51
|
Fu S, Rogowsky P, Nover L, Scanlon MJ. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. PLANTA 2006; 224:42-52. [PMID: 16331466 DOI: 10.1007/s00425-005-0191-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
The heat shock response (HSR) is a conserved mechanism by which transcripts of heat shock protein (hsp) genes accumulate following mobilization of heat shock transcription factors (HSFs) in response to thermal stress. Studies in animals identified the heat shock factor-binding protein1 (HSBP1) that interacts with heat shock transcription factor1 (HSF1) during heat shock attenuation; overexpression analyses revealed that the coiled-coil protein HSBP1 functions as a negative regulator of the HSR. Zea mays contains two HSBP paralogs, EMP2 and HSBP2, which exhibit differential accumulation during the HSR and plant development. Embryo-lethal recessive emp2 mutations revealed that EMP2 is required for the down-regulation of hsp transcription during embryogenesis, whereas accumulation of HSBP2 is induced in seedlings following heat shock. Notwithstanding, no interaction has yet been demonstrated between a plant HSBP and a plant HSF. In this report 22 maize HSF isoforms are identified comprising three structural classes: HSF-A, HSF-B and HSF-C. Phylogenetic analysis of Arabidopsis, maize and rice HSFs reveals that at least nine ancestral HSF isoforms were present prior to the separation of monocot and eudicots, followed by differential amplification of HSF members in these lineages. Yeast two-hybrid analyses show that EMP2 and HSBP2 interact non-redundantly with specific HSF-A isoforms. Site-specific mutagenesis of HSBP2 reveals that interactions between hydrophobic residues within the coiled coil are required for HSF::HSBP2 binding; domain swapping demonstrate that the isoform specificity of HSF::HSBP interaction is conferred by residues outside of the coiled coil. These data suggest that the non-redundant functions of the maize HSBPs may be explained, at least in part, by the specificity of HSBP::HSF interactions during plant development.
Collapse
Affiliation(s)
- Suneng Fu
- Plant Biology Department, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
52
|
Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 60:759-72. [PMID: 16649111 DOI: 10.1007/s11103-005-5750-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/06/2005] [Indexed: 05/08/2023]
Abstract
Within the Arabidopsis family of 21 heat stress transcription factors (Hsfs) HsfA2 is the strongest expressed member under heat stress (hs) conditions. Irrespective of the tissue, HsfA2 accumulates under heat stress similarly to other heat stress proteins (Hsps). A SALK T-DNA insertion line with a complete HsfA2-knockout was analyzed with respect to the changes in the transcriptome under heat stress conditions. Ascorbate peroxidase 2 (APX2) was identified as the most affected transcript in addition to several sHsps, individual members of the Hsp70 and Hsp100 family, as well as many transcripts of genes with yet unknown functions. For functional validation, the transcription activation potential of HsfA2 on GUS reporter constructs containing 1 kb upstream promoter sequences of selected target genes were analyzed using transient reporter assays in mesophyll protoplasts. By deletion analysis the promoter region of the strongest affected target gene APX2 was functionally mapped in detail to verify potential HsfA2 binding sites. By electrophoretic mobility shift assays we identified TATA-Box proximal clusters of heat stress elements (HSE) in the promoters of selected target genes as potential HsfA2 binding sites. The results presented here demonstrate that the expression of HsfA2 in Arabidopsis is strictly heat stress-dependent and this transcription factor represents a regulator of a subset of stress response genes in Arabidopsis.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute of Molecular Bio Sciences, Biocenter N200/R306, Goethe University, Marie-Curie-Str. 9, D-60439, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Liu JG, Yao QH, Zhang Z, Peng RH, Xiong AS, Xu F, Zhu H. Isolation and characterization of a cDNA encoding two novel heat-shock factor OsHSF6 and OsHSF12 in Oryza sativa L. BMB Rep 2005; 38:602-8. [PMID: 16202242 DOI: 10.5483/bmbrep.2005.38.5.602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a crucial transcription factor family, heat-shock factors were mainly analyzed and characterized in tomato and Arabidopsis. In this study, we isolated two putative heatshock factors OsHSF6 and OsHSF12 that interact specifically with heat-shock element (HSE) from Oryza sativa L by yeast one-hybrid method. The full-length cDNA of OsHSF6 and OsHSF12 have 1074bp and 920bp open reading frame (ORF), respectively. Analysis of the deduced amino acid sequences revealed that OsHSF6 was a class A heat shock factor (HSF) with all the conserved sequence elements characteristic of heat stress transcription factor, while OsHSF12 was a class B HSF with C-terminal domain (CTD) lacking of AHA motif. Bioinformatic analysis showed that the sequences and structures of two HSFs' DNA binding domain (DBD) had a high similarity with LpHSF24. The results of RT-PCR indicated OsHSF6 gene was expressed immediately after rice plants exposure to heat stress, and the transcription of OsHSF6 gene accumulated primarily in immature seeds, roots and leaves. However, we did not find the transcription of OsHSF12 gene in different organs and growth periods. Our results implied that OsHSF6 might be function as a HSF regulating early expression of stress genes in response to heat shock, and OsHSF12 might be act as a synergistic factor to regulate the expression of down-stream genes.
Collapse
Affiliation(s)
- Jin-Ge Liu
- Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences, The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
54
|
Busch W, Wunderlich M, Schöffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:1-14. [PMID: 15610345 DOI: 10.1111/j.1365-313x.2004.02272.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to assess specific functional roles of plant heat shock transcription factors (HSF) we conducted a transcriptome analysis of Arabidopsis thaliana hsfA1a/hsfA1b double knock out mutants and wild-type plants. We used Affymetrix ATH1 microarrays (representing more than 24 000 genes) and conducted hybridizations for heat-treated or non-heat-treated leaf material of the respective lines. Heat stress had a severe impact on the transcriptome of mutant and wild-type plants. Approximately 11% of all monitored genes of the wild type showed a significant effect upon heat stress treatment. The difference in heat stress-induced gene expression between mutant and wild type revealed a number of HsfA1a/1b-regulated genes. Besides several heat shock protein and other stress-related genes, we found HSFA-1a/1b-regulated genes for other functions including protein biosynthesis and processing, signalling, metabolism and transport. By screening the profiling data for genes in biochemical pathways in which known HSF targets were involved, we discovered that at each step in the pathway leading to osmolytes, the expression of genes is regulated by heat stress and in several cases by HSF. Our results document that in the immediate early phase of the heat shock response HSF-dependent gene expression is not limited to known stress genes, which are involved in protection from proteotoxic effects. HsfA1a and HsfA1b-regulated gene expression also affects other pathways and mechanisms dealing with a broader range of physiological adaptations to stress.
Collapse
Affiliation(s)
- Wolfgang Busch
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
55
|
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 2004; 29:471-87. [PMID: 15625403 DOI: 10.1007/bf02712120] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the "working horse" of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.
Collapse
Affiliation(s)
- Sanjeev Kumar Baniwal
- Department of Molecular Cell Biology, Goethe University Frankfurt, Marie Curie Str. 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Czarnecka-Verner E, Pan S, Salem T, Gurley WB. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. PLANT MOLECULAR BIOLOGY 2004; 56:57-75. [PMID: 15604728 DOI: 10.1007/s11103-004-2307-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant heat shock transcription factors (HSFs) are capable of transcriptional activation (class A HSFs) or both, activation and repression (class B HSFs). However, the details of mechanism still remain unclear. It is likely, that the regulation occurs through interactions of HSFs with general transcription factors (GTFs), as has been described for numerous other transcription factors. Here, we show that class A HSFs may activate transcription through direct contacts with TATA-binding protein (TBP). Class A HSFs can also interact weakly with TFIIB. Conversely, class B HSFs inhibit promoter activity through an active mechanism of repression that involves the C-terminal regulatory region (CTR) of class B HSFs. Deletion analysis revealed two sites in the CTR of soybean GmHSFB1 potentially involved in protein-protein interactions with GTFs: one is the repressor domain (RD) located in the N-terminal half of the CTR, and the other is a TFIIB binding domain (BD) that shows affinity for TFIIB and is located C-terminally from the RD. A Gal4 DNA binding domain-RD fusion repressed activity of LexA-activators, while Gal4-BD proteins synergistically activated strong and weak transcriptional activators. In vitro binding studies were consistent with this pattern of activity since the BD region alone interacted strongly with TFIIB, and the presence of RD had an inhibitory effect on TFIIB binding and transcriptional activation.
Collapse
Affiliation(s)
- Eva Czarnecka-Verner
- Microbiology and Cell Science Department, Program of Plant Molecular and Cellular Biology, University of Florida, Bldg. 981, Gainesville, FL 32611-0700, USA.
| | | | | | | |
Collapse
|
57
|
Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:98-112. [PMID: 15200645 DOI: 10.1111/j.1365-313x.2004.02111.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat stress transcription factors (Hsfs) are the major regulators of the plant heat stress (hs) response. Sequencing of the Arabidopsis genome revealed the existence of 21 open-reading frames (ORFs) encoding putative Hsfs assigned to classes A-C. Here we present results of a functional genomics approach to the Arabidopsis Hsf family focused on the analysis of their C-terminal domains (CTDs) harboring conserved modules for their function as transcription factors and their intracellular localization. Using reporter assays in tobacco protoplasts and yeast as well as glutathione-S-transferase (GST) pull-down assays, we demonstrate that short peptide motifs enriched with aromatic and large hydrophobic amino acid (aa) residues embedded in an acidic surrounding (AHA motifs) are essential for transcriptional activity of class A Hsfs. In contrast to this, class B and C Hsfs lack AHA motifs and have no activator function on their own. We also provide evidence for the function of a leucine (Leu)-rich region centered around a conserved QMGPhiL motif at the very C-terminus as a nuclear export signal (NES) of class A Hsfs. Sequence comparison indicates that the combination of a C-terminal AHA motif with the consensus sequence FWxxF/L,F/I/L as well as the adjacent NES represents a signature domain for plant class A Hsfs, which allowed to identify more than 60 new Hsfs from the expressed sequence tag (EST) database.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
58
|
Bharti K, Von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. THE PLANT CELL 2004; 16:1521-35. [PMID: 15131252 PMCID: PMC490043 DOI: 10.1105/tpc.019927] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 02/17/2004] [Indexed: 05/17/2023]
Abstract
In contrast with the class A heat stress transcription factors (HSFs) of plants, a considerable number of HSFs assigned to classes B and C have no evident function as transcription activators on their own. However, in the following article, we provide evidence that tomato (Lycopersicon peruvianum) HsfB1 represents a novel type of coactivator cooperating with class A HSFs (e.g., with tomato HsfA1). Provided the appropriate promoter architecture, the two HSFs assemble into an enhanceosome-like complex, resulting in strong synergistic activation of reporter gene expression. Moreover, HsfB1 also cooperates in a similar manner with other activators, for example, with the ASF1/2 enhancer binding proteins of the 35S promoter of Cauliflower mosaic virus or with yet unidentified activators controlling housekeeping gene expression. By these effects, HsfB1 may help to maintain and/or restore expression of certain viral or housekeeping genes during ongoing heat stress. The coactivator function of HsfB1 depends on a histone-like motif in its C-terminal domain with an indispensable Lys residue in the center (GRGKMMK). This motif is required for recruitment of the plant CREB binding protein (CBP) ortholog HAC1. HsfA1, HsfB1, and HAC1/CBP form ternary complexes in vitro and in vivo with markedly enhanced efficiency in promoter recognition and transcription activation in plant and mammalian (COS7) cells. Using small interfering RNA-mediated knock down of HAC1 expression in Arabidopsis thaliana mesophyll protoplasts, the crucial role for the coactivator function of HsfB1 was confirmed.
Collapse
Affiliation(s)
- Kapil Bharti
- Department of Molecular Cell Biology, Goethe University Frankfurt, D-60439 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Ernst D, Aarts M. cis Elements and Transcription Factors Regulating Gene Promoters in Response to Environmental Stress. ECOLOGICAL STUDIES 2004. [DOI: 10.1007/978-3-662-08818-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
60
|
Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 2003; 271:11-21. [PMID: 14655047 DOI: 10.1007/s00438-003-0954-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
In order to assess the specific functional roles of different plant heat shock transcription factors (HSFs) we have isolated T-DNA insertion mutants in the AtHsf1 and AtHsf3 genes of Arabidopsis thaliana. Complete and selective loss of the promoter binding activities of AtHSF1 or AtHSF3, verified by immunoprecipitation assays, had no obvious effects on the heat shock (HS) response in the individual mutant lines. Only hsf1(-) /hsf3(-)double mutants were significantly impaired in HS gene expression. In these plants the inability to form high-molecular-weight HSE-binding complexes correlates with a dramatic change in the kinetics of mRNA accumulation from all HSF target genes tested, including members of the Hsp100, Hsp90, Hsp70 and small Hsp families, and genes for two heat-inducible class B-HSFs. After prolonged HS, the amounts of most heat shock mRNAs expressed, except transcripts of Hsp18.2, reached approximately the same levels as in wild type plants. Our data indicate that AtHSF1 and AtHSF3 are key regulators of the immediate stress-induced activation of HS gene transcription, and consequently determine the kinetics of the negative feed back loop that is responsible for the transience of HS gene expression in wild type.
Collapse
Affiliation(s)
- C Lohmann
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
61
|
Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 2003; 44:231-60. [PMID: 14523572 DOI: 10.1007/s00294-003-0444-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/21/2003] [Accepted: 09/01/2003] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made in the past few years in characterising Arabidopsis nuclear transport receptors and in elucidating plant signal transduction pathways that employ nucleo-cytoplasmic partitioning of a member of the signal transduction chain. This review briefly introduces the major principles of nuclear transport of macromolecules across the nuclear envelope and the proteins involved, as they have been described in vertebrates and yeast. Proteins of the plant nuclear transport machinery that have been identified to date are discussed, the focus being on Importin beta-like nuclear transport receptors. Finally, the importance of nucleo-cytoplasmic partitioning as a regulatory tool for signalling is highlighted, and different plant signal transduction pathways that make use of this regulatory potential are presented.
Collapse
Affiliation(s)
- Thomas Merkle
- Institute of Biology II, Cell Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
62
|
Wunderlich M, Werr W, Schöffl F. Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:442-451. [PMID: 12904207 DOI: 10.1046/j.1365-313x.2003.01815.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Upon heat stress, heat shock factors (HSFs) control the expression of heat shock protein (HSP) genes by transcriptional activation. The perplexing multiplicity of HSF genes in Arabidopsis- 21 potential genes have been identified - renders it difficult to identify mutant phenotypes. In this study, we have attempted to generate a transdominant-negative mutant of HSF by transgenic expression of a protein fusion construct, EN-HSF1, consisting of the Drosophila engrailed repressor domain (EN) and the complete Arabidopsis AtHSF1. Transgenic lines were screened for impaired ability to induce high levels of low-molecular-weight heat shock proteins (sHSPs). Two lines, EH14-6 and EH16-3, which showed quantitative differences in the expression of EN-HSF1, were further analysed for induction of thermotolerance and heat-stress-dependent mRNAs of a number of different HSF target genes encoding different HSP and HSF. The mRNA levels of all genes tested were moderately downregulated in EH14-6 but strongly reduced in EH16-3 plants compared to wild-type (Wt) and HSF1-overexpressing control plants. The inhibition of the induction of heat shock response correlated with impaired basal and acquired thermotolerance of the EH16-3 line. The kinetics of HSP expression suggest that the negative effect of EN-HSF1 is stronger in the early phase of the heat shock response, and that the reduction in mRNA levels is partially compensated at the translational level.
Collapse
Affiliation(s)
- Markus Wunderlich
- Zentrum für Molekularbiologie der Pflanzen, Allgemeine Genetik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
63
|
Sung DY, Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. PLANT PHYSIOLOGY 2003; 132:979-87. [PMID: 12805626 PMCID: PMC167036 DOI: 10.1104/pp.102.019398] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 02/15/2003] [Accepted: 03/06/2003] [Indexed: 05/20/2023]
Abstract
Hsp70s function as molecular chaperones. The protective chaperone activities of hsp70 help to confer tolerance to heat, glucose deprivation, and drought. Overexpression of hsp70s in many organisms correlates with enhanced thermotolerance, altered growth, and development. To better understand the roles of hsp70 proteins in Arabidopsis, the molecular and physiological consequences of altered expression of the major heat shock cognate, Hsc70-1, were analyzed. Extensive efforts to achieve underexpression of Hsc70-1 mRNA using a full-length antisense cDNA resulted in no viable transgenic plants, suggesting that reduced expression is lethal. Constitutive overexpression of Hsc70-1 also appeared to be deleterious to viability, growth, and development because fewer transformants were recovered, and most were dwarfed with altered root systems. Despite being dwarfed, the overexpression plants progressed normally through four selected developmental stages. Heat treatment revealed that Hsc70-1 overexpression plants were more tolerant to heat shock (44 degrees C for 10 min). The elevated basal levels of HSC70-1 in transgenic plants led to delayed heat shock response of several heat shock genes. The data in this study suggest that tight regulation of Hsc70-1 expression is critical for the viability of Arabidopsis and that the functions of HSC70-1 contribute to optimum growth, development, thermotolerance, and regulation of the heat shock response.
Collapse
Affiliation(s)
- Dong Yul Sung
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611-0670, USA
| | | |
Collapse
|
64
|
Zhang L, Lohmann C, Prändl R, Schöffl F. Heat stress-dependent DNA binding of Arabidopsis heat shock transcription factor HSF1 to heat shock gene promoters in Arabidopsis suspension culture cells in vivo. Biol Chem 2003; 384:959-63. [PMID: 12887064 DOI: 10.1515/bc.2003.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using UV laser cross-linking and immunoprecipitation we measured the in vivo binding of Arabidopsis heat shock transcription factor HSF1 to the promoters of target genes, Hsp18.2 and Hsp70. The amplification of promoter sequences, co-precipitated with HSF1-specific antibodies, indicated that HSF1 is not bound in the absence of heat stress. Binding to promoter sequences of target genes is rapidly induced by heat stress, continues throughout the heat treatment, and declines during subsequent recovery at room temperature. The molecular mechanisms underlying the differences between Hsp18.2 and Hsp70 in the kinetics of HSF1/promoter binding and corresponding mRNA expression profiles are discussed.
Collapse
MESH Headings
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cells, Cultured
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- HSP70 Heat-Shock Proteins/genetics
- Heat Shock Transcription Factors
- Heat-Shock Proteins/genetics
- Heat-Shock Response/genetics
- Heat-Shock Response/physiology
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Plant/analysis
- RNA, Plant/genetics
- Transcription Factors
Collapse
Affiliation(s)
- Lemin Zhang
- Zentrum für Molekularbiologie der Pflanzen--Allgemeine Genetik, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
65
|
Sung DY, Kaplan F, Lee KJ, Guy CL. Acquired tolerance to temperature extremes. TRENDS IN PLANT SCIENCE 2003; 8:179-87. [PMID: 12711230 DOI: 10.1016/s1360-1385(03)00047-5] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acquired tolerance to temperature stresses is a major protective mechanism. Recent advances have revealed key components of stress signal transduction pathways that trigger enhanced tolerance, and several determinants of acquired tolerance have been identified. Although high and low temperature stresses impose different metabolic and physical challenges, acquired tolerance appears to involve general as well as stress-specific components. Transcriptome studies and other genomic-scale approaches have accelerated the pace of gene discovery, and will be invaluable in efforts to integrate all the different protective and repair mechanisms that function in concert to confer acquired tolerance.
Collapse
Affiliation(s)
- Dong-Yul Sung
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville 32611-0670, USA
| | | | | | | |
Collapse
|
66
|
Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 2002; 99:7530-5. [PMID: 12032317 PMCID: PMC124274 DOI: 10.1073/pnas.112209199] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rice spotted leaf (lesion-mimic) gene, Spl7, was identified by map-based cloning. High-resolution mapping with cleaved amplified polymorphic sequence markers enabled us to define a genomic region of 3 kb as a candidate for Spl7. We found one ORF that showed high similarity to a heat stress transcription factor (HSF). Transgenic analysis verified the function of the candidate gene for Spl7: leaf spot development was suppressed in spl7 mutants with a wild-type Spl7 transgene. Thus, we conclude that Spl7 encodes the HSF protein. The transcript of spl7 was observed in mutant plants. The levels of mRNAs (Spl7 in wild type and spl7 in mutant) increased under heat stress. Sequence analysis revealed only one base substitution in the HSF DNA-binding domain of the mutant allele, causing a change from tryptophan to cysteine.
Collapse
Affiliation(s)
- Utako Yamanouchi
- Institute of the Society for Techno-Innovation of Agriculture, Forestry, and Fisheries, Tsukuba, Ibaraki 305-0854, Japan
| | | | | | | | | |
Collapse
|
67
|
Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. PLANT PHYSIOLOGY 2001; 127:1466-1475. [PMID: 11743090 DOI: 10.1104/pp.010820] [Citation(s) in RCA: 436] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant protoplasts show physiological perceptions and responses to hormones, metabolites, environmental cues, and pathogen-derived elicitors, similar to cell-autonomous responses in intact tissues and plants. The development of defined protoplast transient expression systems for high-throughput screening and systematic characterization of gene functions has greatly contributed to elucidating plant signal transduction pathways, in combination with genetic, genomic, and transgenic approaches.
Collapse
Affiliation(s)
- J Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Wellman 11, 50 Blossom Street, Boston, Massachusetts 02114, USA.
| |
Collapse
|
68
|
Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 2001; 6:177-89. [PMID: 11599559 PMCID: PMC434399 DOI: 10.1379/1466-1268(2001)006<0177:aathst>2.0.co;2] [Citation(s) in RCA: 483] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Accepted: 04/11/2001] [Indexed: 11/24/2022] Open
Abstract
Sequencing of the Arabidopsis genome revealed a unique complexity of the plant heat stress transcription factor (Hsf) family. By structural characteristics and phylogenetic comparison, the 21 representatives are assigned to 3 classes and 14 groups. Particularly striking is the finding of a new class of Hsfs (AtHsfC1) closely related to Hsf1 from rice and to Hsfs identified from frequently found expressed sequence tags of tomato, potato, barley, and soybean. Evidently, this new type of Hsf is well expressed in different plant tissues. Besides the DNA binding and oligomerization domains (HR-A/B region), we identified other functional modules of Arabidopsis Hsfs by sequence comparison with the well-characterized tomato Hsfs. These are putative motifs for nuclear import and export and transcriptional activation (AHA motifs). There is intriguing flexibility of size and sequence in certain parts of the otherwise strongly conserved N-terminal half of these Hsfs. We have speculated about possible exon-intron borders in this region in the ancient precursor gene of plant Hsfs, similar to the exon-intron structure of the present mammalian Hsf-encoding genes.
Collapse
Affiliation(s)
- L Nover
- Biocenter of the Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
69
|
Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol 2001; 21:1759-68. [PMID: 11238913 PMCID: PMC86729 DOI: 10.1128/mcb.21.5.1759-1768.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tomato heat stress transcription factor HsfA2 is a shuttling protein with dominant cytoplasmic localization as a result of a nuclear import combined with an efficient export. Besides the nuclear localization signal (NLS) adjacent to the oligomerization domain, a C-terminal leucine-rich motif functions as a nuclear export signal (NES). Mutant forms of HsfA2 with a defective or an absent NES are nuclear proteins. The same is true for the wild-type HsfA2 if coexpressed with HsfA1 or in the presence of export inhibitor leptomycin B (LMB). Fusion of the NES domain of HsfA2 to HsfB1, which is a nuclear protein, caused export of the HsfB1-A2NES hybrid protein, and this effect was reversed by the addition of LMB. Due to the lack of background problems, Chinese hamster ovary (CHO) cells represent an excellent system for expression and functional analysis of tomato Hsfs. The results faithfully reflect the situation found in plant cells (tobacco protoplasts). The intriguing role of NLS and NES accessibility for the intracellular distribution of HsfA2 is underlined by the results of heat stress treatments of CHO cells (41 degrees C). Despite the fact that nuclear import and export are not markedly affected, HsfA2 remains completely cytoplasmic at 41 degrees C even in the presence of LMB. The temperature-dependent conformational transition of HsfA2 with shielding of the NLS evidently needs intramolecular interaction between the internal HR-A/B and the C-terminal HR-C regions. It is not observed with the HR oligomerization domain (HR-A/B region) deletion form of HsfA2 or in HsfA2-HsfA1 hetero-oligomers.
Collapse
Affiliation(s)
- D Heerklotz
- Department of Molecular Cell Biology, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
70
|
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000; 290:2105-10. [PMID: 11118137 DOI: 10.1126/science.290.5499.2105] [Citation(s) in RCA: 1691] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.
Collapse
Affiliation(s)
- J L Riechmann
- Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf KD. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:355-65. [PMID: 10849352 DOI: 10.1046/j.1365-313x.2000.00746.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stress-induced transcription of heat shock proteins (Hsps) in eukaryotes is mediated by a conserved class of transcription factors called heat stress transcription factors (Hsfs). Here we report the isolation and functional characterization of HsfA3, a new member of the Hsf family. HsfA3 was cloned from a tomato heat stress cDNA library by yeast two-hybrid screening, using HsfA1 as a bait. HsfA3 is a single-copy gene with all the conserved sequence elements characteristic of a heat stress transcription factor. The constitutively expressed HsfA3 is mainly found in the cytoplasm under control conditions and in the nucleus under heat stress conditions. Functionally, HsfA3 behaves similarly to the already known members of tomato Hsf family. It is able to substitute yeast Hsf for viability functions and is a strong activator of Hsf-dependent reporter constructs both in tobacco protoplasts and yeast. Finally, similar to the AHA motifs in HsfA1 and HsfA2, the activator function depends on four short peptide motifs with a central tryptophan residue found in the C-terminal domain of HsfA3.
Collapse
Affiliation(s)
- K Bharti
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|