discrimination is an issue in biosensing. Here, the authors report on a size selective DNA nanocage which excludes agents based on size and protects the probes against degradation, and demonstrate the discrimination between mature and precursor miRNA.
Collapse
|
56
|
McCluskey JB, Clark DS, Glover DJ. Functional Applications of Nucleic Acid-Protein Hybrid Nanostructures. Trends Biotechnol 2020; 38:976-989. [PMID: 32818445 DOI: 10.1016/j.tibtech.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/09/2023]
Abstract
Combining the diverse chemical functionality of proteins with the predictable structural assembly of nucleic acids has enabled the creation of hybrid nanostructures for a range of biotechnology applications. Through the attachment of proteins onto or within nucleic acid nanostructures, materials with dynamic capabilities can be created that include switchable enzyme activity, targeted drug delivery, and multienzyme cascades for biocatalysis. Investigations of difficult-to-study biological mechanisms have also been aided by using DNA-protein assemblies that mimic natural processes in a controllable manner. Furthermore, advances that enable the recombinant production and intracellular assembly of hybrid nanostructures have the potential to overcome the significant manufacturing cost that has limited the use of DNA and RNA nanotechnology.
Collapse
Affiliation(s)
- Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
57
|
In Silico and In Cell Analysis of Openable DNA Nanocages for miRNA Silencing. Int J Mol Sci 2019; 21:ijms21010061. [PMID: 31861821 PMCID: PMC6981788 DOI: 10.3390/ijms21010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
A computational and experimental integrated approach was applied in order to study the effect of engineering four DNA hairpins into an octahedral truncated DNA nanocage, to obtain a nanostructure able to recognize and bind specific oligonucleotide sequences. Modeling and classical molecular dynamics simulations show that the new H4-DNA nanocage maintains a stable conformation with the closed hairpins and, when bound to complementary oligonucleotides produces an opened conformation that is even more stable due to the larger hydrogen bond number between the hairpins and the oligonucleotides. The internal volume of the open conformation is much larger than the closed one, switching from 370 to 650 nm3, and the predicted larger conformational change is experimentally detectable by gel electrophoresis. H4-DNA nanocages display high stability in serum, can efficiently enter the cells where they are stable and maintain the ability to bind, and sequester an intracellular-specific oligonucleotide. Moreover, H4-DNA nanocages, modified in order to recognize the oncogenic miR21, are able to seize miRNA molecules inside cells in a selective manner.
Collapse
|
58
|
Zhang T, Zeng X, Guan S, Li X, Qu Z, Qin L, Hou C, Liu J. Construction of a reconfigurable DNA nanocage for encapsulating a TMV disk. Chem Commun (Camb) 2019; 55:8951-8954. [PMID: 31289799 DOI: 10.1039/c9cc03109j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new reconfigurable DNA nanocage based on a DNA origami method has been constructed to capture a tobacco mosaic virus (TMV) disk. We used a hairpin to control the transformation of the nanocage and a strand of TMV RNA to attract the TMV disk. Our design could inspire new DNA-protein complex designs.
Collapse
Affiliation(s)
- Tianran Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Xiangzhi Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Shuwen Guan
- College of Life Science, Jilin University, 2699 Qianjin Road, Changchun 130012, China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Zhiyu Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Luyao Qin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| |
Collapse
|
59
|
Ottaviani A, Iacovelli F, Idili A, Falconi M, Ricci F, Desideri A. Engineering a responsive DNA triple helix into an octahedral DNA nanostructure for a reversible opening/closing switching mechanism: a computational and experimental integrated study. Nucleic Acids Res 2019; 46:9951-9959. [PMID: 30247614 PMCID: PMC6212788 DOI: 10.1093/nar/gky857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 11/12/2022] Open
Abstract
We propose an experimental and simulative approach to study the effect of integrating a DNA functional device into a large-sized DNA nanostructure. We selected, as a test bed, a well-known and characterized pH-dependent clamp-switch, based on a parallel DNA triple helix, to be integrated into a truncated octahedral scaffold. We designed, simulated and experimentally characterized two different functionalized DNA nanostructures, with and without the presence of a spacer between the scaffold and the functional elements. The experimental and simulative data agree in validating the need of a spacer for the occurrence of the pH dependent switching mechanism. The system is fully reversible and the switching can be monitored several times without any perturbation, maintaining the same properties of the isolated clamp switch in solution.
Collapse
Affiliation(s)
- Alessio Ottaviani
- Biology Department, University of Rome Tor Vergata, Rome 00133, Italy
| | | | - Andrea Idili
- Chemistry Department, University of Rome Tor Vergata, Rome 00133, Italy
| | - Mattia Falconi
- Biology Department, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Rome 00133, Italy
| | | |
Collapse
|
60
|
Iacovelli F, Cabungcal Hernandez K, Desideri A, Falconi M. Probing the Functional Topology of a pH-Dependent Triple Helix DNA Nanoswitch Family through Gaussian Accelerated MD Simulation. J Chem Inf Model 2019; 59:2746-2752. [PMID: 31074618 DOI: 10.1021/acs.jcim.9b00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The topology of a pH-dependent triple helix DNA nanoswitch family has been characterized through simulative analysis to evaluate the efficiency of the switching mechanism varying the length of the loop connecting the two strands forming the double helix portion. In detail, the system is formed by a double helix made by two six base complementary sequences, connected by one loop having an increasing number of thymidines, namely 5, 7, or 9. The triplex-forming sequence made by six bases, connected to the double helix through a constant 25 base loop, interacts at pH 5.0 through Hoogsteen hydrogen bonds with one strand of the double helical region. We demonstrate, through molecular dynamics simulation, that the thymidine loop length exerts a fine regulatory role for the stability of the triple helix structure and is critical in modulating the switching mechanism triggered by the pH increase.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Kevin Cabungcal Hernandez
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Desideri
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Mattia Falconi
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
61
|
Claaßen C, Gerlach T, Rother D. Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses. Adv Synth Catal 2019; 361:2387-2401. [PMID: 31244574 PMCID: PMC6582597 DOI: 10.1002/adsc.201900169] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/25/2019] [Indexed: 01/20/2023]
Abstract
Multi-step biocatalytic reactions have gained increasing importance in recent years because the combination of different enzymes enables the synthesis of a broad variety of industrially relevant products. However, the more enzymes combined, the more crucial it is to avoid cross-reactivity in these cascade reactions and thus achieve high product yields and high purities. The selective control of enzyme activity, i.e., remote on-/off-switching of enzymes, might be a suitable tool to avoid the formation of unwanted by-products in multi-enzyme reactions. This review compiles a range of methods that are known to modulate enzyme activity in a stimulus-responsive manner. It focuses predominantly on in vitro systems and is subdivided into reversible and irreversible enzyme activity control. Furthermore, a discussion section provides indications as to which factors should be considered when designing and choosing activity control systems for biocatalysis. Finally, an outlook is given regarding the future prospects of the field.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Tim Gerlach
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| |
Collapse
|
62
|
Kizer ME, Linhardt RJ, Chandrasekaran AR, Wang X. A Molecular Hero Suit for In Vitro and In Vivo DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805386. [PMID: 30985074 DOI: 10.1002/smll.201805386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Precise control of DNA base pairing has rapidly developed into a field full of diverse nanoscale structures and devices that are capable of automation, performing molecular analyses, mimicking enzymatic cascades, biosensing, and delivering drugs. This DNA-based platform has shown the potential of offering novel therapeutics and biomolecular analysis but will ultimately require clever modification to enrich or achieve the needed "properties" and make it whole. These modifications total what are categorized as the molecular hero suit of DNA nanotechnology. Like a hero, DNA nanostructures have the ability to put on a suit equipped with honing mechanisms, molecular flares, encapsulated cargoes, a protective body armor, and an evasive stealth mode.
Collapse
Affiliation(s)
- Megan E Kizer
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | - Xing Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
63
|
Fu J, Oh SW, Monckton K, Arbuckle-Keil G, Ke Y, Zhang T. Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900256. [PMID: 30884139 DOI: 10.1002/smll.201900256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Indexed: 05/28/2023]
Abstract
The behaviors of living cells are governed by a series of regulated and confined biochemical reactions. The design and successful construction of synthetic cellular reactors can be useful in a broad range of applications that will bring significant scientific and economic impact. Over the past few decades, DNA self-assembly has enabled the design and fabrication of sophisticated 1D, 2D, and 3D nanostructures, and is applied to organizing a variety of biomolecular components into prescribed 2D and 3D patterns. In this Concept, the recent and exciting progress in DNA-scaffolded compartmentalizations and their applications in enzyme encapsulation, lipid membrane assembly, artificial transmembrane nanopores, and smart drug delivery are in focus. Taking advantage of these features promises to deliver breakthroughs toward the attainment of new synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Kristin Monckton
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Georgia Arbuckle-Keil
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ting Zhang
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| |
Collapse
|
64
|
Tam DY, Zhuang X, Wong SW, Lo PK. Photoresponsive Self-Assembled DNA Nanomaterials: Design, Working Principles, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805481. [PMID: 30861628 DOI: 10.1002/smll.201805481] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/30/2019] [Indexed: 05/23/2023]
Abstract
Photoresponsive DNA nanomaterials represent a new class of remarkable functional materials. By adjusting the irradiation wavelength, light intensity, and exposure time, various photocontrolled DNA-based systems can be reversibly or irreversibly regulated in respect of their size, shape, conformation, movement, and dissociation/association. This Review introduces the most updated progress in the development of photoresponsive DNA-based system and emphasizes their advantages over other stimuli-responsive systems. Their design and mechanisms to trigger the photoresponses are shown and discussed. The potential application of these photon-responsive DNA nanomaterials in biology, biomedicine, materials science, nanophotonic and nanoelectronic are also covered and described. The challenges faced and further directions of the development of photocontrolled DNA-based systems are also highlighted.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinyu Zhuang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Sze Wing Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
65
|
|
66
|
Shen H, Wang Y, Wang J, Li Z, Yuan Q. Emerging Biomimetic Applications of DNA Nanotechnology. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13859-13873. [PMID: 29939004 DOI: 10.1021/acsami.8b06175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.
Collapse
Affiliation(s)
- Haijing Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| |
Collapse
|
67
|
Fakih HH, Fakhoury JJ, Bousmail D, Sleiman HF. Minimalist Design of a Stimuli-Responsive Spherical Nucleic Acid for Conditional Delivery of Oligonucleotide Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13912-13920. [PMID: 30720262 DOI: 10.1021/acsami.8b18790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we report a component-minimal spherical nucleic acid (SNA) from monodisperse DNA-polymer conjugates that can load and release nucleic acid therapeutics in a stimuli-responsive manner. We show that this vehicle assembles from only four strands, and conditional release of its antisense therapeutic cargo can be induced upon recognition of specific oligonucleotide triggers via strand displacement. The latter (triggers) may be a microRNA that offers additional synergistic therapy, in addition to the previously shown ability of the SNA to load hydrophobic drugs. The SNA is easy to prepare, has dynamic character, releases its cargo only upon the presence of both triggers, and can survive biological conditions while protecting its cargo. The gene silencing potency of the cargo was tested in live cells and shown to be suppressed when loaded in the SNA, and its activity was restored only upon release with the two triggers. This vehicle has the essential characteristics of versatility, ease of synthesis, low cost, highly responsive behavior, and ability to support combination therapies, making it a promising candidate for cell-selective drug delivery and clinical transition.
Collapse
Affiliation(s)
- Hassan H Fakih
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Johans J Fakhoury
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Danny Bousmail
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Hanadi F Sleiman
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| |
Collapse
|
68
|
Mato Y, Honda K, Tajima K, Yamamoto T, Isono T, Satoh T. A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Chem Sci 2019; 10:440-446. [PMID: 30746091 PMCID: PMC6335864 DOI: 10.1039/c8sc04006k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Cage-shaped polymers, or "macromolecular cages", are of great interest as the macromolecular analogues of molecular cages because of their various potential applications in supramolecular chemistry and materials science. However, the systematic synthesis of macromolecular cages remains a great challenge. Herein, we describe a robust and versatile synthetic strategy for macromolecular cages with defined arm numbers and sizes based on the intramolecular consecutive cyclization of highly reactive norbornene groups attached to each end of the arms of a star-shaped polymer precursor. The cyclizations of three-, four-, six-, and eight-armed star-shaped poly(ε-caprolactone)s (PCLs) bearing a norbornenyl group at each arm terminus were effected with Grubbs' third generation catalyst at high dilution. 1H NMR, SEC, and MALDI-TOF MS analyses revealed that the reaction proceeded to produce the desired macromolecular cages with sufficient purity. The molecular sizes of the macromolecular cages were controlled by simply changing the molecular weight of the star-shaped polymer precursors. Systematic investigation of the structure-property relationships confirmed that the macromolecular cages adopt a much more compact conformation, in both the solution and bulk states, as compared to their linear and star-shaped counterparts. This synthetic approach marks a significant advance in the synthesis of complex macromolecular architectures and provides a platform for novel applications using cage-shaped molecules with polymer frameworks.
Collapse
Affiliation(s)
- Yoshinobu Mato
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Kohei Honda
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Kenji Tajima
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Takuya Yamamoto
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Takuya Isono
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Toshifumi Satoh
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| |
Collapse
|
69
|
Platnich CM, Hariri AA, Rahbani JF, Gordon JB, Sleiman HF, Cosa G. Kinetics of Strand Displacement and Hybridization on Wireframe DNA Nanostructures: Dissecting the Roles of Size, Morphology, and Rigidity. ACS NANO 2018; 12:12836-12846. [PMID: 30485067 DOI: 10.1021/acsnano.8b08016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dynamic wireframe DNA structures have gained significant attention in recent years, with research aimed toward using these architectures for sensing and encapsulation applications. For these assemblies to reach their full potential, however, knowledge of the rates of strand displacement and hybridization on these constructs is required. Herein, we report the use of single-molecule fluorescence methodologies to observe the reversible switching between double- and single-stranded forms of triangular wireframe DNA nanotubes. Specifically, by using fluorescently labeled DNA strands, we were able to monitor changes in intensity over time as we introduced different sequences. This allowed us to extract detailed kinetic information on the strand displacement and hybridization processes. Due to the polymeric nanotube structure, the ability to individually address each of the three sides, and the inherent polydispersity of our samples as a result of the step polymerization by which they are formed, a library of compounds could be studied independently yet simultaneously. Kinetic models relying on mono-exponential decays, multi-exponential decays, or sigmoidal behavior were adjusted to the different constructs to retrieve erasing and refilling kinetics. Correlations were made between the kinetic behavior observed, the site accessibility, the nanotube length, and the structural robustness of wireframe DNA nanostructures, including fully single-stranded analogs. Overall, our results reveal how the length, morphology, and rigidity of the DNA framework modulate the kinetics of strand displacement and hybridization as well as the overall addressability and structural stability of the structures under study.
Collapse
Affiliation(s)
- Casey M Platnich
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Amani A Hariri
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Janane F Rahbani
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Jesse B Gordon
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Hanadi F Sleiman
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Gonzalo Cosa
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| |
Collapse
|
70
|
Yan Y, Li J, Li W, Wang Y, Song W, Bi S. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. NANOSCALE 2018; 10:22456-22465. [PMID: 30478460 DOI: 10.1039/c8nr07294a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has been developed to construct a variety of functional two- and three-dimensional structures for versatile applications. Rolling circle amplification (RCA) has become prominent in the assembly of DNA-inorganic composites with hierarchical structures and attractive properties. Here, we demonstrate a one-pot method to directly encapsulate horseradish peroxidase (HRP) in DNA flowers (DFs) during RCA. The growing DNA strands and Mg2PPi crystals lead to the construction of porous DFs, which provide sufficient interaction sites for spontaneously incorporating HRP molecules into DFs with high loading capacity and good stability. Furthermore, in comparison with free HRP, the DNA flower-encapsulated HRP (termed HRP-DFs) demonstrate enhanced enzymatic activity, which can efficiently biocatalyze the H2O2-mediated etching of gold nanorods (AuNRs) to generate distinct color changes since the longitudinal localized surface plasmon resonance (LSPR) frequency of AuNRs is highly sensitive to the changes in the AuNR aspect ratio. Through rationally incorporating the complementary thrombin aptamer sequence into the circular template, the synthesized HRP-DF composites are readily used as amplified labels for visual and colorimetric detection of thrombin with ultrahigh sensitivity and excellent selectivity. Therefore, our proposed strategy for direct encapsulation of enzyme molecules into DNA structures shows considerable potential applications in biosensing, biocatalysis, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, P. R. China.
| | | | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Simona Ranallo
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
72
|
Taylor LLK, Riddell IA, Smulders MMJ. Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren L. K. Taylor
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen Niederlande
| |
Collapse
|
73
|
Taylor LLK, Riddell IA, Smulders MMJ. Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water. Angew Chem Int Ed Engl 2018; 58:1280-1307. [DOI: 10.1002/anie.201806297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL UK
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen The Netherlands
| |
Collapse
|
74
|
Madhanagopal BR, Zhang S, Demirel E, Wady H, Chandrasekaran AR. DNA Nanocarriers: Programmed to Deliver. Trends Biochem Sci 2018; 43:997-1013. [DOI: 10.1016/j.tibs.2018.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
|
75
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
76
|
Vellampatti S, Chandrasekaran G, Mitta SB, Lakshmanan VK, Park SH. Metallo-Curcumin-Conjugated DNA Complexes Induces Preferential Prostate Cancer Cells Cytotoxicity and Pause Growth of Bacterial Cells. Sci Rep 2018; 8:14929. [PMID: 30297802 PMCID: PMC6175843 DOI: 10.1038/s41598-018-33369-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
DNA nanotechnology can be used to create intricate DNA structures due to the ability to direct the molecular assembly of nanostructures through a bottom-up approach. Here, we propose nanocarriers composed of both synthetic and natural DNA for drug delivery. The topological, optical characteristics, and interaction studies of Cu2+/Ni2+/Zn2+-curcumin-conjugated DNA complexes were studied using atomic force microscopy (AFM), UV-vis spectroscopy, Fourier transform infrared and mass spectroscopy. The maximum release of metallo-curcumin conjugates from the DNA complexes, triggered by switching the pH, was found in an acidic medium. The bacterial growth curves of E. coli and B. subtilis displayed a prolonged lag phase when tested with the metallo-curcumin-conjugated DNA complexes. We also tested the in vitro cytotoxicity of the metallo-curcumin-conjugated DNA complexes to prostate cancer cells using an MTS assay, which indicated potent growth inhibition of the cells. Finally, we studied the cellular uptake of the complexes, revealing that DNA complexes with Cu2+/Ni2+-curcumin exhibited brighter fluorescence than those with Zn2+-curcumin.
Collapse
Affiliation(s)
- Srivithya Vellampatti
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon, 16419, Korea
| | | | - Sekhar Babu Mitta
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Vinoth-Kumar Lakshmanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, Korea. .,Department of Biomedical Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, India.
| | - Sung Ha Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
77
|
Raniolo S, Vindigni G, Unida V, Ottaviani A, Romano E, Desideri A, Biocca S. Entry, fate and degradation of DNA nanocages in mammalian cells: a matter of receptors. NANOSCALE 2018; 10:12078-12086. [PMID: 29911715 DOI: 10.1039/c8nr02411a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA has been used to build nanostructures with potential biomedical applications. However, their use is limited by the lack of information on the mechanism of entry, intracellular fate and degradation rate of nanostructures inside cells. We generated octahedral DNA nanocages functionalized with folic acid and investigated the cellular uptake mediated by two distinctive internalization pathways, using two cellular systems expressing the oxidized low-density lipoprotein receptor-1 (LOX-1) and the α isoform of the folate receptor (αFR), respectively. Here, we report that DNA nanocages are very efficiently and selectively internalized by both receptors with an efficiency at least 30 times higher than that observed in cells not expressing the receptors. When internalized by LOX-1, nanocages traffic to lysosomes within 4 hours and are rapidly degraded. When the uptake is mediated by αFR, DNA nanocages are highly stable (>48 hours) and accumulate inside cells in a time-dependent way. These data demonstrate that the selection of the cellular receptor is crucial for targeting specific sub-cellular compartments and for modulating the DNA nanocage intracellular half-life, indicating that vitamin-mediated uptake may constitute a protected pathway for intracellular drug delivery.
Collapse
Affiliation(s)
- Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
78
|
Raniolo S, Vindigni G, Ottaviani A, Unida V, Iacovelli F, Manetto A, Figini M, Stella L, Desideri A, Biocca S. Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1181-1190. [DOI: 10.1016/j.nano.2018.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
|
79
|
Abstract
Biotechnology has revolutionized therapeutics for the treatment of a wide range of diseases. Recent advances in protein engineering and material science have made the targeted delivery of enzyme therapeutics using nanocarriers (NCs) a new model of treatment. Several NCs have been approved for clinical use in drug delivery. Despite their advantages, few NCs have been approved to deliver enzyme cargo in a targeted manner. This review details the current arsenal of platforms developed to deliver enzyme therapeutics as well as the advantages and challenges of using enzymes as drugs, with examples from the literature, and discusses the benefits and liabilities of a given approach. We conclude by providing a perspective on how this field may evolve over the near and long-term.
Collapse
|
80
|
Angell C, Kai M, Xie S, Dong X, Chen Y. Bioderived DNA Nanomachines for Potential Uses in Biosensing, Diagnostics, and Therapeutic Applications. Adv Healthc Mater 2018; 7:e1701189. [PMID: 29350489 DOI: 10.1002/adhm.201701189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Indexed: 12/28/2022]
Abstract
Beside its genomic properties, DNA is also recognized as a novel material in the field of nanoengineering. The specific bonding of base pairs can be used to direct the assembly of highly structured materials with specific nanoscale features such as periodic 2D arrays, 3D nanostructures, assembly of nanomaterials, and DNA nanomachines. In recent years, a variety of DNA nanomachines are developed because of their many potential applications in biosensing, diagnostics, and therapeutic applications. In this review, the fuel-powered motors and secondary structure motors, whose working mechanisms are inspired or derived from natural phenomena and nanomachines, are discussed. The combination of DNA motors with other platforms is then discussed. In each section of these motors, their mechanisms and their usage in the biomedical field are described. Finally, it is believed that these DNA-based nanomachines and hybrid motifs will become an integral point-of-care diagnostics and smart, site-specific therapeutic delivery.
Collapse
Affiliation(s)
- Chava Angell
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Mingxuan Kai
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Sibai Xie
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Xiangyi Dong
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Yi Chen
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| |
Collapse
|
81
|
Hede MS, Fjelstrup S, Lötsch F, Zoleko RM, Klicpera A, Groger M, Mischlinger J, Endame L, Veletzky L, Neher R, Simonsen AKW, Petersen E, Mombo-Ngoma G, Stougaard M, Ho YP, Labouriau R, Ramharter M, Knudsen BR. Detection of the Malaria causing Plasmodium Parasite in Saliva from Infected Patients using Topoisomerase I Activity as a Biomarker. Sci Rep 2018. [PMID: 29515150 PMCID: PMC5841400 DOI: 10.1038/s41598-018-22378-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Malaria is among the major threats to global health with the main burden of disease being in rural areas of developing countries where accurate diagnosis based on non-invasive samples is in high demand. We here present a novel molecular assay for detection of malaria parasites based on technology that may be adapted for low-resource settings. Moreover, we demonstrate the exploitation of this assay for detection of malaria in saliva. The setup relies on pump-free microfluidics enabled extraction combined with a DNA sensor substrate that is converted to a single-stranded DNA circle specifically by topoisomerase I expressed by the malaria causing Plasmodium parasite. Subsequent rolling circle amplification of the generated DNA circle in the presence of biotin conjugated deoxynucleotides resulted in long tandem repeat products that was visualized colorimetrically upon binding of horse radish peroxidase (HRP) and addition of 3,3′,5,5′-Tetramethylbenzidine that was converted to a blue colored product by HRP. The assay was directly quantitative, specific for Plasmodium parasites, and allowed detection of Plasmodium infection in a single drop of saliva from 35 out of 35 infected individuals tested. The results could be determined directly by the naked eye and documented by quantifying the color intensity using a standard paper scanner.
Collapse
Affiliation(s)
| | - Søren Fjelstrup
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Felix Lötsch
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medicine, I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Anna Klicpera
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Mirjam Groger
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Johannes Mischlinger
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medicine, I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Lilian Endame
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ronja Neher
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | | | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Infectious Diseases, The Royal Hospital, Muscat, Oman
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Magnus Stougaard
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Yi-Ping Ho
- Division of Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medicine, I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
82
|
|
83
|
Control of enzyme reactions by a reconfigurable DNA nanovault. Nat Commun 2017; 8:992. [PMID: 29051565 PMCID: PMC5648847 DOI: 10.1038/s41467-017-01072-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
Biological systems use compartmentalisation as a general strategy to control enzymatic reactions by precisely regulating enzyme–substrate interactions. With the advent of DNA nanotechnology, it has become possible to rationally design DNA-based nano-containers with programmable structural and dynamic properties. These DNA nanostructures have been used to cage enzymes, but control over enzyme–substrate interactions using a dynamic DNA nanostructure has not been achieved yet. Here we introduce a DNA origami device that functions as a nanoscale vault: an enzyme is loaded in an isolated cavity and the access to free substrate molecules is controlled by a multi-lock mechanism. The DNA vault is characterised for features such as reversible opening/closing, cargo loading and wall porosity, and is shown to control the enzymatic reaction catalysed by an encapsulated protease. The DNA vault represents a general concept to control enzyme–substrate interactions by inducing conformational changes in a rationally designed DNA nanodevice. DNA nanostructures can cage enzymes but currently fall short of controlling their reactions with substrates. Here, the authors enclose an enzyme inside a dynamic DNA vault, which regulates its access to substrate molecules—and thus its enzymatic activity—through a multi-lock mechanism.
Collapse
|
84
|
Kristoffersen EL, Givskov A, Jørgensen LA, Jensen PW, W Byl JA, Osheroff N, Andersen AH, Stougaard M, Ho YP, Knudsen BR. Interlinked DNA nano-circles for measuring topoisomerase II activity at the level of single decatenation events. Nucleic Acids Res 2017; 45:7855-7869. [PMID: 28541438 PMCID: PMC5570003 DOI: 10.1093/nar/gkx480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described highly sensitive monitoring of Topo II activity may add considerably to the toolbox of individualized medicine where decisions are based on very sparse samples.
Collapse
Affiliation(s)
- Emil L Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark
| | - Asger Givskov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Line A Jørgensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Pia W Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Anni H Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Yi-Ping Ho
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark.,Division of Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
85
|
Kim SH, Kim KR, Ahn DR, Lee JE, Yang EG, Kim SY. Reversible Regulation of Enzyme Activity by pH-Responsive Encapsulation in DNA Nanocages. ACS NANO 2017; 11:9352-9359. [PMID: 28846390 DOI: 10.1021/acsnano.7b04766] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Reversible regulation of enzyme activity by chemical and physical stimuli is often achieved by incorporating stimuli-responsive domains in the enzyme of interest. However, this method is suitable for a limited number of enzymes with well-defined structural and conformational changes. In this study, we present a method to encapsulate enzymes in a DNA cage that could transform its conformation depending on the pH, allowing reversible control of the accessibility of the enzyme to the surrounding environment. This enabled us to regulate various properties of the enzyme, such as its resistance to protease-dependent degradation, binding affinity to the corresponding antibody, and most importantly, enzyme activity. Considering that the size and pH responsiveness of the DNA cage can be easily adjusted by the DNA length and sequence, our method provides a broad-impact platform for controlling enzyme functions without modifying the enzyme of interest.
Collapse
Affiliation(s)
- Seong Ho Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST) , Seoul, Republic of Korea 02792
| | - Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST) , Seoul, Republic of Korea 02792
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST) , Seoul, Republic of Korea 02792
| |
Collapse
|
86
|
Wu D, Wang L, Li W, Xu X, Jiang W. DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int J Pharm 2017; 533:169-178. [PMID: 28923770 DOI: 10.1016/j.ijpharm.2017.09.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023]
Abstract
DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Wei Li
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Wei Jiang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
87
|
Hou C, Guan S, Wang R, Zhang W, Meng F, Zhao L, Xu J, Liu J. Supramolecular Protein Assemblies Based on DNA Templates. J Phys Chem Lett 2017; 8:3970-3979. [PMID: 28792224 DOI: 10.1021/acs.jpclett.7b01564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA plays an important role in the process of protein assembly. DNA viruses such as the M13 virus are typical examples in which single DNA genomes behave as templates to induce the assembly of multiple major coat protein (PVIII) monomers. Thus, the design of protein assemblies based on DNA templates attracts much interest in the construction of supramolecular structures and materials. With the development of DNA nanotechnology, precise 1D and 3D protein nanostructures have been designed and constructed by using DNA templates through DNA-protein interactions, protein-ligand interactions, and protein-adapter interactions. These DNA-templated protein assemblies show great potential in catalysis, medicine, light-responsive systems, drug delivery, and signal transduction. Herein, we review the progress on DNA-based protein nanostructures that possess sophisticated nanometer-sized structures with programmable shapes and stimuli-responsive parameters, and we present their great potential in the design of biomaterials and biodevices in the future.
Collapse
Affiliation(s)
| | | | - Ruidi Wang
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Wei Zhang
- Zhuhai United Laboratories Co., Ltd. , Nation High & New Technology Industry Development Zone, Zhuhai 519040, China
| | | | | | | | | |
Collapse
|
88
|
Idili A, Ricci F, Vallée-Bélisle A. Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves. Nucleic Acids Res 2017; 45:7571-7580. [PMID: 28605461 PMCID: PMC5737623 DOI: 10.1093/nar/gkx498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 11/13/2022] Open
Abstract
DNA nanotechnology takes advantage of the predictability of DNA interactions to build complex DNA-based functional nanoscale structures. However, when DNA functional and responsive units that are based on non-canonical DNA interactions are employed it becomes quite challenging to predict, understand and control their thermodynamics. In response to this limitation, here we demonstrate the use of isothermal urea titration experiments to estimate the free energy involved in a set of DNA-based systems ranging from unimolecular DNA-based nanoswitches to more complex DNA folds (e.g. aptamers) and nanodevices. We propose here a set of fitting equations that allow to analyze the urea titration curves of these DNA responsive units based on Watson-Crick and non-canonical interactions (stem-loop, G-quadruplex, triplex structures) and to correctly estimate their relative folding and binding free energy values under different experimental conditions. The results described herein will pave the way toward the use of urea titration experiments in the field of DNA nanotechnology to achieve easier and more reliable thermodynamic characterization of DNA-based functional responsive units. More generally, our results will be of general utility to characterize other complex supramolecular systems based on different biopolymers.
Collapse
Affiliation(s)
- Andrea Idili
- Chemistry Department, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors and Nanomachines, Département de Chimie, Université de Montréal, Montreal, Québec H3T-1J4, Canada
| |
Collapse
|
89
|
Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma JJ, Fukuhara G, Mori T, Inoue Y, Yang C. Temperature-Driven Planar Chirality Switching of a Pillar[5]arene-Based Molecular Universal Joint. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702542] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental Sciences; Shanxi University; China
| | - Yujun Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute; Sichuan University; China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR; Osaka University; Japan
| | - Jason J. Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
- Sino-British Materials Research Institute, College of Physical Sciences & Technology; Sichuan University; Chengdu 610064 China
| | - Gaku Fukuhara
- Department of Chemistry; Tokyo Institute of Technology; Japan
| | - Tadashi Mori
- Department of Applied Chemistry; Osaka University; Japan
| | | | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
| |
Collapse
|
90
|
Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma JJ, Fukuhara G, Mori T, Inoue Y, Yang C. Temperature-Driven Planar Chirality Switching of a Pillar[5]arene-Based Molecular Universal Joint. Angew Chem Int Ed Engl 2017; 56:6869-6873. [DOI: 10.1002/anie.201702542] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental Sciences; Shanxi University; China
| | - Yujun Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute; Sichuan University; China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR; Osaka University; Japan
| | - Jason J. Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
- Sino-British Materials Research Institute, College of Physical Sciences & Technology; Sichuan University; Chengdu 610064 China
| | - Gaku Fukuhara
- Department of Chemistry; Tokyo Institute of Technology; Japan
| | - Tadashi Mori
- Department of Applied Chemistry; Osaka University; Japan
| | | | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 China
| |
Collapse
|
91
|
Iacovelli F, Idili A, Benincasa A, Mariottini D, Ottaviani A, Falconi M, Ricci F, Desideri A. Simulative and Experimental Characterization of a pH-Dependent Clamp-like DNA Triple-Helix Nanoswitch. J Am Chem Soc 2017; 139:5321-5329. [PMID: 28365993 DOI: 10.1021/jacs.6b11470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we couple experimental and simulative techniques to characterize the structural/dynamical behavior of a pH-triggered switching mechanism based on the formation of a parallel DNA triple helix. Fluorescent data demonstrate the ability of this structure to reversibly switch between two states upon pH changes. Two accelerated, half microsecond, MD simulations of the system having protonated or unprotonated cytosines, mimicking the pH 5.0 and 8.0 conditions, highlight the importance of the Hoogsteen interactions in stabilizing the system, finely depicting the time-dependent disruption of the hydrogen bond network. Urea-unfolding experiments and MM/GBSA calculations converge in indicating a stabilization energy at pH 5.0, 2-fold higher than that observed at pH 8.0. These results validate the pH-controlled behavior of the designed structure and suggest that simulative approaches can be successfully coupled with experimental data to characterize responsive DNA-based nanodevices.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Andrea Idili
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessandro Benincasa
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Davide Mariottini
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessio Ottaviani
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Mattia Falconi
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Francesco Ricci
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessandro Desideri
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| |
Collapse
|
92
|
Dai Z, Leung HM, Lo PK. Stimuli-Responsive Self-Assembled DNA Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602881. [PMID: 28005298 DOI: 10.1002/smll.201602881] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Indexed: 05/23/2023]
Abstract
Stimuli-responsive DNA-based materials represent a major class of remarkable functional nanomaterials for nano-biotechnological applications. In this review, recent progress in the development of stimuli-responsive systems based on self-assembled DNA nanostructures is introduced and classified. Representative examples are presented in terms of their design, working principles and mechanisms to trigger the response of the stimuli-responsive DNA system upon expose to a large variety of stimuli including pH, metal ions, oligonucleotides, small molecules, enzymes, heat, and light. Substantial in vitro studies have clearly revealed the advantages of the use of stimuli-responsive DNA nanomaterials in different biomedical applications, particularly for biosensing, drug delivery, therapy and diagnostic purposes in addition to bio-computing. Some of the challenges faced and suggestions for further development are also highlighted.
Collapse
Affiliation(s)
- Ziwen Dai
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Hoi Man Leung
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
93
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
94
|
Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model. Molecules 2017; 22:molecules22010145. [PMID: 28275219 PMCID: PMC6155889 DOI: 10.3390/molecules22010145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs). The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.
Collapse
|
95
|
Khisamutdinov EF, Jasinski DL, Li H, Zhang K, Chiu W, Guo P. Fabrication of RNA 3D Nanoprisms for Loading and Protection of Small RNAs and Model Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10079-10087. [PMID: 27758001 PMCID: PMC5224701 DOI: 10.1002/adma.201603180] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Indexed: 05/22/2023]
Abstract
Constructing containers with defined shape and size to load and protect therapeutics and subsequently control their release in the human body has long been a dream. The fabrication of 3D RNA prisms, characterized by atomic force microscopy, cryo-electron microscopy, dynamic light scattering, and polyacrylamide gel electrophoresis, is reported for the loading and protection of small molecules, proteins, small RNA molecules, and their controlled release.
Collapse
Affiliation(s)
- Emil F. Khisamutdinov
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Daniel L. Jasinski
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
96
|
Fu J, Yang YR, Dhakal S, Zhao Z, Liu M, Zhang T, Walter NG, Yan H. Assembly of multienzyme complexes on DNA nanostructures. Nat Protoc 2016; 11:2243-2273. [DOI: 10.1038/nprot.2016.139] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
97
|
Bujold KE, Hsu JCC, Sleiman HF. Optimized DNA “Nanosuitcases” for Encapsulation and Conditional Release of siRNA. J Am Chem Soc 2016; 138:14030-14038. [PMID: 27700075 DOI: 10.1021/jacs.6b08369] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Katherine E. Bujold
- Department of Chemistry, McGill University,
and Center for Self-Assembled Chemical Structures, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - John C. C. Hsu
- Department of Chemistry, McGill University,
and Center for Self-Assembled Chemical Structures, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University,
and Center for Self-Assembled Chemical Structures, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| |
Collapse
|
98
|
Linko V, Nummelin S, Aarnos L, Tapio K, Toppari JJ, Kostiainen MA. DNA-Based Enzyme Reactors and Systems. NANOMATERIALS 2016; 6:nano6080139. [PMID: 28335267 PMCID: PMC5224616 DOI: 10.3390/nano6080139] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.
Collapse
Affiliation(s)
- Veikko Linko
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P.O. Box 16100, Aalto 00076, Finland.
| | - Sami Nummelin
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P.O. Box 16100, Aalto 00076, Finland.
| | - Laura Aarnos
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P.O. Box 16100, Aalto 00076, Finland.
| | - Kosti Tapio
- Department of Physics, University of Jyvaskyla, Nanoscience Center, P.O. Box 35, Jyväskylä 40014, Finland.
| | - J Jussi Toppari
- Department of Physics, University of Jyvaskyla, Nanoscience Center, P.O. Box 35, Jyväskylä 40014, Finland.
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P.O. Box 16100, Aalto 00076, Finland.
| |
Collapse
|
99
|
Franch O, Iacovelli F, Falconi M, Juul S, Ottaviani A, Benvenuti C, Biocca S, Ho YP, Knudsen BR, Desideri A. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family. NANOSCALE 2016; 8:13333-13341. [PMID: 27341703 DOI: 10.1039/c6nr01806h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.
Collapse
Affiliation(s)
- Oskar Franch
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Affiliation(s)
- Yuanyuan Cao
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Yapei Wang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|