51
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
52
|
Totten SM, Kullolli M, Pitteri SJ. Multi-Lectin Affinity Chromatography for Separation, Identification, and Quantitation of Intact Protein Glycoforms in Complex Biological Mixtures. Methods Mol Biol 2017; 1550:99-113. [PMID: 28188526 DOI: 10.1007/978-1-4939-6747-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein glycosylation is considered to be one of the most abundant post-translational modifications and is recognized for playing key roles in cellular functions. Aberrant N-linked glycosylation has been associated with several human diseases and has prompted the development and constant improvement of analytical tools to separate, characterize, and quantify glycoproteins in complex mixtures extracted from various biological samples (such as blood and tissue). Lectins, or carbohydrate-binding proteins, have been used as valuable tools for enriching for glycoproteins and selecting for specific types of glycosylation. Herein a method using multidimensional intact protein fractionation and LC-MS/MS analysis is described. Immunodepletion is used to remove highly abundant proteins from human plasma, followed by glycoform separation using multi-lectin affinity chromatography, in which specific lectins are chosen to capture and elute specific types of glycosylation. Reversed-phase chromatography prior to digestion is used for further fractionation, allowing for an increased number of protein identifications of moderate- to low-abundant proteins detectable in plasma. This method also incorporates isotopic labeling during alkylation for relative quantitation between two samples (such as a case and control). A bottom-up, tandem mass spectrometry-based proteomics approach is used for protein identification and quantitation, and allows for screening glycoform-specific changes across hundreds of plasma proteins.
Collapse
Affiliation(s)
- Sarah M Totten
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, MC 5483, Palo Alto, CA, 94304, USA
| | - Majlinda Kullolli
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, MC 5483, Palo Alto, CA, 94304, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, MC 5483, Palo Alto, CA, 94304, USA
| |
Collapse
|
53
|
Yang Q, Zhu Y, Luo B, Lan F, Wu Y, Gu Z. pH-Responsive magnetic nanospheres for the reversibly selective capture and release of glycoproteins. J Mater Chem B 2017; 5:1236-1245. [DOI: 10.1039/c6tb02662a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present a pH-stimuli-responsive strategy to reversibly capture and release glycoproteins with high selectivity from a pure protein, model protein mixture and even a real biological sample.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yue Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Bin Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Fang Lan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yao Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
54
|
Zhu R, Song E, Hussein A, Kobeissy FH, Mechref Y. Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications. Methods Mol Biol 2017; 1598:213-227. [PMID: 28508363 DOI: 10.1007/978-1-4939-6952-4_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston Ave., Box 41061, Lubbock, TX, 79409-1061, USA
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston Ave., Box 41061, Lubbock, TX, 79409-1061, USA
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston Ave., Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
55
|
El Rassi Z, Puangpila C. Liquid-phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2014-2016. Electrophoresis 2016; 38:150-161. [DOI: 10.1002/elps.201600413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| | - Chanida Puangpila
- Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
56
|
Harada K, Mizrak Kaya D, Shimodaira Y, Song S, Baba H, Ajani JA. Proteomics approach to identify biomarkers for upper gastrointestinal cancer. Expert Rev Proteomics 2016; 13:1041-1053. [PMID: 27718753 DOI: 10.1080/14789450.2016.1246189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The prognosis for patients with upper gastrointestinal cancers remains dismal despite the development of multimodality therapies that incorporate surgery, chemotherapy, and radiotherapy. Early diagnosis and personalized treatment should lead to better prognosis. Given the advances in proteomic technologies over the past decades, proteomics promises to be the most effective technique to identify novel diagnostics and therapeutic targets. Areas covered: For this review, keywords were searched in combination with 'proteomics' and 'gastric cancer' or 'esophageal cancer' in PubMed. Studies that evaluated proteomics associated with upper gastrointestinal cancer were identified through reading, with several studies quoted at second hand. We summarize the proteomics involved in upper gastrointestinal cancer and discuss potential biomarkers and therapeutic targets. Expert commentary: In particular, the development of mass spectrometry has enabled detection of multiple proteins and peptides in more biological samples over a shorter time period and at lower cost than was previously possible. In addition, more sophisticated protein databases have allowed a wider variety of proteins in samples to be quantified. Novel biomarkers that have been identified by new proteomic technologies should be applied in a clinical setting.
Collapse
Affiliation(s)
- Kazuto Harada
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Gastroenterological Surgery, Graduate School of Medical Science , Kumamoto University , Kumamoto , Japan
| | - Dilsa Mizrak Kaya
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yusuke Shimodaira
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shumei Song
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Hideo Baba
- b Department of Gastroenterological Surgery, Graduate School of Medical Science , Kumamoto University , Kumamoto , Japan
| | - Jaffer A Ajani
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
57
|
Zacharias LG, Hartmann AK, Song E, Zhao J, Zhu R, Mirzaei P, Mechref Y. HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells. J Proteome Res 2016; 15:3624-3634. [PMID: 27533485 DOI: 10.1021/acs.jproteome.6b00429] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aberrant glycosylation has been linked to many different cancer types. The blood-brain barrier (BBB) is a region of the brain that regulates the entrance of ions, diseases, toxins, and so on. However, in breast cancer metastasis, the BBB fails to prevent the crossing of the cancer cells into the brain. Here we present a study of identifying and quantifying the glycosylation of six breast and brain cancer cell lines using hydrophilic interaction liquid chromatography (HILIC) and electrostatic repulsion liquid chromatography (ERLIC) enrichments and LC-MS/MS analysis. Qualitative and quantitative analyses of N-linked glycosylation were performed by both enrichment techniques for individual and complementary comparison. Potential cancer glycopeptide biomarkers were identified and confirmed by chemometric and statistical evaluations. A total of 497 glycopeptides were characterized, of which 401 were common glycopeptides (80.6% overlap) identified from both enrichment techniques. HILIC enrichment yielded 320 statistically significant glycopeptides in 231BR relative to the other cell lines out of 494 unique glycopeptides, and sequential HILIC-ERLIC enrichment yielded 214 statistically significant glycopeptides in 231BR compared with the other cell lines out of 404 unique glycopeptides. The results provide the first comprehensive glycopeptide listing for these six cell lines.
Collapse
Affiliation(s)
- Lauren G Zacharias
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Alyssa K Hartmann
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
58
|
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016; 15:1773-90. [PMID: 26929216 PMCID: PMC5083109 DOI: 10.1074/mcp.o115.057638] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia;
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Schulz
- §School of Chemistry & Molecular Biosciences, St Lucia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
59
|
Zhao J, Song E, Zhu R, Mechref Y. Parallel data acquisition of in-source fragmented glycopeptides to sequence the glycosylation sites of proteins. Electrophoresis 2016; 37:1420-30. [PMID: 26957414 DOI: 10.1002/elps.201500562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/28/2016] [Accepted: 02/28/2016] [Indexed: 11/11/2022]
Abstract
Glycosylation plays important roles in maintaining protein stability and controlling biological processes. In recent years, the correlation between aberrant glycoproteins and many diseases has been reported. Hence, qualitative and quantitative analyses of glycoproteins are necessary to understand physiological processes. LC-MS/MS analysis of glycopeptides is faced with the low glycopeptide signal intensities and low peptide sequence identification. In our study, in-source fragmentation (ISF) was used in conjunction with LC-MS/MS to facilitate the parallel acquisition of peptide backbone sequence and glycan composition information. In ISF method, the identification of glycosylation sites depended on the detection of Y1 ion (ion of peptide backbone with an N-acetylglucosamine attached). To attain dominant Y1 ions, a range of source fragmentation voltages was studied using fetuin. A 45 V ISF voltage was found to be the most efficient voltage for the analysis of glycoproteins. ISF was employed to study the glycosylation sites of three model glycoproteins, including fetuin, α1-acid glycoprotein and porcine thyroglobulin. The approach was then used to analyze blood serum samples. Y1 ions of glycopeptides in tryptic digests of samples were detected. Y1 ions of glycopeptides with different sialic acid groups are observed at different retention times, representing the various numbers of sialic acid moieties associated with the same peptide backbone sequence. With ISF facilitating the peptide backbone sequencing of glycopeptides, identified peptide sequence coverage was increased. For example, identified fetuin sequence percentage was improved from 39 to 80% in MASCOT database searching compared to conventional CID method. The formation of Y1 ions and oxonium ions in ISF facilitates glycopeptide sequencing and glycan composition identification.
Collapse
Affiliation(s)
- Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
60
|
Wu R, Li L, Deng C. Highly efficient and selective enrichment of glycopeptides using easily synthesized magG/PDA/Au/l-Cys composites. Proteomics 2016; 16:1311-20. [DOI: 10.1002/pmic.201500383] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Runqing Wu
- Department of Chemistry; Fudan University; Shanghai China
| | - Lanting Li
- Department of Chemistry; Fudan University; Shanghai China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences; Collaborative Innovation Center of Genetics and Development, Fudan University; Shanghai P. R. China
| |
Collapse
|
61
|
A case for protein-level and site-level specificity in glycoproteomic studies of disease. Glycoconj J 2016; 33:377-85. [PMID: 27007620 DOI: 10.1007/s10719-016-9663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/16/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.
Collapse
|
62
|
Shah AK, Cao KAL, Choi E, Chen D, Gautier B, Nancarrow D, Whiteman DC, Saunders NA, Barbour AP, Joshi V, Hill MM. Serum Glycoprotein Biomarker Discovery and Qualification Pipeline Reveals Novel Diagnostic Biomarker Candidates for Esophageal Adenocarcinoma. Mol Cell Proteomics 2015; 14:3023-39. [PMID: 26404905 DOI: 10.1074/mcp.m115.050922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 12/31/2022] Open
Abstract
We report an integrated pipeline for efficient serum glycoprotein biomarker candidate discovery and qualification that may be used to facilitate cancer diagnosis and management. The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled tandem mass spectrometry with a dedicated data-housing and analysis pipeline; GlycoSelector (http://glycoselector.di.uq.edu.au). The qualification phase used lectin magnetic bead array-multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny), for univariate and multivariate statistical analysis. Relative quantitation was performed by referencing to a spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor prognosis in the advanced setting. EAC develops from metaplastic condition Barrett's esophagus (BE). Currently diagnosis and monitoring of at-risk patients is through endoscopy and biopsy, which is expensive and requires hospital admission. Hence there is a clinical need for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy controls, and patients with BE or EAC were screened in discovery and qualification stages. Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing healthy from BE patients' group was Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100 (p value = 0.0231; AUROC = 0.71); BE versus EAC, Aleuria aurantia lectin (AAL)-reactive complement component C9 (p value = 0.0001; AUROC = 0.85); healthy versus EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (p value = 0.0014; AUROC = 0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to discriminate EAC from BE. Two biomarker candidates were independently verified by lectin magnetic bead array-immunoblotting, confirming the validity of the relative quantitation approach. Thus, we have identified candidate biomarkers, which, following large-scale clinical evaluation, can be developed into diagnostic blood tests. A key feature of the pipeline is the potential for rapid translation of the candidate biomarkers to lectin-immunoassays.
Collapse
Affiliation(s)
- Alok K Shah
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Eunju Choi
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; §School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - David Chen
- ¶School of Information and Communication Technology, Griffith University, Brisbane, Queensland, Australia
| | - Benoît Gautier
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Derek Nancarrow
- ‖QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David C Whiteman
- ‖QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas A Saunders
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew P Barbour
- **School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Virendra Joshi
- ‡‡Ochsner Health System, Gastroenterology, New Orleans, Louisiana
| | - Michelle M Hill
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia;
| |
Collapse
|
63
|
Song E, Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med 2015; 9:835-44. [PMID: 26330015 DOI: 10.2217/bmm.15.55] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.
Collapse
Affiliation(s)
- Ehwang Song
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Yehia Mechref
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
64
|
Silva MLS. Cancer serum biomarkers based on aberrant post-translational modifications of glycoproteins: Clinical value and discovery strategies. Biochim Biophys Acta Rev Cancer 2015; 1856:165-77. [PMID: 26232626 DOI: 10.1016/j.bbcan.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Due to the increase in life expectancy in the last decades, as well as changes in lifestyle, cancer has become one of the most common diseases both in developed and developing countries. Early detection remains the most promising approach to improve long-term survival of cancer patients and this may be achieved by efficient screening of biomarkers in biological fluids. Great efforts have been made to identify specific alterations during oncogenesis. Changes at the cellular glycosylation profiles are among such alterations. The "glycosylation machinery" of cells is affected by malignant transformation due to the altered expression of glycogens, leading to changes in glycan biosynthesis and diversity. Alterations in the post-translational modifications of proteins that occur in cancer result in the expression of antigenically distinct glycoproteins. Therefore, these aberrant and cancer-specific glycoproteins and the autoantibodies that are produced in response to their presence constitute targets for cancer biomarkers' search. Different strategies have been implemented for the discovery of cancer glycobiomarkers and are herein reviewed, along with their potentialities and limitations. Practical issues related with serum analysis are also addressed, as well as the challenges that this area faces in the near future.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo km 4.5, 42184 Mineral de la Reforma, Hidalgo, México.
| |
Collapse
|
65
|
Li D, Li Y, Li X, Bie Z, Pan X, Zhang Q, Liu Z. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. J Chromatogr A 2015; 1384:88-96. [DOI: 10.1016/j.chroma.2015.01.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
|
66
|
Gao L, Du J, Wang C, Wei Y. Fabrication of a dendrimer-modified boronate affinity material for online selective enrichment of cis-diol-containing compounds and its application in determination of nucleosides in urine. RSC Adv 2015. [DOI: 10.1039/c5ra18443f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high binding capacity dendrimer-modified boronate affinity material (SiO2@dBA) was synthesized and coupled with large-volume injection/online column-switching solid phase extraction to facilitate the determination process of cis-diols.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Jin Du
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
67
|
Thongboonkerd V, LaBaer J, Domont GB. Recent Advances of Proteomics Applied to Human Diseases. J Proteome Res 2014; 13:4493-6. [DOI: 10.1021/pr501038g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit,
Office for Research and Development, Faculty of Medicine Siriraj Hospital,
and Center for Research in Complex Systems Science, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Joshua LaBaer
- Virginia G. Piper Center
for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-6401, United States
| | - Gilberto B. Domont
- Proteomics Unit, Institute
of Chemistry, Federal University of Rio de Janeiro (UFRJ), Avenida
Athos da Silveira Ramos, Rio de Janeiro, 21941-909 RJ, Brazil
| |
Collapse
|
68
|
Ruhaak LR, Lebrilla CB. Applications of Multiple Reaction Monitoring to Clinical Glycomics. Chromatographia 2014; 78:335-342. [PMID: 25892741 DOI: 10.1007/s10337-014-2783-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple reaction monitoring or MRM is widely acknowledged for its accuracy of quantitation. The applications have mostly been in the analysis of small molecules and proteins, but its utility is expanding. Protein glycosylation was recently identified as a new paradigm in biomarker discovery for health and disease. A number of recent studies have now identified differential glycosylation patterns associated with health and disease states, including aging, pregnancy, rheumatoid arthritis and different types of cancer. While the use of MRM in clinical glycomics is still in its infancy, it can likely play a role in the quantitation of protein glycosylation in the clinical setting. Here, we aim to review the current advances in the nascent application of MRM in the field of glycomics.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Chemistry, University of California Davis. One Shields Avenue, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis. One Shields Avenue, Davis, CA, USA
| |
Collapse
|