51
|
Daniell H, Kumar S, Dufourmantel N. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 2005; 23:238-45. [PMID: 15866001 PMCID: PMC3486632 DOI: 10.1016/j.tibtech.2005.03.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Orlando, FL 32816-2364, USA.
| | | | | |
Collapse
|
52
|
Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 2005; 68:1175-84. [PMID: 15215578 DOI: 10.1271/bbb.68.1175] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Heteromeric ACCase composed of four subunits is usually found in prokaryotes, and homomeric ACCase composed of a single large polypeptide is found in eukaryotes. Most plants have both forms, the heteromeric form in plastids, in which de novo fatty acids are synthesized, and the homomeric form in cytosol. This review focuses on the structure and regulation of plant heteromeric ACCase and its manipulation for plant breeding.
Collapse
Affiliation(s)
- Yukiko Sasaki
- Genesis Research Institute, Inc., Nishi-ku, Nagoya, Japan.
| | | |
Collapse
|
53
|
Khan MS, Khalid AM, Malik KA. Phage phiC31 integrase: a new tool in plastid genome engineering. TRENDS IN PLANT SCIENCE 2005; 10:1-3. [PMID: 15642516 DOI: 10.1016/j.tplants.2004.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plastid transformation offers the unique advantages of high-level transgene expression and increased transgene containment compared with conventional transgenic technologies. The process relies on the homologous recombination machinery of the plastid incorporating foreign DNA into the plastome, which restricts the method to species where this type of incorporation works well. However, Pal Maliga and colleagues have recently reported a novel approach for integrating foreign DNA into the plastid genome that works independently of homologous recombination.
Collapse
Affiliation(s)
- Muhammad Sarwar Khan
- National Institute for Biotechnology and Genetic Engineering, PO Box 577 Jhang Road, Faisalabad, Pakistan.
| | | | | |
Collapse
|
54
|
Maliga P. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochem Photobiol Sci 2005; 4:971-6. [PMID: 16307109 DOI: 10.1039/b514699m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transformation of the plastid genome, until recently restricted to tobacco, is now being extended to a rapidly growing list of crops. This perspective provides an overview of emerging trends of technology development in the field with a focus on vector design and marker excision systems. The new tools will facilitate engineering of the photosynthetic machinery and enable novel agricultural and industrial applications.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
55
|
Sytnik E, Komarnytsky I, Gleba Y, Kuchuk N. Transfer of transformed chloroplasts from Nicotiana tabacum to the Lycium barbarum plants. Cell Biol Int 2005; 29:71-5. [PMID: 15763502 DOI: 10.1016/j.cellbi.2004.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/02/2004] [Accepted: 11/11/2004] [Indexed: 11/15/2022]
Abstract
Plastid transformation is an attractive technology for obtaining crop plants with new useful characteristics and for fundamental researches of plastid functioning and nuclear-plastid interaction. The aim of our experiments was to obtain plants with Lycium barbarum nucleus and transformed Nicotiana tabacum plastids. Plastome of previously engineered transplastomic tobacco plants contains reporter uidA gene and selective aadA gene that confers resistance to antibiotics spectinomycin and streptomycin. Asymmetric somatic hybridization was performed for transferring transformed tobacco plastids from transplastomic tobacco plants into recipient L. barbarum wild type plants. Hybrid L. barbarum plants containing transformed tobacco plastome with active aadA and uidA genes were obtained as a result of the experiments. The work shows the possibility of obtaining transplastomic plants by transferring the transformed plastids to remote species by using somatic hybridization technology. The developed technique is especially effective for obtaining transplastomic plants that have low regeneration and transformation ability.
Collapse
Affiliation(s)
- Ekaterina Sytnik
- Institute of Cell Biology & Genetic Engineering, Zabolotnoho street 148, Kyiv 03143, Ukraine.
| | | | | | | |
Collapse
|
56
|
Kumar S, Dhingra A, Daniell H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. PLANT MOLECULAR BIOLOGY 2004; 56:203-16. [PMID: 15604738 PMCID: PMC3481848 DOI: 10.1007/s11103-004-2907-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chloroplast genetic engineering overcomes concerns of gene containment, low levels of transgene expression, gene silencing, positional and pleiotropic effects or presence of vector sequences in transformed genomes. Several therapeutic proteins and agronomic traits have been highly expressed via the tobacco chloroplast genome but extending this concept to important crops has been a major challenge; lack of 100 homologous species-specific chloroplast transformation vectors containing suitable selectable markers, ability to regulate transgene expression in developing plastids and inadequate tissue culture systems via somatic embryogenesis are major challenges. We employed a 'Double Gene/Single Selection (DGSS)' plastid transformation vector that harbors two selectable marker genes (aph A-6 and npt II) to detoxify the same antibiotic by two enzymes, irrespective of the type of tissues or plastids; by combining this with an efficient regeneration system via somatic embryogenesis, cotton plastid transformation was achieved for the first time. The DGSS transformation vector is at least 8-fold (1 event/2.4 bombarded plates) more efficient than 'Single Gene/Single Selection (SGSS)' vector (aph A-6; 1 event per 20 bombarded plates). Chloroplast transgenic lines were fertile, flowered and set seeds similar to untransformed plants. Transgenes stably integrated into the cotton chloroplast genome were maternally inherited and were not transmitted via pollen when out-crossed with untransformed female plants. Cotton is one of the most important genetically modified crops (120 billion US dollars US annual economy). Successful transformation of the chloroplast genome should address concerns about transgene escape, insects developing resistance, inadequate insect control and promote public acceptance of genetically modified cotton.
Collapse
Affiliation(s)
- Shashi Kumar
- Department ofMolecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg # 20, Room 336, Orlando FL 32816-2364, USA
| | - Amit Dhingra
- Department ofMolecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg # 20, Room 336, Orlando FL 32816-2364, USA
| | - Henry Daniell
- Department ofMolecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg # 20, Room 336, Orlando FL 32816-2364, USA
| |
Collapse
|
57
|
Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. PLANT PHYSIOLOGY 2004; 136:2843-54. [PMID: 15347789 PMCID: PMC523346 DOI: 10.1104/pp.104.045187] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/24/2004] [Accepted: 06/25/2004] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.
Collapse
Affiliation(s)
- Shashi Kumar
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
58
|
Dufourmantel N, Pelissier B, Garçon F, Peltier G, Ferullo JM, Tissot G. Generation of fertile transplastomic soybean. PLANT MOLECULAR BIOLOGY 2004; 55:479-89. [PMID: 15604694 DOI: 10.1007/s11103-004-0192-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean.
Collapse
|
59
|
Langbecker CL, Ye GN, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz PTJ, Armstrong CL, Staub JM. High-frequency transformation of undeveloped plastids in tobacco suspension cells. PLANT PHYSIOLOGY 2004; 135:39-46. [PMID: 15141065 PMCID: PMC429331 DOI: 10.1104/pp.103.035410] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 05/22/2023]
Abstract
Although leaf chloroplast transformation technology was developed more than a decade ago, no reports exist of stable transformation of undeveloped plastids or other specialized plastid types, such as proplastids, etioplasts, or amyloplasts. In this work we report development of a dark-grown tobacco suspension cell model system to investigate the transformation potential of undeveloped plastids. Electron microscope analysis confirmed that the suspension cells carry plastids that are significantly smaller (approximately 50-fold less in volume) and have a very different subcellular localization and developmental state than leaf cell chloroplasts. Using antibiotic selection in the light, we demonstrated that both plastid and nuclear transformation of these cell suspensions is efficient and reproducible, with plastid transformation frequency at least equal to that of leaf chloroplast transformation. Homoplasmic plastid transformants are readily obtained in cell colonies, or in regenerated plants, providing a more consistent and versatile model than the leaf transformation system. Because of the uniformity of the cell suspension model, we could further show that growth rate, selection scheme, particle size, and DNA amount influence the frequency of transformation. Our results indicate that the rate-limiting steps for nuclear and plastid transformation are different, and each must be optimized separately. The suspension cell system will be useful as a model for understanding transformation in those plant species that utilize dark-grown embryogenic cultures and for characterizing the steps that lead to homoplasmic plastid transformation.
Collapse
|
60
|
Birch-Machin I, Newell CA, Hibberd JM, Gray JC. Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:261-70. [PMID: 17147617 DOI: 10.1111/j.1467-7652.2004.00072.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rotavirus VP6 is a highly immunogenic major capsid protein that may be useful as a subunit vaccine. The expression of a bovine group A rotavirus VP6 cDNA was examined in tobacco chloroplasts following particle bombardment. Constructs containing the VP6 cDNA under the control of plastid rrn or psbA promoters, or the Escherichia coli trc promoter, were inserted, together with the aadA selectable marker gene, between the rbcL and accD genes of the tobacco plastid genome. The 40-kDa VP6 protein accumulated to about 3% of total soluble protein in seedlings and young leaves of homoplasmic transplastomic plants containing the VP6 cDNA under the control of the rrn promoter. Lower amounts of VP6 (approximately 0.6% total soluble protein) accumulated in plants containing the VP6 cDNA under the control of the psbA promoter, and VP6 was undetectable in plants containing the VP6 cDNA under the control of the trc promoter. The VP6 protein in chloroplasts was shown to form trimers, as found in the rotavirus virion. However, the amount of VP6 protein declined as the leaves matured, although VP6 transcripts were still present, suggesting that the protein was susceptible to proteolytic degradation in chloroplasts.
Collapse
Affiliation(s)
- Ian Birch-Machin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
61
|
Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P. A novel approach to plastid transformation utilizes the phiC31 phage integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:906-13. [PMID: 14996222 DOI: 10.1111/j.1365-313x.2004.02015.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thus far plastid transformation in higher plants has been based on incorporation of foreign DNA in the plastid genome by the plastid's homologous recombination machinery. We report here an alternative approach that relies on integration of foreign DNA by the phiC31 phage site-specific integrase (INT) mediating recombination between bacterial and phage attachment sites (attB and attP, respectively). Plastid transformation by the new approach depends on the availability of a recipient line in which an attB site has been incorporated in the plastid genome by homologous recombination. Plastid transformation involves insertion of an attP vector into the attB site by INT and selection of transplastomic clones by selection for antibiotic resistance carried in the attP plastid vector. INT function was provided by either expression from a nuclear gene, which encoded a plastid-targeted INT, or expressing INT transiently from a non-integrating plasmid in plastids. Transformation was successful with both approaches using attP vectors with kanamycin resistance or spectinomycin resistance as the selective marker. Transformation efficiency in some of the stable nuclear INT lines was as high as 17 independently transformed lines per bombarded sample. As this system does not rely on the plastid's homologous recombination machinery, we expect that INT-based vectors will make plastid transformation a routine in species in which homologous recombination rarely yields transplastomic clones.
Collapse
Affiliation(s)
- Kerry A Lutz
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | |
Collapse
|
62
|
Abstract
Plastids of higher plants are semi-autonomous organelles with a small, highly polyploid genome and their own transcription-translation machinery. This review provides an overview of the technology for the genetic modification of the plastid genome including: vectors, marker genes and gene design, the use of gene knockouts and over-expression to probe plastid function and the application of site-specific recombinases for excision of target DNA. Examples for applications in basic science include the study of plastid gene transcription, mRNA editing, photosynthesis and evolution. Examples for biotechnological applications are incorporation of transgenes in the plastid genome for containment and high-level expression of recombinant proteins for pharmaceutical and industrial applications. Plastid transformation is routine only in tobacco. Progress in implementing the technology in other crops is discussed.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| |
Collapse
|