51
|
Börner R, Kowerko D, Miserachs HG, Schaffer MF, Sigel RK. Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
52
|
Ochieng PO, White NA, Feig M, Hoogstraten CG. Intrinsic Base-Pair Rearrangement in the Hairpin Ribozyme Directs RNA Conformational Sampling and Tertiary Interface Formation. J Phys Chem B 2016; 120:10885-10898. [PMID: 27701852 DOI: 10.1021/acs.jpcb.6b05606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dynamic fluctuations in RNA structure enable conformational changes that are required for catalysis and recognition. In the hairpin ribozyme, the catalytically active structure is formed as an intricate tertiary interface between two RNA internal loops. Substantial alterations in the structure of each loop are observed upon interface formation, or docking. The very slow on-rate for this relatively tight interaction has led us to hypothesize a double conformational capture mechanism for RNA-RNA recognition. We used extensive molecular dynamics simulations to assess conformational sampling in the undocked form of the loop domain containing the scissile phosphate (loop A). We observed several major accessible conformations with distinctive patterns of hydrogen bonding and base stacking interactions in the active-site internal loop. Several important conformational features characteristic of the docked state were observed in well-populated substates, consistent with the kinetic sampling of docking-competent states by isolated loop A. Our observations suggest a hybrid or multistage binding mechanism, in which initial conformational selection of a docking-competent state is followed by induced-fit adjustment to an in-line, chemically reactive state only after formation of the initial complex with loop B.
Collapse
Affiliation(s)
- Patrick O Ochieng
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
53
|
Ren A, Vušurović N, Gebetsberger J, Gao P, Juen M, Kreutz C, Micura R, Patel DJ. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nat Chem Biol 2016; 12:702-8. [PMID: 27398999 PMCID: PMC4990474 DOI: 10.1038/nchembio.2125] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report the crystal structure of a pistol ribozyme termed env25, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2'-O of G for attack on the adjacent to-be-cleaved P-O5' bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2'-OH positions) are aligned to act as a general base and a general acid, respectively, to accelerate cleavage chemistry, with their roles confirmed by cleavage assays on variants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defined how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on variants revealing key residues that participate in acid-base-catalyzed cleavage chemistry.
Collapse
Affiliation(s)
- Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| | - Nikola Vušurović
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Jennifer Gebetsberger
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Pu Gao
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| | - Michael Juen
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| |
Collapse
|
54
|
Suga K, Watanabe N, Umakoshi H. Effect of Stearylguanidinium-Modified POPC Vesicles on the Melting Behavior of tRNA Molecules. J Phys Chem B 2016; 120:5662-9. [PMID: 27220696 DOI: 10.1021/acs.jpcb.6b04198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid membranes interact with biomolecules via noncovalent bonding interactions, wherein the physicochemical membrane properties are key factors in the recognition and rearrangement of biomolecule conformation. In this study, vesicles were prepared using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and stearylguanidinium (SG) to improve the affinity between the membrane and tRNA. Membrane fluidity decreased and dehydration of the membrane surface increased with increasing SG levels, suggesting that SG molecules could make the membrane rigid and induce a liquid-ordered (lo)-like phase. The binding constant (Ka) between nucleotide and lipid was evaluated by turbidity analysis; the Ka value for POPC/SG = (86/14) was 2.9 × 10(4) M(-1) but was slightly decreased by vesicles in the lo-like phase. CD spectra of tRNA by the presence of POPC/SG vesicles showed C-G selective base cleavage in tRNA during heat denaturation. POPC/SG = (61/39) and POPC/SG = (40/60) effectively led to C-G base pair cleavage at the melting temperature of tRNA.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Osaka 565-0871, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Osaka 565-0871, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Osaka 565-0871, Japan
| |
Collapse
|
55
|
|
56
|
Ferré-D'Amaré AR. Use of the U1A Protein to Facilitate Crystallization and Structure Determination of Large RNAs. Methods Mol Biol 2016; 1320:67-76. [PMID: 26227038 PMCID: PMC5178131 DOI: 10.1007/978-1-4939-2763-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The preparation of well-ordered crystals of RNAs with complex three-dimensional architecture can be facilitated by engineering a binding site for the spliceosomal protein U1A into a functionally and structurally dispensable stem-loop of the RNA of interest. Once suitable crystals are obtained, the U1A protein, of known structure, can be employed to facilitate preparation of heavy atom or anomalously scattering atom derivatives, or as a source of partial model phases for the molecular replacement method. Here, we describe the methods for making U1A preparations suitable for cocrystallization with RNA. As an example, the cocrystallization of the tetracycline aptamer with U1A is also described.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, MSC8012, Bethesda, MD, 20892-8012, USA,
| |
Collapse
|
57
|
Košutić M, Neuner S, Ren A, Flür S, Wunderlich C, Mairhofer E, Vušurović N, Seikowski J, Breuker K, Höbartner C, Patel DJ, Kreutz C, Micura R. A Mini-Twister Variant and Impact of Residues/Cations on the Phosphodiester Cleavage of this Ribozyme Class. Angew Chem Int Ed Engl 2015; 54:15128-15133. [PMID: 26473980 DOI: 10.1002/anie.201506601] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/02/2015] [Indexed: 12/16/2022]
Abstract
Nucleolytic ribozymes catalyze site-specific cleavage of their phosphodiester backbones. A minimal version of the twister ribozyme is reported that lacks the phylogenetically conserved stem P1 while retaining wild-type activity. Atomic mutagenesis revealed that nitrogen atoms N1 and N3 of the adenine-6 at the cleavage site are indispensable for cleavage. By NMR spectroscopy, a pKa value of 5.1 was determined for a (13) C2-labeled adenine at this position in the twister ribozyme, which is significantly shifted compared to the pKa of the same adenine in the substrate alone. This finding pinpoints at a potential role for adenine-6 in the catalytic mechanism besides the previously identified invariant guanine-48 and a Mg(2+) ion, both of which are directly coordinated to the non-bridging oxygen atoms of the scissile phosphate; for the latter, additional evidence stems from the observation that Mn(2+) or Cd(2+) accelerated cleavage of phosphorothioate substrates. The relevance of this metal ion binding site is further emphasized by a new 2.6 Å X-ray structure of a 2'-OCH3 -U5 modified twister ribozyme.
Collapse
Affiliation(s)
- Marija Košutić
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Sandro Neuner
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Aiming Ren
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, NY, New York 10065 (USA)
| | - Sara Flür
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Christoph Wunderlich
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Nikola Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Jan Seikowski
- Max Planck Institute of Biophysical Chemistry and Institute of Organic and Biomolecular Chemistry, Georg August University of Göttingen, 37077 Göttingen (Germany)
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Claudia Höbartner
- Max Planck Institute of Biophysical Chemistry and Institute of Organic and Biomolecular Chemistry, Georg August University of Göttingen, 37077 Göttingen (Germany)
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, NY, New York 10065 (USA)
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck (Austria)
| |
Collapse
|
58
|
Košutić M, Neuner S, Ren A, Flür S, Wunderlich C, Mairhofer E, Vušurović N, Seikowski J, Breuker K, Höbartner C, Patel DJ, Kreutz C, Micura R. A Mini-Twister Variant and Impact of Residues/Cations on the Phosphodiester Cleavage of this Ribozyme Class. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
59
|
Jimenez RM, Polanco JA, Lupták A. Chemistry and Biology of Self-Cleaving Ribozymes. Trends Biochem Sci 2015; 40:648-661. [PMID: 26481500 DOI: 10.1016/j.tibs.2015.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered.
Collapse
Affiliation(s)
- Randi M Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Julio A Polanco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
60
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
61
|
Abstract
Varkud Satellite (VS) ribozyme mediates rolling circle replication of a plasmid found in the Neurospora mitochondria. We report crystal structures of this ribozyme at 3.1Å resolution, revealing an intertwined dimer formed by an exchange of substrate helices. Within each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional significance of active site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution.
Collapse
|
62
|
Halder A, Halder S, Bhattacharyya D, Mitra A. Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study. Phys Chem Chem Phys 2015; 16:18383-96. [PMID: 25070186 DOI: 10.1039/c4cp02541e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protonated nucleobases have significant roles in facilitating catalytic functions of RNA, and in stabilizing different structural motifs. Reported pKa values of nucleobase protonation suggest that the population of neutral nucleobases is 10(3)-10(4) times higher than that of protonated nucleobases under physiological conditions (pH ∼ 7.4). Therefore, a molecular level understanding of various putative roles of protonated nucleobases cannot be achieved without addressing the question of how their occurrence propensities and stabilities are related to the free energy costs associated with the process of protonation under physiological conditions. With water as the proton donor, we use advanced QM methods to evaluate the site specific protonation propensities of nucleobases in terms of their associated free energy changes (ΔGprot). Quantitative follow up on the energetics of base pair formation and database search for evaluating their occurrence frequencies, reveal a lack of correlation between base pair stability and occurrence propensities on the one hand, and ease of protonation on the other. For example, although N7 protonated adenine (ΔGprot = 40.0 kcal mol(-1)) is found to participate in stable base pairing, base pairs involving N7 protonated guanine (ΔGprot = 36.8 kcal mol(-1)), on geometry optimization, converge to a minima where guanine transfers its extra proton to its partner base. Such observations, along with examples of weak base pairs involving N3 protonation of cytosine (ΔGprot = 37.0 kcal mol(-1)) are rationalized by analysing the protonation induced charge redistributions which are found to significantly influence, both positively and negatively, the hydrogen bonding potentials of different functional sites of individual nucleobases. Protonation induced charge redistribution is also found to strongly influence (i) the aromatic character of the rings of the participating bases and (ii) hydrogen bonding potential of the free edges of the protonated base pair. Comprehensive analysis of a non-redundant RNA crystal structure dataset further reveals that, while availability of stabilization possibilities determine the feasibility of occurrence of protonated bases, their occurrence context and specific functional roles are important factors determining their occurrence propensities.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India.
| | | | | | | |
Collapse
|
63
|
Jones CP, Ferré-D'Amaré AR. RNA quaternary structure and global symmetry. Trends Biochem Sci 2015; 40:211-20. [PMID: 25778613 PMCID: PMC4380790 DOI: 10.1016/j.tibs.2015.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Many proteins associate into symmetric multisubunit complexes. Structural analyses suggested that, by contrast, virtually all RNAs with complex 3D structures function as asymmetric monomers. Recent crystal structures revealed that several biological RNAs exhibit global symmetry at the level of their tertiary and quaternary structures. Here we survey known examples of global RNA symmetry, including the true quaternary symmetry of the bacteriophage ϕ29 prohead RNA (pRNA) and the internal pseudosymmetry of the single-chain flavin mononucleotide (FMN), glycine, and cyclic di-AMP (c-di-AMP) riboswitches. For these RNAs, global symmetry stabilizes the RNA fold, coordinates ligand-RNA interactions, and facilitates association with symmetric binding partners.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
64
|
Mlýnský V, Kührová P, Zgarbová M, Jurečka P, Walter NG, Otyepka M, Šponer J, Banáš P. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with ε/ζ Force Field Reparametrizations. J Phys Chem B 2015; 119:4220-9. [DOI: 10.1021/jp512069n] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vojtěch Mlýnský
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Nils G. Walter
- Department
of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC
− Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| |
Collapse
|
65
|
Abstract
Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.
Collapse
Affiliation(s)
- Vipender Singh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
66
|
In-line alignment and Mg²⁺ coordination at the cleavage site of the env22 twister ribozyme. Nat Commun 2014; 5:5534. [PMID: 25410397 DOI: 10.1038/ncomms6534] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022] Open
Abstract
Small self-cleaving nucleolytic ribozymes contain catalytic domains that accelerate site-specific cleavage/ligation of phosphodiester backbones. We report on the 2.9-Å crystal structure of the env22 twister ribozyme, which adopts a compact tertiary fold stabilized by co-helical stacking, double-pseudoknot formation and long-range pairing interactions. The U-A cleavage site adopts a splayed-apart conformation with the modelled 2'-O of U positioned for in-line attack on the adjacent to-be-cleaved P-O5' bond. Both an invariant guanosine and a Mg(2+) are directly coordinated to the non-bridging phosphate oxygens at the U-A cleavage step, with the former positioned to contribute to catalysis and the latter to structural integrity. The impact of key mutations on cleavage activity identified an invariant guanosine that contributes to catalysis. Our structure of the in-line aligned env22 twister ribozyme is compared with two recently reported twister ribozymes structures, which adopt similar global folds, but differ in conformational features around the cleavage site.
Collapse
|
67
|
Frank AT, Law SM, Brooks CL. A simple and fast approach for predicting (1)H and (13)C chemical shifts: toward chemical shift-guided simulations of RNA. J Phys Chem B 2014; 118:12168-75. [PMID: 25255209 PMCID: PMC4207130 DOI: 10.1021/jp508342x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We introduce a simple and fast approach
for predicting RNA chemical
shifts from interatomic distances that performs with an accuracy similar
to existing predictors and enables the first chemical shift-restrained
simulations of RNA to be carried out. Our analysis demonstrates that
the applied restraints can effectively guide conformational sampling
toward regions of space that are more consistent with chemical shifts
than the initial coordinates used for the simulations. As such, our
approach should be widely applicable in mapping the conformational
landscape of RNAs via chemical shift-guided molecular dynamics simulations.
The simplicity and demonstrated sensitivity to three-dimensional structure
should also allow our method to be used in chemical shift-based RNA
structure prediction, validation, and refinement.
Collapse
Affiliation(s)
- Aaron T Frank
- Department of Chemistry and Biophysics, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
68
|
Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc Natl Acad Sci U S A 2014; 111:13028-33. [PMID: 25157168 DOI: 10.1073/pnas.1414571111] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Twister is a recently discovered RNA motif that is estimated to have one of the fastest known catalytic rates of any naturally occurring small self-cleaving ribozyme. We determined the 4.1-Å resolution crystal structure of a twister sequence from an organism that has not been cultured in isolation, and it shows an ordered scissile phosphate and nucleotide 5' to the cleavage site. A second crystal structure of twister from Orzyza sativa determined at 3.1-Å resolution exhibits a disordered scissile phosphate and nucleotide 5' to the cleavage site. The core of twister is stabilized by base pairing, a large network of stacking interactions, and two pseudoknots. We observe three nucleotides that appear to mediate catalysis: a guanosine that we propose deprotonates the 2'-hydroxyl of the nucleotide 5' to the cleavage site and a conserved adenosine. We suggest the adenosine neutralizes the negative charge on a nonbridging phosphate oxygen atom at the cleavage site. The active site also positions the labile linkage for in-line nucleophilic attack, and thus twister appears to simultaneously use three strategies proposed for small self-cleaving ribozymes. The twister crystal structures (i) show its global structure, (ii) demonstrate the significance of the double pseudoknot fold, (iii) provide a possible hypothesis for enhanced catalysis, and (iv) illuminate the roles of all 10 highly conserved nucleotides of twister that participate in the formation of its small and stable catalytic pocket.
Collapse
|
69
|
Crystal structure and mechanistic investigation of the twister ribozyme. Nat Chem Biol 2014; 10:739-44. [DOI: 10.1038/nchembio.1587] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
|
70
|
Heldenbrand H, Janowski PA, Giambaşu G, Giese TJ, Wedekind JE, York DM. Evidence for the role of active site residues in the hairpin ribozyme from molecular simulations along the reaction path. J Am Chem Soc 2014; 136:7789-92. [PMID: 24842535 PMCID: PMC4132952 DOI: 10.1021/ja500180q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The hairpin ribozyme accelerates
a phosphoryl transfer reaction
without catalytic participation of divalent metal ions. Residues A38
and G8 have been implicated as playing roles in general acid and base
catalysis, respectively. Here we explore the structure and dynamics
of key active site residues using more than 1 μs of molecular
dynamics simulations of the hairpin ribozyme at different stages along
the catalytic pathway. Analysis of results indicates hydrogen bond
interactions between the nucleophile and proR nonbridging oxygen are
correlated with active inline attack conformations. Further, the simulation
results suggest a possible alternative role for G8 to promote inline
fitness and facilitate activation of the nucleophile by hydrogen bonding,
although this does not necessarily exclude an additional role as a
general base. Finally, we suggest that substitution of G8 with N7-
or N3-deazaguanosine which have elevated pKa values, both with and without thio modifications at the 5′
leaving group position, would provide valuable insight into the specific
role of G8 in catalysis.
Collapse
Affiliation(s)
- Hugh Heldenbrand
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
71
|
Meyer M, Masquida B. cis-Acting 5' hammerhead ribozyme optimization for in vitro transcription of highly structured RNAs. Methods Mol Biol 2014; 1086:21-40. [PMID: 24136596 DOI: 10.1007/978-1-62703-667-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RNA-mediated biological processes usually require precise definition of 5' and 3' ends. RNA ends obtained by in vitro transcription using T7 RNA polymerase are often heterogeneous in length and sequence. An efficient strategy to overcome these drawbacks consists of inserting an RNA with known boundaries in between two ribozymes, usually a 5' hammerhead and a 3' hepatitis delta virus ribozymes, that cleave off the desired RNA. In practice, folding of the three RNAs challenges each other, potentially preventing thorough processing. Folding and cleavage of the 5' hammerhead ribozyme relies on a sequence of nucleotides belonging to the central RNA making it more sensitive than the usual 3' hepatitis delta virus ribozyme. The intrinsic stability of the central RNA may thus prevent correct processing of the full transcript. Here, we present a method in which incorporation of a full-length hammerhead ribozyme with a specific tertiary interaction prevents alternative folding with the lariat capping GIR1 ribozyme and enables complete cleavage in the course of the transcription. This strategy may be transposable for in vitro transcription of any highly structured RNA.
Collapse
Affiliation(s)
- Mélanie Meyer
- GMGM UMR 7156, IPCB, CNRS, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
72
|
Ramesh A, Winkler WC. Metabolite-binding ribozymes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:989-994. [PMID: 24769284 DOI: 10.1016/j.bbagrm.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/22/2022]
Abstract
Catalysis in the biological context was largely thought to be a protein-based phenomenon until the discovery of RNA catalysts called ribozymes. These discoveries demonstrated that many RNA molecules exhibit remarkable structural and functional versatility. By virtue of these features, naturally occurring ribozymes have been found to be involved in catalyzing reactions for fundamentally important cellular processes such as translation and RNA processing. Another class of RNAs called riboswitches directly binds ligands to control downstream gene expression. Most riboswitches regulate downstream gene expression by controlling premature transcription termination or by affecting the efficiency of translation initiation. However, one riboswitch class couples ligand-sensing to ribozyme activity. Specifically, the glmS riboswitch is a nucleolytic ribozyme, whose self-cleavage activity is triggered by the binding of GlcN6P. The products of this self-cleavage reaction are then targeted by cellular RNases for rapid degradation, thereby reducing glmS expression under conditions of sufficient GlcN6P. Since the discovery of the glmS ribozyme, other metabolite-binding ribozymes have been identified. Together, these discoveries have expanded the general understanding of noncoding RNAs and provided insights that will assist future development of synthetic riboswitch-ribozymes. A very broad overview of natural and synthetic ribozymes is presented herein with an emphasis on the structure and function of the glmS ribozyme as a paradigm for metabolite-binding ribozymes that control gene expression. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Arati Ramesh
- The University of Texas Southwestern Medical Center, Department of Biophysics, 6001 Forest Park Rd, Dallas, USA.
| | - Wade C Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, 3112 Biosciences Research Building, College Park, MD, USA.
| |
Collapse
|
73
|
Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1020-1029. [PMID: 24769285 DOI: 10.1016/j.bbagrm.2014.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 11/22/2022]
Abstract
Riboswitches are phylogenetically widespread non-coding mRNA domains that directly bind cellular metabolites and regulate transcription, translation, RNA stability or splicing via alternative RNA structures modulated by ligand binding. The details of ligand recognition by many riboswitches have been elucidated using X-ray crystallography and NMR. However, the global dynamics of riboswitch-ligand interactions and their thermodynamic driving forces are less understood. By compiling the work of many laboratories investigating riboswitches using small-angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC), we uncover general trends and common themes. There is a pressing need for community-wide consensus experimental conditions to allow results of riboswitch studies to be compared rigorously. Nonetheless, our meta-analysis reveals considerable diversity in the extent to which ligand binding reorganizes global riboswitch structures. It also demonstrates a wide spectrum of enthalpy-entropy compensation regimes across riboswitches that bind a diverse set of ligands, giving rise to a relatively narrow range of physiologically relevant free energies and ligand affinities. From the strongly entropy-driven binding of glycine to the predominantly enthalpy-driven binding of c-di-GMP to their respective riboswitches, these distinct thermodynamic signatures reflect the versatile strategies employed by RNA to adapt to the chemical natures of diverse ligands. Riboswitches have evolved to use a combination of long-range tertiary interactions, conformational selection, and induced fit to work with distinct ligand structure, charge, and solvation properties. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
74
|
Mlýnský V, Banáš P, Šponer J, van der Kamp MW, Mulholland AJ, Otyepka M. Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme. J Chem Theory Comput 2014; 10:1608-22. [PMID: 26580373 DOI: 10.1021/ct401015e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have analyzed the capability of state-of-the-art multiscale computational approaches to provide atomic-resolution electronic structure insights into possible catalytic scenarios of the hairpin ribozyme by evaluating potential and free energy surfaces of the reactions by various hybrid QM/MM methods. The hairpin ribozyme is a unique catalytic RNA that achieves rate acceleration similar to other small self-cleaving ribozymes but without direct metal ion participation. Guanine 8 (G8) and adenine 38 (A38) have been identified as the catalytically essential nucleobases. However, their exact catalytic roles are still being investigated. In line with the available experimental data, we considered two reaction scenarios involving protonated A38H(+) as a general acid which is further assisted by either canonical G8 or deprotonated G8(-) forms. We used the spin-component scaled Møller-Plesset (SCS-MP2) method at the complete basis set limit as the reference method. The semiempirical AM1/d-PhoT and SCC-DFTBPR methods provided acceptable activation barriers with respect to the SCS-MP2 data but predicted significantly different reaction pathways. DFT functionals (BLYP and MPW1K) yielded the same reaction pathway as the SCS-MP2 method. The activation barriers were slightly underestimated by the GGA BLYP functional, although with accuracy comparable to the semiempirical methods. The SCS-MP2 method and hybrid MPW1K functional gave activation barriers that were closest to those derived from experimentally measured rate constants.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics , Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
75
|
Abstract
RNA dynamics play a fundamental role in many cellular functions. However, there is no general framework to describe these complex processes, which typically consist of many structural maneuvers that occur over timescales ranging from picoseconds to seconds. Here, we classify RNA dynamics into distinct modes representing transitions between basins on a hierarchical free-energy landscape. These transitions include large-scale secondary-structural transitions at >0.1-s timescales, base-pair/tertiary dynamics at microsecond-to-millisecond timescales, stacking dynamics at timescales ranging from nanoseconds to microseconds, and other "jittering" motions at timescales ranging from picoseconds to nanoseconds. We review various modes within these three different tiers, the different mechanisms by which they are used to regulate function, and how they can be coupled together to achieve greater functional complexity.
Collapse
|
76
|
Li L, Szostak JW. The free energy landscape of pseudorotation in 3'-5' and 2'-5' linked nucleic acids. J Am Chem Soc 2014; 136:2858-65. [PMID: 24499340 PMCID: PMC3982932 DOI: 10.1021/ja412079b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Indexed: 02/07/2023]
Abstract
The five-membered furanose ring is a central component of the chemical structure of biological nucleic acids. The conformations of the furanose ring can be analytically described using the concept of pseudorotation, and for RNA and DNA they are dominated by the C2'-endo and C3'-endo conformers. While the free energy difference between these two conformers can be inferred from NMR measurements, a free energy landscape of the complete pseudorotation cycle of nucleic acids in solution has remained elusive. Here, we describe a new free energy calculation method for molecular dynamics (MD) simulations using the two pseudorotation parameters directly as the collective variables. To validate our approach, we calculated the free energy surface of ribose pseudorotation in guanosine and 2'-deoxyguanosine. The calculated free energy landscape reveals not only the relative stability of the different pseudorotation conformers, but also the main transition path between the stable conformations. Applying this method to a standard A-form RNA duplex uncovered the expected minimum at the C3'-endo state. However, at a 2'-5' linkage, the minimum shifts to the C2'-endo conformation. The free energy of the C3'-endo conformation is 3 kcal/mol higher due to a weaker hydrogen bond and a reduced base stacking interaction. Unrestrained MD simulations suggest that the conversion from C3'-endo to C2'-endo and vice versa is on the nanosecond and microsecond time scale, respectively. These calculations suggest that 2'-5' linkages may enable folded RNAs to sample a wider spectrum of their pseudorotation conformations.
Collapse
Affiliation(s)
- Li Li
- Howard Hughes
Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Howard Hughes
Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
77
|
Bonneau E, Legault P. NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions. Biochemistry 2014; 53:579-90. [PMID: 24364590 PMCID: PMC3906864 DOI: 10.1021/bi401484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
78
|
Abstract
Hairpin ribozymes are small RNA catalytic motifs naturally found in the satellite RNAs of tobacco ringspot virus (TRsV), chicory yellow mottle virus (CYMoV), and arabis mosaic virus (ArMV). The catalytic activity of the hairpin ribozyme extends to both cleavage and ligation reactions. Here we describe methods for the kinetic analysis of the self-cleavage reaction under transcription reaction conditions. We also describe methods for the generation of DNA templates for subsequent in vitro transcription reaction of hairpin ribozymes. This is followed by a description of the preparation of the suitable RNA molecules for ligation reaction and their kinetic analysis.
Collapse
Affiliation(s)
- Preeti Bajaj
- Department of Insect Resistance, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
79
|
Flores JK, Walshe JL, Ataide SF. RNA and RNA–Protein Complex Crystallography and its Challenges. Aust J Chem 2014. [DOI: 10.1071/ch14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA biology has changed completely in the past decade with the discovery of non-coding RNAs. Unfortunately, obtaining mechanistic information about these RNAs alone or in cellular complexes with proteins has been a major problem. X-ray crystallography of RNA and RNA–protein complexes has suffered from the major problems encountered in preparing and purifying them in large quantity. Here, we review the available techniques and methods in vitro and in vivo used to prepare and purify RNA and RNA–protein complex for crystallographic studies. We also discuss the future directions necessary to explore the vast number of RNA species waiting for their atomic-resolution structure to be determined.
Collapse
|
80
|
Unraveling the Thermodynamics and Kinetics of RNA Assembly. Methods Enzymol 2014. [DOI: 10.1016/b978-0-12-801122-5.00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
81
|
Kraemer-Chant CM, Heckman JE, Lambert D, Burke JM. Cobalt(III)hexaammine-dependent photocrosslinks in the hairpin ribozyme. J Inorg Biochem 2013; 131:87-98. [PMID: 24295878 DOI: 10.1016/j.jinorgbio.2013.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
We have utilized the hairpin ribozyme, an RNA enzyme whose structure has been solved by high-resolution methods, to develop a new tool for mapping nucleobase-stacking interactions and potential metal-binding sites in RNA molecules. This tool involves the photoactivation of a specifically bound cobalt(III)hexaammine molecule at wavelengths corresponding to excitation of the metal ion complex only; no base excitation is involved. The photoexcitation initiates a process which strongly promotes the formation of a novel covalent bond or crosslink between one base (termed the "first base"), which is close in space to the excited cobalt(III)hexaammine complex, and another base upon which the first base is closely stacked. These crosslinked species can be isolated and sequenced; their activities can be analyzed to ensure that the crosslinked structures represent an active conformation of the molecule. We have shown that, as in electron transfer in DNA, several criteria must be met to result in the successful formation of these crosslinks. These include the appropriate oxidation potential of the first donor base, the stacking and close interaction of the two donor bases involved in the crosslink, and the binding of a specific cobalt(III)hexaammine molecule to the first donor base. Additionally, we have determined that this crosslinking is pH-sensitive, although the cause of this sensitivity remains unknown. This tool has proven useful in the past for the analysis of the hairpin ribozyme folded structure, and has been applied to identify potential metal-binding sites on the hairpin and extended hammerhead ribozymes.
Collapse
Affiliation(s)
- Christina M Kraemer-Chant
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA.
| | - Joyce E Heckman
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| | - Dominic Lambert
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| | - John M Burke
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
82
|
Lau MWL, Ferré-D'Amaré AR. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Nat Chem Biol 2013; 9:805-10. [PMID: 24096303 DOI: 10.1038/nchembio.1360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
Abstract
Uniquely among known ribozymes, the glmS ribozyme-riboswitch requires a small-molecule coenzyme, glucosamine-6-phosphate (GlcN6P). Although consistent with its gene-regulatory function, the use of GlcN6P is unexpected because all of the other characterized self-cleaving ribozymes use RNA functional groups or divalent cations for catalysis. To determine what active site features make this ribozyme reliant on GlcN6P and to evaluate whether it might have evolved from a coenzyme-independent ancestor, we isolated a GlcN6P-independent variant through in vitro selection. Three active site mutations suffice to generate a highly reactive RNA that adopts the wild-type fold but uses divalent cations for catalysis and is insensitive to GlcN6P. Biochemical and crystallographic comparisons of wild-type and mutant ribozymes show that a handful of functional groups fine-tune the RNA to be either coenzyme or cation dependent. These results indicate that a few mutations can confer new biochemical activities on structured RNAs. Thus, families of structurally related ribozymes with divergent function may exist.
Collapse
Affiliation(s)
- Matthew W L Lau
- National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
83
|
Sumita M, White NA, Julien KR, Hoogstraten CG. Intermolecular domain docking in the hairpin ribozyme: metal dependence, binding kinetics and catalysis. RNA Biol 2013; 10:425-35. [PMID: 23324606 PMCID: PMC3672286 DOI: 10.4161/rna.23609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hairpin ribozyme is a prototype small, self-cleaving RNA motif. It exists naturally as a four-way RNA junction containing two internal loops on adjoining arms. These two loops interact in a cation-driven docking step prior to chemical catalysis to form a tightly integrated structure, with dramatic changes occurring in the conformation of each loop upon docking. We investigate the thermodynamics and kinetics of the docking process using constructs in which loop A and loop B reside on separate molecules. Using a novel CD difference assay to isolate the effects of metal ions linked to domain docking, we find the intermolecular docking process to be driven by sub-millimolar concentrations of the exchange-inert Co(NH3)63+. RNA self-cleavage requires binding of lower-affinity ions with greater apparent cooperativity than the docking process itself, implying that, even in the absence of direct coordination to RNA, metal ions play a catalytic role in hairpin ribozyme function beyond simply driving loop-loop docking. Surface plasmon resonance assays reveal remarkably slow molecular association, given the relatively tight loop-loop interaction. This observation is consistent with a “double conformational capture” model in which only collisions between loop A and loop B molecules that are simultaneously in minor, docking-competent conformations are productive for binding.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | | | | | | |
Collapse
|
84
|
Chen J, Ganguly A, Miswan Z, Hammes-Schiffer S, Bevilacqua PC, Golden BL. Identification of the catalytic Mg²⁺ ion in the hepatitis delta virus ribozyme. Biochemistry 2013; 52:557-67. [PMID: 23311293 DOI: 10.1021/bi3013092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hepatitis delta virus ribozyme catalyzes an RNA cleavage reaction using a catalytic nucleobase and a divalent metal ion. The catalytic base, C75, serves as a general acid and has a pK(a) shifted toward neutrality. Less is known about the role of metal ions in the mechanism. A recent crystal structure of the precleavage ribozyme identified a Mg²⁺ ion that interacts through its partial hydration sphere with the G25·U20 reverse wobble. In addition, this Mg²⁺ ion is in position to directly coordinate the nucleophile, the 2'-hydroxyl of U(-1), suggesting it can serve as a Lewis acid to facilitate deprotonation of the 2'-hydroxyl. To test the role of the active site Mg²⁺ ion, we replaced the G25·U20 reverse wobble with an isosteric A25·C20 reverse wobble. This change was found to significantly reduce the negative potential at the active site, as supported by electrostatics calculations, suggesting that active site Mg²⁺ binding could be adversely affected by the mutation. The kinetic analysis and molecular dynamics of the A25·C20 double mutant suggest that this variant stably folds into an active structure. However, pH-rate profiles of the double mutant in the presence of Mg²⁺ are inverted relative to the profiles for the wild-type ribozyme, suggesting that the A25·C20 double mutant has lost the active site metal ion. Overall, these studies support a model in which the partially hydrated Mg²⁺ positioned at the G25·U20 reverse wobble is catalytic and could serve as a Lewis acid, a Brønsted base, or both to facilitate deprotonation of the nucleophile.
Collapse
Affiliation(s)
- Ji Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
85
|
Wilson TJ, Lilley DM. A Mechanistic Comparison of the Varkud Satellite and Hairpin Ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 120:93-121. [DOI: 10.1016/b978-0-12-381286-5.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
86
|
Abstract
Selenium derivatization of RNA is an important strategy for crystal structure determination and functional studies of noncoding RNAs and protein-RNA interactions. We describe here the synthesis of nucleoside 5'-(α-P-seleno)-triphosphate analogs (Se-NTPs) and their use in vitro transcription and purification of Se-derivatized RNA samples (phosphoroselenoate RNA, PSe-RNA).
Collapse
Affiliation(s)
- Lina Lin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
87
|
Scott WG, Horan LH, Martick M. The hammerhead ribozyme: structure, catalysis, and gene regulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 120:1-23. [PMID: 24156940 DOI: 10.1016/b978-0-12-381286-5.00001-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The hammerhead ribozyme has long been considered a prototype for understanding RNA catalysis, but discrepancies between the earlier crystal structures of a minimal hammerhead self-cleaving motif and various biochemical investigations frustrated attempt to understand hammerhead ribozyme catalysis in terms of structure. With the discovery that a tertiary contact distal from the ribozyme's active site greatly enhances its catalytic prowess, and the emergence of new corresponding crystal structures of full-length hammerhead ribozymes, a unified understanding of catalysis in terms of the structure is now possible. A mechanism in which the invariant residue G12 functions as a general base, and the 2'-OH moiety of the invariant G8, itself forming a tertiary base pair with the invariant C3, is the general acid, appears consistent with both the crystal structure and biochemical experimental results. Originally discovered in the context of plant satellite RNA viruses, the hammerhead more recently has been found embedded in the 3'-untranslated region of mature mammalian mRNAs, suggesting additional biological roles in genetic regulation.
Collapse
Affiliation(s)
- William G Scott
- The Center for the Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California, USA
| | | | | |
Collapse
|
88
|
Kath-Schorr S, Wilson TJ, Li NS, Lu J, Piccirilli JA, Lilley DMJ. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. J Am Chem Soc 2012; 134:16717-24. [PMID: 22958171 DOI: 10.1021/ja3067429] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The catalytic mechanism by which the hairpin ribozyme accelerates cleavage or ligation of the phosphodiester backbone of RNA has been incompletely understood. There is experimental evidence for an important role for an adenine (A38) and a guanine (G8), and it has been proposed that these act in general acid-base catalysis. In this work we show that a large reduction in cleavage rate on substitution of A38 by purine (A38P) can be reversed by replacement of the 5'-oxygen atom at the scissile phosphate by sulfur (5'-PS), which is a much better leaving group. This is consistent with A38 acting as the general acid in the unmodified ribozyme. The rate of cleavage of the 5'-PS substrate by the A38P ribozyme increases with pH log-linearly, indicative of a requirement for a deprotonated base with a relatively high pK(a). On substitution of G8 by diaminopurine, the 5'-PS substrate cleavage rate at first increases with pH and then remains at a plateau, exhibiting an apparent pK(a) consistent with this nucleotide acting in general base catalysis. Alternative explanations for the pH dependence of hairpin ribozyme reactivity are discussed, from which we conclude that general acid-base catalysis by A38 and G8 is the simplest and most probable explanation consistent with all the experimental data.
Collapse
Affiliation(s)
- Stephanie Kath-Schorr
- Cancer Research UK, Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
89
|
Haurwitz RE, Sternberg SH, Doudna JA. Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO J 2012; 31:2824-32. [PMID: 22522703 DOI: 10.1038/emboj.2012.107] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/23/2012] [Indexed: 12/23/2022] Open
Abstract
CRISPR-Cas adaptive immune systems protect prokaryotes against foreign genetic elements. crRNAs derived from CRISPR loci base pair with complementary nucleic acids, leading to their destruction. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4, which binds and cleaves the repetitive sequence of the CRISPR transcript. Biochemical assays and three co-crystal structures of wild-type and mutant Csy4/RNA complexes reveal a substrate positioning and cleavage mechanism in which a histidine deprotonates the ribosyl 2'-hydroxyl pinned in place by a serine, leading to nucleophilic attack on the scissile phosphate. The active site catalytic dyad lacks a general acid to protonate the leaving group and positively charged residues to stabilize the transition state, explaining why the observed catalytic rate constant is ∼10(4)-fold slower than that of RNase A. We show that this RNA cleavage step is essential for assembly of the Csy protein-crRNA complex that facilitates target recognition. Considering that Csy4 recognizes a single cellular substrate and sequesters the cleavage product, evolutionary pressure has likely selected for substrate specificity and high-affinity crRNA interactions at the expense of rapid cleavage kinetics.
Collapse
Affiliation(s)
- Rachel E Haurwitz
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
90
|
Abstract
Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
91
|
Ferré-D'Amaré AR. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules. Philos Trans R Soc Lond B Biol Sci 2012; 366:2942-8. [PMID: 21930586 DOI: 10.1098/rstb.2011.0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The glmS ribozyme-riboswitch is the first known example of a naturally occurring catalytic RNA that employs a small molecule as a coenzyme. Binding of glucosamine-6-phosphate (GlcN6P) activates self-cleavage of the bacterial ribozyme, which is part of the mRNA encoding the metabolic enzyme GlcN6P-synthetase. Cleavage leads to negative feedback regulation. GlcN6P binds in the active site of the ribozyme, where its amine could function as a general acid and electrostatic catalyst. The ribozyme is pre-folded but inactive in the absence of GlcN6P, demonstrating it has evolved strict dependence on the exogenous small molecule. The ribozyme showcases the ability of RNA to co-opt non-covalently bound small molecules to expand its chemical repertoire. Analogue studies demonstrate that some molecules other than GlcN6P, such as l-serine (but not d-serine), can function as weak activators. This suggests how coenzyme use by RNA world ribozymes may have led to evolution of proteins. Primordial cofactor-dependent ribozymes may have evolved to bind their cofactors covalently. If amino acids were used as cofactors, this could have driven the evolution of RNA aminoacylation. The ability to make covalently bound peptide coenzymes may have further increased the fitness of such primordial ribozymes, providing a selective pressure for the invention of translation.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, MSC-8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
92
|
Lilley DMJ. Fluorescence Resonance Energy Transfer Studies of Structure and Dynamics in Nucleic Acids. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2012. [DOI: 10.1007/978-94-007-4923-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
93
|
Lönnberg TA, Helkearo M, Jancsó A, Gajda T. Mimics of small ribozymes utilizing a supramolecular scaffold. Dalton Trans 2012; 41:3328-38. [DOI: 10.1039/c2dt10193a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
95
|
Wilcox JL, Ahluwalia AK, Bevilacqua PC. Charged nucleobases and their potential for RNA catalysis. Acc Chem Res 2011; 44:1270-9. [PMID: 21732619 DOI: 10.1021/ar2000452] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catalysis in living cells is carried out by both proteins and RNA. Protein enzymes have been known for over 200 years, but RNA enzymes, or "ribozymes", were discovered only 30 years ago. Developing insight into RNA enzyme mechanisms is invaluable for better understanding both extant biological catalysis as well as the primitive catalysis envisioned in an early RNA-catalyzed life. Natural ribozymes include large RNAs such as the group I and II introns; small RNAs such as the hepatitis delta virus and the hairpin, hammerhead, VS, and glmS ribozymes; and the RNA portion of the ribosome and spliceosome. RNA enzymes use many of the same catalytic strategies as protein enzymes, but do so with much simpler side chains. Among these strategies are metal ion, general acid-base, and electrostatic catalysis. In this Account, we examine evidence for participation of charged nucleobases in RNA catalysis. Our overall approach is to integrate direct measurements on catalytic RNAs with thermodynamic studies on oligonucleotide model systems. The charged amino acids make critical contributions to the mechanisms of nearly all protein enzymes. Ionized nucleobases should be critical for RNA catalysis as well. Indeed, charged nucleobases have been implicated in RNA catalysis as general acid-bases and oxyanion holes. We provide an overview of ribozyme studies involving nucleobase catalysis and the complications involved in developing these mechanisms. We also consider driving forces for perturbation of the pK(a) values of the bases. Mechanisms for pK(a) values shifting toward neutrality involve electrostatic stabilization and the addition of hydrogen bonding. Both mechanisms couple protonation with RNA folding, which we treat with a thermodynamic formalism and conceptual models. Furthermore, ribozyme reaction mechanisms can be multichannel, which demonstrates the versatility of ribozymes but makes analysis of experimental data challenging. We examine advances in measuring and analyzing perturbed pK(a) values in RNA. Raman crystallography and fluorescence spectroscopy have been especially important for pK(a) measurement. These methods reveal pK(a) values for the nucleobases A or C equal to or greater than neutrality, conferring potential histidine- and lysine/arginine-like behavior on them. Structural support for ionization of the nucleobases also exists: an analysis of RNA structures in the databases conducted herein suggests that charging of the bases is neither especially uncommon nor difficult to achieve under cellular conditions. Our major conclusions are that cationic and anionic charge states of the nucleobases occur in RNA enzymes and that these states make important catalytic contributions to ribozyme activity. We conclude by considering outstanding questions and possible experimental and theoretical approaches for further advances.
Collapse
Affiliation(s)
- Jennifer L. Wilcox
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amarpreet K. Ahluwalia
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
96
|
Butcher SE, Pyle AM. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 2011; 44:1302-11. [PMID: 21899297 DOI: 10.1021/ar200098t] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA molecules adopt specific three-dimensional structures critical to their function. Many essential metabolic processes, including protein synthesis and RNA splicing, are carried out by RNA molecules with elaborate tertiary structures (e.g. 3QIQ, right). Indeed, the ribosome and self-splicing introns are complex RNA machines. But even the coding regions in messenger RNAs and viral RNAs are flanked by highly structured untranslated regions, which provide regulatory information necessary for gene expression. RNA tertiary structure is defined as the three-dimensional arrangement of RNA building blocks, which include helical duplexes, triple-stranded structures, and other components that are held together through connections collectively termed RNA tertiary interactions. The structural diversity of these interactions is now a subject of intense investigation, involving the techniques of NMR, X-ray crystallography, chemical genetics, and phylogenetic analysis. At the same time, many investigators are using biophysical techniques to elucidate the driving forces for tertiary structure formation and the mechanisms for its stabilization. RNA tertiary folding is promoted by maximization of base stacking, much like the hydrophobic effect that drives protein folding. RNA folding also requires electrostatic stabilization, both through charge screening and site binding of metals, and it is enhanced by desolvation of the phosphate backbone. In this Account, we provide an overview of the features that specify and stabilize RNA tertiary structure. A major determinant for overall tertiary RNA architecture is local conformation in secondary-structure junctions, which are regions from which two or more duplexes project. At junctions and other structures, such as pseudoknots and kissing loops, adjacent helices stack on one another, and these coaxial stacks play a major role in dictating the overall architectural form of an RNA molecule. In addition to RNA junction topology, a second determinant for RNA tertiary structure is the formation of sequence-specific interactions. Networks of triple helices, tetraloop-receptor interactions, and other sequence-specific contacts establish the framework for the overall tertiary fold. The third determinant of tertiary structure is the formation of stabilizing stacking and backbone interactions, and many are not sequence specific. For example, ribose zippers allow 2'-hydroxyl groups on different RNA strands to form networks of interdigitated hydrogen bonds, serving to seal strands together and thereby stabilize adjacent substructures. These motifs often require monovalent and divalent cations, which can interact diffusely or through chelation to specific RNA functional groups. As we learn more about the components of RNA tertiary structure, we will be able to predict the structures of RNA molecules from their sequences, thereby obtaining key information about biological function. Understanding and predicting RNA structure is particularly important given the recent discovery that although most of our genome is transcribed into RNA molecules, few of them have a known function. The prevalence of RNA viruses and pathogens with RNA genomes makes RNA drug discovery an active area of research. Finally, knowledge of RNA structure will facilitate the engineering of supramolecular RNA structures, which can be used as nanomechanical components for new materials. But all of this promise depends on a better understanding of the RNA parts list, and how the pieces fit together.
Collapse
Affiliation(s)
- Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock
Drive, Madison, Wisconsin 53706-1544, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular
and Developmental Biology and Department of Chemistry, Yale University, New Haven, Connecticut, United States
- Howard Hughes Medical Institute
| |
Collapse
|
97
|
Mlýnský V, Banáš P, Walter NG, Šponer J, Otyepka M. QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms. J Phys Chem B 2011; 115:13911-24. [PMID: 22014231 PMCID: PMC3223549 DOI: 10.1021/jp206963g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hairpin ribozyme is a prominent member of small ribozymes since it does not require metal ions to achieve catalysis. Guanine 8 (G8) and adenine 38 (A38) have been identified as key participants in self-cleavage and -ligation. We have carried out hybrid quantum-mechanical/molecular mechanical (QM/MM) calculations to evaluate the energy along several putative reaction pathways. The error of our DFT description of the QM region was tested and shown to be ~1 kcal/mol. We find that self-cleavage of the hairpin ribozyme may follow several competing microscopic reaction mechanisms, all with calculated activation barriers in good agreement with those from experiment (20-21 kcal/mol). The initial nucleophilic attack of the A-1(2'-OH) group on the scissile phosphate is predicted to be rate-limiting in all these mechanisms. An unprotonated G8(-) (together with A38H(+)) yields a feasible activation barrier (20.4 kcal/mol). Proton transfer to a nonbridging phosphate oxygen also leads to feasible reaction pathways. Finally, our calculations consider thio-substitutions of one or both nonbridging oxygens of the scissile phosphate and predict that they have only a negligible effect on the reaction barrier, as observed experimentally.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Brno
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
98
|
Müller S, Appel B, Krellenberg T, Petkovic S. The many faces of the hairpin ribozyme: Structural and functional variants of a small catalytic rna. IUBMB Life 2011; 64:36-47. [DOI: 10.1002/iub.575] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/18/2011] [Indexed: 12/15/2022]
|
99
|
Viladoms J, Scott LG, Fedor MJ. An active-site guanine participates in glmS ribozyme catalysis in its protonated state. J Am Chem Soc 2011; 133:18388-96. [PMID: 21936556 DOI: 10.1021/ja207426j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Active-site guanines that occupy similar positions have been proposed to serve as general base catalysts in hammerhead, hairpin, and glmS ribozymes, but no specific roles for these guanines have been demonstrated conclusively. Structural studies place G33(N1) of the glmS ribozyme of Bacillus anthracis within hydrogen-bonding distance of the 2'-OH nucleophile. Apparent pK(a) values determined from the pH dependence of cleavage kinetics for wild-type and mutant glmS ribozymes do not support a role for G33, or any other active-site guanine, in general base catalysis. Furthermore, discrepancies between apparent pK(a) values obtained from functional assays and microscopic pK(a) values obtained from pH-fluorescence profiles with ribozymes containing a fluorescent guanosine analogue, 8-azaguanosine, at position 33 suggest that the pH-dependent step in catalysis does not involve G33 deprotonation. These results point to an alternative model in which G33(N1) in its neutral, protonated form donates a hydrogen bond to stabilize the transition state.
Collapse
Affiliation(s)
- Júlia Viladoms
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
100
|
Bajaj P, Steger G, Hammann C. Sequence elements outside the catalytic core of natural hairpin ribozymes modulate the reactions differentially. Biol Chem 2011; 392:593-600. [PMID: 21657980 DOI: 10.1515/bc.2011.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Hairpin ribozymes occur naturally only in the satellite RNAs of tobacco ringspot virus (TRsV), chicory yellow mottle virus (CYMoV) and arabis mosaic virus (ArMV). The catalytic centre of the predominantly studied sTRsV hairpin ribozyme, and of sArMV is organised around a four-way helical junction. We show here that sCYMoV features a five-way helical junction instead. Mutational analysis indicates that the fifth stem does not influence kinetic parameters of the sCYMoV hairpin ribozyme in vitro reactions, and therefore seems an appendix to that junction in the other ribozymes. We report further that all three ribozymes feature a three-way helical junction outside the catalytic core in stem A, with Watson-Crick complementarity to loop nucleotides in stem B. Kinetic analyses of cleavage and ligation reactions of several variants of the sTRsV and sCYMoV hairpin ribozymes in vitro show that the presence of this junction interferes with their reactions, particularly the ligation. We provide evidence that this is not due to a presumed interaction of the afore-mentioned elements in stems A and B. The evolutionary survival of this cis-inhibiting element seems rather to be caused by the coincidence of its position with that of the hammerhead ribozyme in the other RNA polarity.
Collapse
Affiliation(s)
- Preeti Bajaj
- Heisenberg Research Group Ribogenetics, Technical University of Darmstadt, Germany
| | | | | |
Collapse
|