51
|
Saltzer RL, Stutzmann E, van der Hilst RD. Poisson's ratio in the lower mantle beneath Alaska: Evidence for compositional heterogeneity. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rebecca L. Saltzer
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | | | - Robert D. van der Hilst
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| |
Collapse
|
52
|
Affiliation(s)
- Edward J Garnero
- Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-1404, USA.
| |
Collapse
|
53
|
Moore MM, Garnero EJ, Lay T, Williams Q. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002546] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa M. Moore
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Edward J. Garnero
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Thorne Lay
- Earth Sciences Department; University of California; Santa Cruz California USA
| | - Quentin Williams
- Earth Sciences Department; University of California; Santa Cruz California USA
| |
Collapse
|
54
|
Affiliation(s)
- Jeroen Ritsema
- Seismological Laboratory; California Institute of Technology; Pasadena California USA
| | | | | |
Collapse
|
55
|
Castle JC, van der Hilst RD. Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jb000286] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John C. Castle
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | - Rob D. van der Hilst
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| |
Collapse
|
56
|
Beghein C, Trampert J. Robust normal mode constraints on inner-core anisotropy from model space search. Science 2003; 299:552-5. [PMID: 12543971 DOI: 10.1126/science.1078159] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A technique for searching full model space that was applied to measurements of anomalously split normal modes showed a robust pattern of P-wave and S-wave anisotropy in the inner core. The parameter describing P-wave anisotropy changes sign around a radius of 400 kilometers, whereas S-wave anisotropy is small in the upper two-thirds of the inner core and becomes negative at greater depths. Our results agree with observed travel-time anomalies of rays traveling at epicentral distances varying from 150 degrees to 180 degrees. The models may be explained by progressively tilted hexagonal close-packed iron in the upper half of the inner core and could suggest a different iron phase in the center.
Collapse
Affiliation(s)
- Caroline Beghein
- Faculty of Earth Sciences, Utrecht University, Post Office Box 80021, 3508 TA Utrecht, Netherlands.
| | | |
Collapse
|
57
|
Vasco DW, Johnson LR, Marques O. Resolution, uncertainty, and whole Earth tomography. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jb000412] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D. W. Vasco
- Center for Computational Seismology, Berkeley Laboratory; University of California; Berkeley California USA
| | - Lane R. Johnson
- Center for Computational Seismology, Berkeley Laboratory; University of California; Berkeley California USA
| | - Osni Marques
- High Performance Computing Research Department, Berkeley Laboratory; University of California; Berkeley California USA
| |
Collapse
|
58
|
Laske G, Masters G. The Earth's free oscillations and the differential rotation of the inner core. EARTH'S CORE: DYNAMICS, STRUCTURE, ROTATION 2003. [DOI: 10.1029/gd031p0005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Karato SI. Mapping water content in the upper mantle. INSIDE THE SUBDUCTION FACTORY 2003. [DOI: 10.1029/138gm08] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
60
|
Rondenay S. Constraints on localized core-mantle boundary structure from multichannel, broadbandSKScoda analysis. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003jb002518] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
61
|
Gubbins D. Thermal core-mantle interactions: theory and observations. EARTH'S CORE: DYNAMICS, STRUCTURE, ROTATION 2003. [DOI: 10.1029/gd031p0163] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Grand SP. Mantle shear-wave tomography and the fate of subducted slabs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2002; 360:2475-2491. [PMID: 12460476 DOI: 10.1098/rsta.2002.1077] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
Collapse
Affiliation(s)
- Steven P Grand
- Department of Geological Sciences, University of Texas at Austin, 78712-1101, USA
| |
Collapse
|
63
|
Forte AM, Mitrovica JX, Espesset A. Geodynamic and seismic constraints on the thermochemical structure and dynamics of convection in the deep mantle. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2002; 360:2521-2543. [PMID: 12460479 DOI: 10.1098/rsta.2002.1079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We revisit a recent study by Forte & Mitrovica in which global geophysical observables associated with mantle convection were inverted and the existence of a strong increase in viscosity near a depth of 2000 km was inferred. Employing mineral-physics data and theory we also showed that, although there are chemical anomalies in the lowermost mantle, they are unable to inhibit the dominant thermal buoyancy of the deep-mantle mega-plumes below Africa and the Pacific Ocean. New Monte Carlo simulations are employed to explore the impact of uncertainties in current mineral-physics constraints on inferences of deep-mantle thermochemical structure. To explore the impact of the high-viscosity peak at a depth of 2000 km on the evolution of lower-mantle structure, we carried out time-dependent convection simulations. The latter show that the stability and longevity of the dominant long-wavelength heterogeneity in the lowermost mantle are controlled by this viscosity peak.
Collapse
Affiliation(s)
- Alessandro M Forte
- Department of Earth Sciences, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
64
|
Tackley PJ, Xie S. The thermochemical structure and evolution of Earth's mantle: constraints and numerical models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2002; 360:2593-2609. [PMID: 12460482 DOI: 10.1098/rsta.2002.1082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.
Collapse
Affiliation(s)
- Paul J Tackley
- Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 595 Charles Young Drive East, 90095-1567, USA.
| | | |
Collapse
|
65
|
Affiliation(s)
- Yu J. Gu
- Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| | - Adam M. Dziewonski
- Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| |
Collapse
|
66
|
Abstract
Beneath southern Africa is a large structure about 1200 kilometers across and extending obliquely 1500 kilometers upward from the core-mantle boundary with a shear velocity reduction of about 3%. Using a fortuitous set of SKS phases that travel along its eastern side, we show that the boundary of the anomaly appears to be sharp, with a width less than 50 kilometers, and is tilted outward from its center. Dynamic models that fit the seismic constraints have a dense chemical layer within an upwardly flowing thermal structure. The tilt suggests that the layer is dynamically unstable on geological time scales.
Collapse
Affiliation(s)
- Sidao Ni
- Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
67
|
Karato SI, Karki BB. Origin of lateral variation of seismic wave velocities and density in the deep mantle. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jb000214] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Schulte-Pelkum V, Masters G, Shearer PM. Upper mantle anisotropy from long-periodPpolarization. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jb000346] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
69
|
Bolton H, Masters G. Travel times ofPandSfrom the global digital seismic networks: Implications for the relative variation ofPandSvelocity in the mantle. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jb900378] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Oganov AR, Brodholt JP, Price GD. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature 2001; 411:934-7. [PMID: 11418854 DOI: 10.1038/35082048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The temperature anomalies in the Earth's mantle associated with thermal convection can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800 K at 1,000 km, 1,500 K at 2,000 km, and possibly over 2,000 K at the core-mantle boundary.
Collapse
Affiliation(s)
- A R Oganov
- Department of Geological Sciences, University College London, UK.
| | | | | |
Collapse
|
71
|
Forte AM, Mitrovica JX. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 2001; 410:1049-56. [PMID: 11323661 DOI: 10.1038/35074000] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Surface geophysical data that are related to the process of thermal convection in the Earth's mantle provide constraints on the rheological properties and density structure of the mantle. We show that these convection-related data imply the existence of a region of very high effective viscosity near 2,000 km depth. This inference is obtained using a viscous-flow model based on recent high-resolution seismic models of three-dimensional structure in the mantle. The high-viscosity layer near 2,000 km depth results in a re-organization of flow from short to long horizontal length scales, which agrees with seismic tomographic observations of very long wavelength structures in the deep mantle. The high-viscosity region also strongly suppresses flow-induced deformation and convective mixing in the deep mantle. Here we predict compositional and thermal heterogeneity in this region, using viscous-flow calculations based on the new viscosity profile, together with independent mineral physics data. These maps are consistent with the anti-correlation of anomalies in seismic shear and bulk sound velocity in the deep mantle. The maps also show that mega-plumes in the lower mantle below the central Pacific and Africa are, despite the presence of compositional heterogeneity, buoyant and actively upwelling structures.
Collapse
Affiliation(s)
- A M Forte
- Department of Earth Sciences, University of Western Ontario, Biology & Geology Building, London, Ontario, N6A 5B7 Canada.
| | | |
Collapse
|
72
|
Tackley PJ. Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 2000; 288:2002-7. [PMID: 10856206 DOI: 10.1126/science.288.5473.2002] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.
Collapse
Affiliation(s)
- PJ Tackley
- Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|