51
|
Liu W, Guo Y, Wang K, Zhou X, Wang Y, Lü J, Shao Z, Hu J, Czajkowsky DM, Li B. Atomic force microscopy-based single-molecule force spectroscopy detects DNA base mismatches. NANOSCALE 2019; 11:17206-17210. [PMID: 31535117 DOI: 10.1039/c9nr05234h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomic force microscopy-based single-molecule-force spectroscopy is limited by low throughput. We introduce addressable DNA origami to study multiple target molecules. Six target DNAs that differed by only a single base-pair mismatch were clearly differentiated a rupture force of only 4 pN.
Collapse
Affiliation(s)
- Wenjing Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yourong Guo
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kaizhe Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingfei Zhou
- School of Science, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ying Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China and School of Physical Science and Technology, Shanghai Tech University, Shanghai 201204, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bin Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
52
|
Parallelized DNA tethered bead measurements to scrutinize DNA mechanical structure. Methods 2019; 169:46-56. [PMID: 31351926 DOI: 10.1016/j.ymeth.2019.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Tethering beads to DNA offers a panel of single molecule techniques for the refined analysis of the conformational dynamics of DNA and the elucidation of the mechanisms of enzyme activity. Recent developments include the massive parallelization of these techniques achieved by the fabrication of dedicated nanoarrays by soft nanolithography. We focus here on two of these techniques: the Tethered Particle motion and Magnetic Tweezers allowing analysis of the behavior of individual DNA molecules in the absence of force and under the application of a force and/or a torque, respectively. We introduce the experimental protocols for the parallelization and discuss the benefits already gained, and to come, for these single molecule investigations.
Collapse
|
53
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
54
|
Yan Y, Ding Y, Leng F, Dunlap D, Finzi L. Protein-mediated loops in supercoiled DNA create large topological domains. Nucleic Acids Res 2019. [PMID: 29538766 PMCID: PMC5961096 DOI: 10.1093/nar/gky153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Yue Ding
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
55
|
Yang YJ, Song L, Zhao XC, Zhang C, Wu WQ, You HJ, Fu H, Zhou EC, Zhang XH. A Universal Assay for Making DNA, RNA, and RNA-DNA Hybrid Configurations for Single-Molecule Manipulation in Two or Three Steps without Ligation. ACS Synth Biol 2019; 8:1663-1672. [PMID: 31264849 DOI: 10.1021/acssynbio.9b00241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite having a great variety of topologies, most DNA, RNA, and RNA-DNA hybrid (RDH) configurations for single-molecule manipulation are composed of several single-stranded (ss) DNA and ssRNA strands, with functional labels at the two ends for surface tethering. On this basis, we developed a simple, robust, and universal amplification-annealing (AA) assay for making all these configurations in two or three steps without inefficient digestion and ligation reactions. As examples, we made ssDNA, short ssDNA with double-stranded (ds) DNA handles, dsDNA with ssDNA handles, replication-fork shaped DNA/RDH/RNA, DNA holiday junction, three-site multiple-labeled and nicked DNA, torsion-constrained RNA/RDH, and short ssRNA with RDH handles. In addition to single-molecule manipulation techniques including optical tweezers, magnetic tweezers, and atomic force microscopy, these configurations can be applied in other surface-tethering techniques as well.
Collapse
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lun Song
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
56
|
Wasserman MR, Liu S. A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry 2019; 58:4667-4676. [PMID: 31251042 DOI: 10.1021/acs.biochem.9b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA is both a fundamental building block of life and a fascinating natural polymer. The advent of single-molecule manipulation tools made it possible to exert controlled force on individual DNA molecules and measure their mechanical response. Such investigations elucidated the elastic properties of DNA and revealed its distinctive structural configurations across force regimes. In the meantime, a detailed understanding of DNA mechanics laid the groundwork for single-molecule studies of DNA-binding proteins and DNA-processing enzymes that bend, stretch, and twist DNA. These studies shed new light on the metabolism and transactions of nucleic acids, which constitute a major part of the cell's operating system. Furthermore, the marriage of single-molecule fluorescence visualization and force manipulation has enabled researchers to directly correlate the applied tension to changes in the DNA structure and the behavior of DNA-templated complexes. Overall, experimental exploitation of DNA mechanics has been and will continue to be a unique and powerful strategy for understanding how molecular machineries recognize and modify the physical state of DNA to accomplish their biological functions.
Collapse
Affiliation(s)
- Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry , The Rockefeller University , New York , New York 10065 , United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry , The Rockefeller University , New York , New York 10065 , United States
| |
Collapse
|
57
|
Li L, Zhang P, Li J, Wang Y, Wei Y, Hu J, Zhou X, Xu B, Li B. Measurement of nanomechanical properties of DNA molecules by PeakForce atomic force microscopy based on DNA origami. NANOSCALE 2019; 11:4707-4711. [PMID: 30834915 DOI: 10.1039/c8nr10354b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Characterization of the stiffness of thin DNA strands remains difficult. By constructing bilayer DNA molecules, we investigated their mechanical properties using AFM. Increased DNA thickness through DNA origami greatly reduced the substrate effect when measuring Young's modulus, thus providing a more accurate picture of the inherent nanomechanical properties of DNA.
Collapse
Affiliation(s)
- Lin Li
- School of Science, Ningbo University, Ningbo 315211, Zhejiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Schaub JM, Zhang H, Soniat MM, Finkelstein IJ. Assessing Protein Dynamics on Low-Complexity Single-Stranded DNA Curtains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14882-14890. [PMID: 30044093 PMCID: PMC6679933 DOI: 10.1021/acs.langmuir.8b01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-stranded DNA (ssDNA) is a critical intermediate in all DNA transactions. Because ssDNA is more flexible than double-stranded (ds) DNA, interactions with ssDNA-binding proteins (SSBs) may significantly compact or elongate the ssDNA molecule. Here, we develop and characterize low-complexity ssDNA curtains, a high-throughput single-molecule assay to simultaneously monitor protein binding and correlated ssDNA length changes on supported lipid bilayers. Low-complexity ssDNA is generated via rolling circle replication of short synthetic oligonucleotides, permitting control over the sequence composition and secondary structure-forming propensity. One end of the ssDNA is functionalized with a biotin, while the second is fluorescently labeled to track the overall DNA length. Arrays of ssDNA molecules are organized at microfabricated barriers for high-throughput single-molecule imaging. Using this assay, we demonstrate that E. coli SSB drastically and reversibly compacts ssDNA templates upon changes in NaCl concentration. We also examine the interactions between a phosphomimetic RPA and ssDNA. Our results indicate that RPA-ssDNA interactions are not significantly altered by these modifications. We anticipate that low-complexity ssDNA curtains will be broadly useful for single-molecule studies of ssDNA-binding proteins involved in DNA replication, transcription, and repair.
Collapse
Affiliation(s)
- Jeffrey M. Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Hongshan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Michael M. Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
59
|
Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K. Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proc Natl Acad Sci U S A 2018; 115:11784-11789. [PMID: 30373818 PMCID: PMC6243264 DOI: 10.1073/pnas.1806791115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.
Collapse
Affiliation(s)
- Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Maggie Bennett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
60
|
Sasaki K, Kaya M, Higuchi H. A Unified Walking Model for Dimeric Motor Proteins. Biophys J 2018; 115:1981-1992. [PMID: 30396511 DOI: 10.1016/j.bpj.2018.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023] Open
Abstract
Dimeric motor proteins, kinesin-1, cytoplasmic dynein-1, and myosin-V, move stepwise along microtubules and actin filaments with a regular step size. The motors take backward as well as forward steps. The step ratio r and dwell time τ, which are the ratio of the number of backward steps to the number of forward steps and the time between consecutive steps, respectively, were observed to change with the load. To understand the movement of motor proteins, we constructed a unified and simple mathematical model to explain the load dependencies of r and of τ measured for the above three types of motors quantitatively. Our model consists of three states, and the forward and backward steps are represented by the cycles of transitions visiting different pairs of states among the three, implying that a backward step is not the reversal of a forward step. Each of r and τ is given by a simple expression containing two exponential functions. The experimental data for r and τ for dynein available in the literature are not sufficient for a quantitative analysis, which is in contrast to those for kinesin and myosin-V. We reanalyze the data to obtain r and τ of native dynein to make up the insufficient data to fit them to the model. Our model successfully describes the behavior of r and τ for all of the motors in a wide range of loads from large assisting loads to superstall loads.
Collapse
Affiliation(s)
- Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Motoshi Kaya
- Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
| | - Hideo Higuchi
- Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan; Universal Biology Institute, Graduate School of Science, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
61
|
Reconstitution of anaphase DNA bridge recognition and disjunction. Nat Struct Mol Biol 2018; 25:868-876. [PMID: 30177760 DOI: 10.1038/s41594-018-0123-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022]
Abstract
Faithful chromosome segregation requires that the sister chromatids be disjoined completely. Defective disjunction can lead to the persistence of histone-free threads of DNA known as ultra-fine bridges (UFBs) that connect the separating sister DNA molecules during anaphase. UFBs arise at specific genomic loci and can only be visualized by detection of associated proteins such as PICH, BLM, topoisomerase IIIα, and RPA. However, it remains unknown how these proteins work together to promote UFB processing. We used a combination of ensemble biochemistry and new single-molecule assays to reconstitute key steps of UFB recognition and processing by these human proteins in vitro. We discovered characteristic patterns of hierarchical recruitment and coordinated biochemical activities that were specific for DNA structures modeling UFBs arising at either centromeres or common fragile sites. Our results describe a mechanistic model for how unresolved DNA replication structures are processed by DNA-structure-specific binding factors in mitosis to prevent pathological chromosome nondisjunction.
Collapse
|
62
|
Senavirathne G, Lopez MA, Messer R, Fishel R, Yoder KE. Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging. Anal Biochem 2018; 556:78-84. [PMID: 29932890 PMCID: PMC6076860 DOI: 10.1016/j.ab.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Single-molecule (SM) microscopy is a powerful tool capable of visualizing individual molecules and events in real time. SM imaging may rely on proteins or nucleic acids labelled with a fluorophore. Unfortunately photobleaching of fluorophores leads to irreversible loss of signal, impacting the collection of data from SM experiments. Trace amounts of dissolved oxygen (O2) are the main cause of photobleaching. Oxygen scavenging systems (OSS) have been developed that decrease dissolved O2. Commercial OSS enzyme preparations are frequently contaminated with nucleases that damage nucleic acid substrates. In this protocol, we purify highly active Pseudomonas putida protocatechuate 3,4-dioxygenase (PCD) without nuclease contaminations. Quantitation of Cy3 photostability revealed that PCD with its substrate protocatechuic acid (PCA) increased the fluorophore half-life 100-fold. This low cost purification method of recombinant PCD yields an enzyme superior to commercially available OSS that is effectively free of nuclease activity.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Miguel A. Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ryan Messer
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Kristine E. Yoder
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA,To whom correspondence should be addressed. Tel: (614) 688-2106; , Correspondence may also be addressed to. Tel: (614) 292-2484;
| |
Collapse
|
63
|
Efremov AK, Yan J. Transfer-matrix calculations of the effects of tension and torque constraints on DNA-protein interactions. Nucleic Acids Res 2018; 46:6504-6527. [PMID: 29878241 PMCID: PMC6061897 DOI: 10.1093/nar/gky478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Organization and maintenance of the chromosomal DNA in living cells strongly depends on the DNA interactions with a plethora of DNA-binding proteins. Single-molecule studies show that formation of nucleoprotein complexes on DNA by such proteins is frequently subject to force and torque constraints applied to the DNA. Although the existing experimental techniques allow to exert these type of mechanical constraints on individual DNA biopolymers, their exact effects in regulation of DNA-protein interactions are still not completely understood due to the lack of systematic theoretical methods able to efficiently interpret complex experimental observations. To fill this gap, we have developed a general theoretical framework based on the transfer-matrix calculations that can be used to accurately describe behaviour of DNA-protein interactions under force and torque constraints. Potential applications of the constructed theoretical approach are demonstrated by predicting how these constraints affect the DNA-binding properties of different types of architectural proteins. Obtained results provide important insights into potential physiological functions of mechanical forces in the chromosomal DNA organization by architectural proteins as well as into single-DNA manipulation studies of DNA-protein interactions.
Collapse
Affiliation(s)
- Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| |
Collapse
|
64
|
Dahlke K, Sing CE. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins. J Chem Phys 2018; 148:084902. [PMID: 29495783 DOI: 10.1063/1.5016177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Collapse
Affiliation(s)
- K Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - C E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
65
|
Liu J, Li Z. Controlled Mechanical Motions of Microparticles in Optical Tweezers. MICROMACHINES 2018; 9:E232. [PMID: 30424165 PMCID: PMC6187602 DOI: 10.3390/mi9050232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022]
Abstract
Optical tweezers, formed by a highly focused laser beam, have intriguing applications in biology and physics. Inspired by molecular rotors, numerous optical beams and artificial particles have been proposed to build optical tweezers trapping microparticles, and extensive experiences have been learned towards constructing precise, stable, flexible and controllable micromachines. The mechanism of interaction between particles and localized light fields is quite different for different types of particles, such as metal particles, dielectric particles and Janus particles. In this article, we present a comprehensive overview of the latest development on the fundamental and application of optical trapping. The emphasis is placed on controllable mechanical motions of particles, including rotation, translation and their mutual coupling under the optical forces and torques created by a wide variety of optical tweezers operating on different particles. Finally, we conclude by proposing promising directions for future research.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Laser and Intelligent Manufacturing Technology, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
66
|
Woody MS, Capitanio M, Ostap EM, Goldman YE. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. OPTICS EXPRESS 2018; 26:11181-11193. [PMID: 29716042 PMCID: PMC6005679 DOI: 10.1364/oe.26.011181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 06/02/2023]
Abstract
We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.
Collapse
Affiliation(s)
- Michael S. Woody
- University of Pennsylvania, Pennsylvania Muscle Institute and Department of Physiology, 415 Curie Blvd, Philadelphia, Pennsylvania, USA 19104
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - E. Michael Ostap
- University of Pennsylvania, Pennsylvania Muscle Institute and Department of Physiology, 415 Curie Blvd, Philadelphia, Pennsylvania, USA 19104
| | - Yale E. Goldman
- University of Pennsylvania, Pennsylvania Muscle Institute and Department of Physiology, 415 Curie Blvd, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
67
|
Whitley KD, Comstock MJ, Chemla YR. Ultrashort Nucleic Acid Duplexes Exhibit Long Wormlike Chain Behavior with Force-Dependent Edge Effects. PHYSICAL REVIEW LETTERS 2018; 120:068102. [PMID: 29481284 DOI: 10.1103/physrevlett.120.068102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/23/2017] [Indexed: 05/22/2023]
Abstract
Despite their importance in biology and use in nanotechnology, the elastic behavior of nucleic acids on "ultrashort" (<15 nt) length scales remains poorly understood. Here, we use optical tweezers combined with fluorescence imaging to observe directly the hybridization of oligonucleotides (7-12 nt) to a complementary strand under tension and to measure the difference in end-to-end extension between the single-stranded and duplex states. Data are consistent with long-polymer models at low forces (<8 pN) but smaller than predicted at higher forces (>8 pN), the result of the sequence-dependent duplex edge effects.
Collapse
Affiliation(s)
- Kevin D Whitley
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Matthew J Comstock
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yann R Chemla
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
68
|
Jonchhe S, Shrestha P, Ascencio K, Mao H. A New Concentration Jump Strategy Reveals the Lifetime of i-Motif at Physiological pH without Force. Anal Chem 2018; 90:3205-3210. [DOI: 10.1021/acs.analchem.7b04661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Katia Ascencio
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
69
|
van Mameren J, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions. Methods Mol Biol 2018; 1665:3-23. [PMID: 28940061 DOI: 10.1007/978-1-4939-7271-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we will provide an introduction on the use of optical tweezers in single-molecule approaches. We will introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.
Collapse
Affiliation(s)
- Joost van Mameren
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Iddo Heller
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
70
|
Lesne A, Victor JM, Bertrand E, Basyuk E, Barbi M. The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods Mol Biol 2018; 1805:215-232. [PMID: 29971720 DOI: 10.1007/978-1-4939-8556-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France. .,Université de Montpellier, Montpellier, France. .,GDR 3536 CNRS, Sorbonne Université, Paris, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
71
|
Abstract
The complex binding dynamics between DNA and proteins are often obscured by ensemble averaging effects in conventional biochemical experiments. Single-molecule fluorescence methods are powerful tools to investigate DNA-protein interaction dynamics in real time. In this chapter, we focus on using single-molecule Förster Resonance Energy Transfer (smFRET) to probe the binding dynamics of individual proteins on single DNA molecules. We provide a detailed discussion of total internal reflection fluorescence (TIRF) instrument design, nucleic acid labeling with fluorophores, flow cell surface passivation, and data analysis methods.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| |
Collapse
|
72
|
Scherr MJ, Safaric B, Duderstadt KE. Noise in the Machine: Alternative Pathway Sampling is the Rule During DNA Replication. Bioessays 2017; 40. [PMID: 29282758 DOI: 10.1002/bies.201700159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Indexed: 11/07/2022]
Abstract
The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technische Universität München, Garching, Germany
| |
Collapse
|
73
|
Sarlós K, Biebricher A, Petermann EJG, Wuite GJL, Hickson ID. Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:187-195. [PMID: 29167280 DOI: 10.1101/sqb.2017.82.033647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To survive and proliferate, cells have to faithfully segregate their newly replicated genomic DNA to the two daughter cells. However, the sister chromatids of mitotic chromosomes are frequently interlinked by so-called ultrafine DNA bridges (UFBs) that are visible in the anaphase of mitosis. UFBs can only be detected by the proteins bound to them and not by staining with conventional DNA dyes. These DNA bridges are presumed to represent entangled sister chromatids and hence pose a threat to faithful segregation. A failure to accurately unlink UFB DNA results in chromosome segregation errors and binucleation. This, in turn, compromises genome integrity, which is a hallmark of cancer. UFBs are actively removed during anaphase, and most known UFB-associated proteins are enzymes involved in DNA repair in interphase. However, little is known about the mitotic activities of these enzymes or the exact DNA structures present on UFBs. We focus on the biology of UFBs, with special emphasis on their underlying DNA structure and the decatenation machineries that process UFBs.
Collapse
Affiliation(s)
- Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Petermann
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
74
|
Hoekstra TP, Depken M, Lin SN, Cabanas-Danés J, Gross P, Dame RT, Peterman EJG, Wuite GJL. Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity. Biophys J 2017; 112:575-583. [PMID: 28256218 DOI: 10.1016/j.bpj.2016.12.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/02/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022] Open
Abstract
DNA polymerase catalyzes the accurate transfer of genetic information from one generation to the next, and thus it is vitally important for replication to be faithful. DNA polymerase fulfills the strict requirements for fidelity by a combination of mechanisms: 1) high selectivity for correct nucleotide incorporation, 2) a slowing down of the replication rate after misincorporation, and 3) proofreading by excision of misincorporated bases. To elucidate the kinetic interplay between replication and proofreading, we used high-resolution optical tweezers to probe how DNA-duplex stability affects replication by bacteriophage T7 DNA polymerase. Our data show highly irregular replication dynamics, with frequent pauses and direction reversals as the polymerase cycles through the states that govern the mechanochemistry behind high-fidelity T7 DNA replication. We constructed a kinetic model that incorporates both existing biochemical data and the, to our knowledge, novel states we observed. We fit the model directly to the acquired pause-time and run-time distributions. Our findings indicate that the main pathway for error correction is DNA polymerase dissociation-mediated DNA transfer, followed by biased binding into the exonuclease active site. The number of bases removed by this proofreading mechanism is much larger than the number of erroneous bases that would be expected to be incorporated, ensuring a high-fidelity replication of the bacteriophage T7 genome.
Collapse
Affiliation(s)
- Tjalle P Hoekstra
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Szu-Ning Lin
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands; Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jordi Cabanas-Danés
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Peter Gross
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
75
|
Abstract
Ubiquitous conserved processes that repair DNA damage are essential for the maintenance and propagation of genomes over generations. Then again, inaccuracies in DNA transactions and failures to remove mutagenic lesions cause heritable genome changes. Building on decades of research using genetics and biochemistry, unprecedented quantitative insight into DNA repair mechanisms has come from the new-found ability to measure single proteins in vitro and inside individual living cells. This has brought together biologists, chemists, engineers, physicists, and mathematicians to solve long-standing questions about the way in which repair enzymes search for DNA lesions and form protein complexes that act in DNA repair pathways. Furthermore, unexpected discoveries have resulted from capabilities to resolve molecular heterogeneity and cell subpopulations, provoking new questions about the role of stochastic processes in DNA repair and mutagenesis. These studies are leading to new technologies that will find widespread use in basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| |
Collapse
|
76
|
Naufer MN, Murison DA, Rouzina I, Beuning PJ, Williams MC. Single-molecule mechanochemical characterization of E. coli pol III core catalytic activity. Protein Sci 2017; 26:1413-1426. [PMID: 28263430 PMCID: PMC5477539 DOI: 10.1002/pro.3152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Pol III core is the three‐subunit subassembly of the E. coli replicative DNA polymerase III holoenzyme. It contains the catalytic polymerase subunit α, the 3′ → 5′ proofreading exonuclease ε, and a subunit of unknown function, θ. We employ optical tweezers to characterize pol III core activity on a single DNA substrate. We observe polymerization at applied template forces F < 25 pN and exonucleolysis at F > 30 pN. Both polymerization and exonucleolysis occur as a series of short bursts separated by pauses. For polymerization, the initiation rate after pausing is independent of force. In contrast, the exonucleolysis initiation rate depends strongly on force. The measured force and concentration dependence of exonucleolysis initiation fits well to a two‐step reaction scheme in which pol III core binds bimolecularly to the primer‐template junction, then converts at rate k2 into an exo‐competent conformation. Fits to the force dependence of kinit show that exo initiation requires fluctuational opening of two base pairs, in agreement with temperature‐ and mismatch‐dependent bulk biochemical assays. Taken together, our results support a model in which the pol and exo activities of pol III core are effectively independent, and in which recognition of the 3′ end of the primer by either α or ε is governed by the primer stability. Thus, binding to an unstable primer is the primary mechanism for mismatch recognition during proofreading, rather than an alternative model of duplex defect recognition.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| | - David A Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, 43210
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
77
|
Lisica A, Grill SW. Optical tweezers studies of transcription by eukaryotic RNA polymerases. Biomol Concepts 2017; 8:1-11. [PMID: 28222010 DOI: 10.1515/bmc-2016-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
Transcription is the first step in the expression of genetic information and it is carried out by large macromolecular enzymes called RNA polymerases. Transcription has been studied for many years and with a myriad of experimental techniques, ranging from bulk studies to high-resolution transcript sequencing. In this review, we emphasise the advantages of using single-molecule techniques, particularly optical tweezers, to study transcription dynamics. We give an overview of the latest results in the single-molecule transcription field, focusing on transcription by eukaryotic RNA polymerases. Finally, we evaluate recent quantitative models that describe the biophysics of RNA polymerase translocation and backtracking dynamics.
Collapse
Affiliation(s)
- Ana Lisica
- BIOTEC, Technical University Dresden, Tatzberg 47/49, D-01307 Dresden, Germany; and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Stephan W Grill
- BIOTEC, Technical University Dresden, Tatzberg 47/49, D-01307 Dresden, Germany; and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
78
|
Muhamed I, Chowdhury F, Maruthamuthu V. Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering (Basel) 2017; 4:E12. [PMID: 28952491 PMCID: PMC5590431 DOI: 10.3390/bioengineering4010012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023] Open
Abstract
The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na⁺, Ca2+, K⁺ channels). The membrane's biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM), vascular endothelial (VE)-cadherin, epithelial (E)-cadherin, integrin) embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
79
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
80
|
Song YS, Shu YG, Zhou X, Ou-Yang ZC, Li M. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:025101. [PMID: 27842005 DOI: 10.1088/0953-8984/29/2/025101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.
Collapse
Affiliation(s)
- Yong-Shun Song
- School of Physical Sciences, University of Chinese Academy of Sciences, No 19A Yuquan Road, Beijing 100049, People's Republic of China
| | | | | | | | | |
Collapse
|
81
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
82
|
Arias-Gonzalez JR. Information management in DNA replication modeled by directional, stochastic chains with memory. J Chem Phys 2016; 145:185103. [DOI: 10.1063/1.4967335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- J. Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia, CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología,” C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
83
|
Rebane AA, Ma L, Zhang Y. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Biophys J 2016; 110:441-454. [PMID: 26789767 DOI: 10.1016/j.bpj.2015.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/17/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
Optical tweezers (OTs) measure the force-dependent time-resolved extension of a single macromolecule tethered between two trapped beads. From this measurement, it is possible to determine the folding intermediates, energies, and kinetics of the macromolecule. Previous data analysis generally has used the extension as a reaction coordinate to characterize the observed folding transitions. Despite its convenience, the extension poorly describes folding in the absence of force. Here, we chose the contour length of the unfolded polypeptide as a reaction coordinate and modeled the extensions of protein structures along their predicted folding pathways based on high-resolution structures of the proteins in their native states. We included the extension in our model to calculate the total extensions, energies, and transition rates of the proteins as a function of force. We fit these calculations to the corresponding experimental measurements and obtained the best-fit conformations and energies of proteins in different folding states. We applied our method to analyze single-molecule trajectories of two representative protein complexes responsible for membrane fusion, the HIV-1 glycoprotein 41 and the synaptic SNARE proteins, which involved transitions between two and five states, respectively. Nonlinear fitting of the model to the experimental data revealed the structures of folding intermediates and transition states and their associated energies. Our results demonstrate that the contour length is a useful reaction coordinate to characterize protein folding and that intrinsic extensions of protein structures should be taken into account to properly derive the conformations and energies of protein folding intermediates from single-molecule manipulation experiments.
Collapse
Affiliation(s)
- Aleksander A Rebane
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - Lu Ma
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut
| | - Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
84
|
Ganji M, Docter M, Le Grice SFJ, Abbondanzieri EA. DNA binding proteins explore multiple local configurations during docking via rapid rebinding. Nucleic Acids Res 2016; 44:8376-84. [PMID: 27471033 PMCID: PMC5041478 DOI: 10.1093/nar/gkw666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
Finding the target site and associating in a specific orientation are essential tasks for DNA-binding proteins. In order to make the target search process as efficient as possible, proteins should not only rapidly diffuse to the target site but also dynamically explore multiple local configurations before diffusing away. Protein flipping is an example of this second process that has been observed previously, but the underlying mechanism of flipping remains unclear. Here, we probed the mechanism of protein flipping at the single molecule level, using HIV-1 reverse transcriptase (RT) as a model system. In order to test the effects of long-range attractive forces on flipping efficiency, we varied the salt concentration and macromolecular crowding conditions. As expected, increased salt concentrations weaken the binding of RT to DNA while increased crowding strengthens the binding. Moreover, when we analyzed the flipping kinetics, i.e. the rate and probability of flipping, at each condition we found that flipping was more efficient when RT bound more strongly. Our data are consistent with a view that DNA bound proteins undergo multiple rapid re-binding events, or short hops, that allow the protein to explore other configurations without completely dissociating from the DNA.
Collapse
Affiliation(s)
- Mahipal Ganji
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| | - Margreet Docter
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Elio A Abbondanzieri
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| |
Collapse
|
85
|
Dieterich E, Camunas-Soler J, Ribezzi-Crivellari M, Seifert U, Ritort F. Control of force through feedback in small driven systems. Phys Rev E 2016; 94:012107. [PMID: 27575077 DOI: 10.1103/physreve.94.012107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 06/06/2023]
Abstract
Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.
Collapse
Affiliation(s)
- E Dieterich
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J Camunas-Soler
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M Ribezzi-Crivellari
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - U Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Ritort
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
86
|
Ma VPY, Liu Y, Yehl K, Galior K, Zhang Y, Salaita K. Mechanically Induced Catalytic Amplification Reaction for Readout of Receptor-Mediated Cellular Forces. Angew Chem Int Ed Engl 2016; 55:5488-92. [PMID: 27038115 PMCID: PMC5563213 DOI: 10.1002/anie.201600351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Mechanics play a fundamental role in cell biology, but detecting piconewton (pN) forces is challenging because of a lack of accessible and high throughput assays. A mechanically induced catalytic amplification reaction (MCR) for readout of receptor-mediated forces in cells is described. Mechanically labile DNA duplexes presenting ligands are surface immobilized such that specific receptor forces denature the duplex and thus expose a blocked primer. Amplification of primers is achieved using an isothermal polymerization reaction and quantified by fluorescence readout. As a proof of concept, the assay was used to test the activity of a mechanomodulatory drug and integrin adhesion receptor antibodies. To the best of our knowledge, this is the first example of a catalytic reaction triggered in response to molecular piconewton forces. The MCR may transform the field of mechanobiology by providing a new facile tool to detect receptor specific mechanics with the convenience of the polymerase chain reaction (PCR).
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kevin Yehl
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kornelia Galior
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Yun Zhang
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
87
|
Candelli A, Hoekstra TP, Farge G, Gross P, Peterman EJG, Wuite GJL. A toolbox for generating single-stranded DNA in optical tweezers experiments. Biopolymers 2016; 99:611-20. [PMID: 23444293 DOI: 10.1002/bip.22225] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
Essential genomic transactions such as DNA-damage repair and DNA replication take place on single-stranded DNA (ssDNA) or require specific single-stranded/double-stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single-molecule studies of DNA-protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single-molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force-induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force-induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA.
Collapse
Affiliation(s)
- Andrea Candelli
- Institute for Lasers, Life and Biophotonics, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, 1081, HV, The Netherlands
| | | | | | | | | | | |
Collapse
|
88
|
Ma VP, Liu Y, Yehl K, Galior K, Zhang Y, Salaita K. Mechanically Induced Catalytic Amplification Reaction for Readout of Receptor‐Mediated Cellular Forces. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Yang Liu
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Kevin Yehl
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Kornelia Galior
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Yun Zhang
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Khalid Salaita
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
89
|
Gaspard P. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases. Phys Rev E 2016; 93:042419. [PMID: 27176340 DOI: 10.1103/physreve.93.042419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 05/02/2023]
Abstract
A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
Collapse
Affiliation(s)
- Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|
90
|
Cantarella J, Shonkwiler C. The symplectic geometry of closed equilateral random walks in 3-space. ANN APPL PROBAB 2016. [DOI: 10.1214/15-aap1100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Hassanzadeh A, Azami D. Graphene based resonance structure to enhance the optical pressure between two planar surfaces. OPTICS EXPRESS 2015; 23:33681-33690. [PMID: 26832031 DOI: 10.1364/oe.23.033681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.
Collapse
|
92
|
Zhang H, Tang Y, Lee SJ, Wei Z, Cao J, Richardson CC. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7. J Biol Chem 2015; 291:1472-80. [PMID: 26620561 DOI: 10.1074/jbc.m115.698233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase · DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment.
Collapse
Affiliation(s)
- Huidong Zhang
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boson, Massachusetts 02115
| | - Yong Tang
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and
| | - Seung-Joo Lee
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boson, Massachusetts 02115
| | - Zeliang Wei
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and
| | - Jia Cao
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and
| | - Charles C Richardson
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boson, Massachusetts 02115
| |
Collapse
|
93
|
Direct observation of processive exoribonuclease motion using optical tweezers. Proc Natl Acad Sci U S A 2015; 112:15101-6. [PMID: 26598710 DOI: 10.1073/pnas.1514028112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial RNases catalyze the turnover of RNA and are essential for gene expression and quality surveillance of transcripts. In Escherichia coli, the exoribonucleases RNase R and polynucleotide phosphorylase (PNPase) play critical roles in degrading RNA. Here, we developed an optical-trapping assay to monitor the translocation of individual enzymes along RNA-based substrates. Single-molecule records of motion reveal RNase R to be highly processive: one molecule can unwind over 500 bp of a structured substrate. However, enzyme progress is interrupted by pausing and stalling events that can slow degradation in a sequence-dependent fashion. We found that the distance traveled by PNPase through structured RNA is dependent on the A+U content of the substrate and that removal of its KH and S1 RNA-binding domains can reduce enzyme processivity without affecting the velocity. By a periodogram analysis of single-molecule records, we establish that PNPase takes discrete steps of six or seven nucleotides. These findings, in combination with previous structural and biochemical data, support an asymmetric inchworm mechanism for PNPase motion. The assay developed here for RNase R and PNPase is well suited to studies of other exonucleases and helicases.
Collapse
|
94
|
Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Curr Opin Struct Biol 2015; 34:116-22. [PMID: 26434413 DOI: 10.1016/j.sbi.2015.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022]
Abstract
Single-molecule experiments provide a unique means for real-time observation of the activity of individual biomolecular machines. Through such techniques, insights into the mechanics of for example, polymerases, helicases, and packaging motors have been gleaned. Here we describe the recent advances in single-molecule force spectroscopy instrumentation that have facilitated high-throughput acquisition at high spatiotemporal resolution. The large datasets attained by such methods can capture rare but important events, and contain information regarding stochastic behaviors covering many orders of magnitude in time. We further discuss analysis of such data sets, and with a special focus on the pause states described in the general literature on RNA polymerase pausing we compare and contrast the signatures of different reaction pathways.
Collapse
|
95
|
Nardo L, Lamperti M, Salerno D, Cassina V, Missana N, Bondani M, Tempestini A, Mantegazza F. Effects of non-CpG site methylation on DNA thermal stability: a fluorescence study. Nucleic Acids Res 2015; 43:10722-33. [PMID: 26354864 PMCID: PMC4678853 DOI: 10.1093/nar/gkv884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/21/2015] [Indexed: 11/14/2022] Open
Abstract
Cytosine methylation is a widespread epigenetic regulation mechanism. In healthy mature cells, methylation occurs at CpG dinucleotides within promoters, where it primarily silences gene expression by modifying the binding affinity of transcription factors to the promoters. Conversely, a recent study showed that in stem cells and cancer cell precursors, methylation also occurs at non-CpG pairs and involves introns and even gene bodies. The epigenetic role of such methylations and the molecular mechanisms by which they induce gene regulation remain elusive. The topology of both physiological and aberrant non-CpG methylation patterns still has to be detailed and could be revealed by using the differential stability of the duplexes formed between site-specific oligonucleotide probes and the corresponding methylated regions of genomic DNA. Here, we present a systematic study of the thermal stability of a DNA oligonucleotide sequence as a function of the number and position of non-CpG methylation sites. The melting temperatures were determined by monitoring the fluorescence of donor-acceptor dual-labelled oligonucleotides at various temperatures. An empirical model that estimates the methylation-induced variations in the standard values of hybridization entropy and enthalpy was developed.
Collapse
Affiliation(s)
- Luca Nardo
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Marco Lamperti
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, CO 22100, Italy
| | - Domenico Salerno
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Valeria Cassina
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Natalia Missana
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Maria Bondani
- Institute for Photonics and Nanotechnology, National Research Council, Via Valleggio 11, Como, CO 22100, Italy
| | - Alessia Tempestini
- LENS-Department of Physics and Astronomy, University of Firenze, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
| | - Francesco Mantegazza
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| |
Collapse
|
96
|
Biebricher AS, Heller I, Roijmans RFH, Hoekstra TP, Peterman EJG, Wuite GJL. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat Commun 2015; 6:7304. [PMID: 26084388 PMCID: PMC4557362 DOI: 10.1038/ncomms8304] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/27/2015] [Indexed: 11/09/2022] Open
Abstract
DNA intercalators are widely used as fluorescent probes to visualize DNA and DNA transactions in vivo and in vitro. It is well known that they perturb DNA structure and stability, which can in turn influence DNA-processing by proteins. Here we elucidate this perturbation by combining single-dye fluorescence microscopy with force spectroscopy and measuring the kinetics of DNA intercalation by the mono- and bis-intercalating cyanine dyes SYTOX Orange, SYTOX Green, SYBR Gold, YO-PRO-1, YOYO-1 and POPO-3. We show that their DNA-binding affinity is mainly governed by a strongly tension-dependent dissociation rate. These rates can be tuned over a range of seven orders of magnitude by changing DNA tension, intercalating species and ionic strength. We show that optimizing these rates minimizes the impact of intercalators on strand separation and enzymatic activity. These new insights provide handles for the improved use of intercalators as DNA probes with minimal perturbation and maximal efficacy. DNA intercalators, a type of fluorescent probes widely used to visualize DNA, can perturb DNA structure and stability. Here, the authors show how DNA-binding affinity can be tuned using DNA tension, ionic strength and dye species, and how this can be used to minimize DNA structural perturbations.
Collapse
Affiliation(s)
- Andreas S Biebricher
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Iddo Heller
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Roel F H Roijmans
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Tjalle P Hoekstra
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
97
|
Eddy S, Maddukuri L, Ketkar A, Zafar MK, Henninger EE, Pursell ZF, Eoff RL. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry 2015; 54:3218-30. [PMID: 25903680 DOI: 10.1021/acs.biochem.5b00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have investigated the action of the human DNA polymerase ε (hpol ε) and η (hpol η) catalytic cores on G-quadruplex (G4) DNA substrates derived from the promoter of the c-MYC proto-oncogene. The translesion enzyme hpol η exhibits a 6.2-fold preference for binding to G4 DNA over non-G4 DNA, while hpol ε binds both G4 and non-G4 substrates with nearly equal affinity. Kinetic analysis of single-nucleotide insertion by hpol η reveals that it is able to maintain >25% activity on G4 substrates compared to non-G4 DNA substrates, even when the primer template junction is positioned directly adjacent to G22 (the first tetrad-associated guanine in the c-MYC G4 motif). Surprisingly, hpol η fidelity increases ~15-fold when copying G22. By way of comparison, hpol ε retains ~4% activity and has a 33-fold decrease in fidelity when copying G22. The fidelity of hpol η is ~100-fold greater than that of hpol ε when comparing the misinsertion frequencies of the two enzymes opposite a tetrad-associated guanine. The kinetic differences observed for the B- and Y-family pols on G4 DNA support a model in which a simple kinetic switch between replicative and TLS pols could help govern fork progress during G4 DNA replication.
Collapse
Affiliation(s)
- Sarah Eddy
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Amit Ketkar
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Maroof K Zafar
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Erin E Henninger
- ‡Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Zachary F Pursell
- ‡Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Robert L Eoff
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
98
|
Mechanochemical regulations of RPA's binding to ssDNA. Sci Rep 2015; 5:9296. [PMID: 25787788 PMCID: PMC4365408 DOI: 10.1038/srep09296] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.
Collapse
|
99
|
|
100
|
Kang J, Jung J, Kim SK. Flexibility of single-stranded DNA measured by single-molecule FRET. Biophys Chem 2014; 195:49-52. [DOI: 10.1016/j.bpc.2014.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/16/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
|