51
|
Koch L, Feicht S, Sun R, Sen A, Krahn MP. Domain-specific functions of Stardust in Drosophila embryonic development. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160776. [PMID: 28018665 PMCID: PMC5180163 DOI: 10.1098/rsos.160776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
In Drosophila, the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events. Moreover, Stardust binds to Lin-7, which is dispensable in epithelial cells but functions in postsynaptic vesicle fusion. Finally, Stardust has been reported to bind directly to PAR-6, thereby linking the Crumbs-Stardust-PATJ complex to the PAR-6/aPKC complex. PAR-6 and aPKC are also capable of directly binding Bazooka (the Drosophila homologue of PAR-3) to form the PAR/aPKC complex, which is essential for apical-basal polarity and cell-cell contact formation in most epithelia. However, little is known about the physiological relevance of these interactions in the embryonic epidermis of Drosophila in vivo. Thus, we performed a structure-function analysis of the annotated domains with GFP-tagged Stardust and evaluated the localization and function of the mutant proteins in epithelial cells of the embryonic epidermis. The data presented here confirm a crucial role of the PDZ domain in binding Crumbs and recruiting the protein to the subapical region. However, the isolated PDZ domain is not capable of being recruited to the cortex, and the SH3 domain is essential to support the binding to Crumbs. Notably, the conserved N-terminal regions (ECR1 and ECR2) are not crucial for epithelial polarity. Finally, the GUK domain plays an important role for the protein's function, which is not directly linked to Crumbs stabilization, and the L27N domain is essential for epithelial polarization independently of recruiting PATJ.
Collapse
Affiliation(s)
| | | | | | | | - Michael P. Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
52
|
Rademacher N, Schmerl B, Lardong JA, Wahl MC, Shoichet SA. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density. Sci Rep 2016; 6:35283. [PMID: 27756895 PMCID: PMC5069480 DOI: 10.1038/srep35283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interactions mediated by its C-terminal SH3-GK domain module, MPP2 binds to the abundant postsynaptic scaffold proteins PSD-95 and GKAP and localises to postsynaptic sites in hippocampal neurons. MPP2 also colocalises with the synaptic adhesion molecule SynCAM1. We demonstrate that the SynCAM1 C-terminus interacts directly with the MPP2 PDZ domain and that MPP2 does not interact in this manner with other highly abundant postsynaptic transmembrane proteins. Our results highlight a previously unexplored role for MPP2 at postsynaptic sites as a scaffold that links SynCAM1 cell adhesion molecules to core proteins of the postsynaptic density.
Collapse
Affiliation(s)
- Nils Rademacher
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bettina Schmerl
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jennifer A. Lardong
- Institute of Chemistry and Biochemistry, Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Markus C. Wahl
- Institute of Chemistry and Biochemistry, Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Sarah A. Shoichet
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
53
|
Nguyen MB, Vuong LT, Choi KW. Ebi modulates wing growth by ubiquitin-dependent downregulation of Crumbs in Drosophila. Development 2016; 143:3506-3513. [PMID: 27702784 DOI: 10.1242/dev.142059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Notch signaling at the dorsoventral (DV) boundary is essential for patterning and growth of wings in Drosophila The WD40 domain protein Ebi has been implicated in the regulation of Notch signaling at the DV boundary. Here we show that Ebi regulates wing growth by antagonizing the function of the transmembrane protein Crumbs (Crb). Ebi physically binds to the extracellular domain of Crb (Crbext), and this interaction is specifically mediated by WD40 repeats 7-8 of Ebi and a laminin G domain of Crbext Wing notching resulting from reduced levels of Ebi is suppressed by decreasing the Crb function. Consistent with this antagonistic genetic relationship, Ebi knockdown in the DV boundary elevates the Crb protein level. Furthermore, we show that Ebi is required for downregulation of Crb by ubiquitylation. Taken together, we propose that the interplay of Crb expression in the DV boundary and ubiquitin-dependent Crb downregulation by Ebi provides a mechanism for the maintenance of Notch signaling during wing development.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Linh Thuong Vuong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
54
|
Flores-Benitez D, Knust E. Dynamics of epithelial cell polarity in Drosophila: how to regulate the regulators? Curr Opin Cell Biol 2016; 42:13-21. [DOI: 10.1016/j.ceb.2016.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
55
|
Wieschaus E, Nüsslein-Volhard C. The Heidelberg Screen for Pattern Mutants of Drosophila: A Personal Account. Annu Rev Cell Dev Biol 2016; 32:1-46. [PMID: 27501451 DOI: 10.1146/annurev-cellbio-113015-023138] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In large-scale mutagenesis screens performed in 1979-1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in Drosophila. The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.
Collapse
Affiliation(s)
- Eric Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | | |
Collapse
|
56
|
Djuric I, Siebrasse JP, Schulze U, Granado D, Schlüter MA, Kubitscheck U, Pavenstädt H, Weide T. The C-terminal domain controls the mobility of Crumbs 3 isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1208-17. [DOI: 10.1016/j.bbamcr.2016.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/12/2023]
|
57
|
Barr J, Yakovlev KV, Shidlovskii Y, Schedl P. Establishing and maintaining cell polarity with mRNA localization in Drosophila. Bioessays 2016; 38:244-53. [PMID: 26773560 DOI: 10.1002/bies.201500088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Konstantin V Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia.,A.V. Zhirmunsky Institute of Marine Biology, FEB RAS Laboratory of Cytotechnology, Vladivostok, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| |
Collapse
|
58
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
59
|
Lin YH, Currinn H, Pocha SM, Rothnie A, Wassmer T, Knust E. AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust. J Cell Sci 2015; 128:4538-49. [PMID: 26527400 DOI: 10.1242/jcs.174573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity.
Collapse
Affiliation(s)
- Ya-Huei Lin
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Heather Currinn
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Shirin Meher Pocha
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alice Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
60
|
Paniagua AE, Herranz-Martín S, Jimeno D, Jimeno ÁM, López-Benito S, Carlos Arévalo J, Velasco A, Aijón J, Lillo C. CRB2 completes a fully expressed Crumbs complex in the Retinal Pigment Epithelium. Sci Rep 2015; 5:14504. [PMID: 26404741 PMCID: PMC4585915 DOI: 10.1038/srep14504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022] Open
Abstract
The CRB proteins CRB1, CRB2 and CRB3 are members of the cell polarity complex Crumbs in mammals that together with Scribble and Par complexes stablish the polarity of a variety of cell types. Although many members of the Crumbs complex proteins are expressed in the retinal pigment epithelium (RPE), and even though the mRNA of CRB2 has been detected in ARPE-19 cells and in the RPE/Choroid, to date no CRB protein has yet been found in this tissue. To investigate this possibility, we generated an antibody that specifically recognize the mouse CRB2 protein, and we demonstrate the expression of CRB2 in mouse RPE. Confocal analysis shows that CRB2 is restricted to the apicolateral membrane of RPE cells, and more precisely, in the tight junctions. Our study identified CRB2 as the member of the CRB protein family that is present together with the rest of the components of the Crumbs complex in the RPE apico-lateral cell membrane. Considering that the functions of CRB proteins are decisive in the establishment and maintenance of cell-cell junctions in several epithelial-derived cell types, we believe that these findings are a relevant starting point for unraveling the functions that CRB2 might perform in the RPE.
Collapse
Affiliation(s)
- Antonio E Paniagua
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - Saúl Herranz-Martín
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - David Jimeno
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - Ángela M Jimeno
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - Saray López-Benito
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - Juan Carlos Arévalo
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - Almudena Velasco
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - José Aijón
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| | - Concepción Lillo
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
61
|
CRB3A Controls the Morphology and Cohesion of Cancer Cells through Ehm2/p114RhoGEF-Dependent Signaling. Mol Cell Biol 2015. [PMID: 26217016 DOI: 10.1128/mcb.00673-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmembrane protein CRB3A controls epithelial cell polarization. Elucidating the molecular mechanisms of CRB3A function is essential as this protein prevents the epithelial-to-mesenchymal transition (EMT), which contributes to tumor progression. To investigate the functional impact of altered CRB3A expression in cancer cells, we expressed CRB3A in HeLa cells, which are devoid of endogenous CRB3A. While control HeLa cells display a patchy F-actin distribution, CRB3A-expressing cells form a circumferential actomyosin belt. This reorganization of the cytoskeleton is accompanied by a transition from an ameboid cell shape to an epithelial-cell-like morphology. In addition, CRB3A increases the cohesion of HeLa cells. To perform these functions, CRB3A recruits p114RhoGEF and its activator Ehm2 to the cell periphery using both functional motifs of its cytoplasmic tail and increases RhoA activation levels. ROCK1 and ROCK2 (ROCK1/2), which are critical effectors of RhoA, are also essential to modulate the cytoskeleton and cell shape downstream of CRB3A. Overall, our study highlights novel roles for CRB3A and deciphers the signaling pathway conferring to CRB3A the ability to fulfill these functions. Thereby, our data will facilitate further investigation of CRB3A functions and increase our understanding of the cellular defects associated with the loss of CRB3A expression in cancer cells.
Collapse
|
62
|
Sen A, Sun R, Krahn MP. Localization and Function of Pals1-associated Tight Junction Protein in Drosophila Is Regulated by Two Distinct Apical Complexes. J Biol Chem 2015; 290:13224-33. [PMID: 25847234 DOI: 10.1074/jbc.m114.629014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 11/06/2022] Open
Abstract
The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila.
Collapse
Affiliation(s)
- Arnab Sen
- From the Institute of Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Rui Sun
- From the Institute of Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Michael P Krahn
- From the Institute of Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
63
|
Ivanova ME, Fletcher GC, O’Reilly N, Purkiss AG, Thompson BJ, McDonald NQ. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:555-64. [PMID: 25760605 PMCID: PMC4356366 DOI: 10.1107/s139900471402776x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein-protein interaction.
Collapse
Affiliation(s)
- Marina E. Ivanova
- Structural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Georgina C. Fletcher
- Epithelial Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Nicola O’Reilly
- Peptide Chemistry Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Andrew G. Purkiss
- Structural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Barry J. Thompson
- Epithelial Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Neil Q. McDonald
- Structural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England
| |
Collapse
|
64
|
Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. Proc Natl Acad Sci U S A 2014; 111:17444-9. [PMID: 25385611 DOI: 10.1073/pnas.1416515111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Crumbs (Crb) complex, formed by Crb, PALS1, and PATJ, is evolutionarily conserved in metazoans and acts as a master cell-growth and -polarity regulator at the apical membranes in polarized epithelia. Crb intracellular functions, including its direct binding to PALS1, are mediated by Crb's highly conserved 37-residue cytoplasmic tail. However, the mechanistic basis governing the highly specific Crb-PALS1 complex formation is unclear, as reported interaction between the Crb tail (Crb-CT) and PALS1 PSD-95/DLG/ZO-1 (PDZ) domain is weak and promiscuous. Here we have discovered that the PDZ-Src homolgy 3 (SH3)-Guanylate kinase (GK) tandem of PALS1 binds to Crb-CT with a dissociation constant of 70 nM, which is ∼ 100-fold stronger than the PALS1 PDZ-Crb-CT interaction. The crystal structure of the PALS1 PDZ-SH3-GK-Crb-CT complex reveals that PDZ-SH3-GK forms a structural supramodule with all three domains contributing to the tight binding to Crb. Mutations disrupting the tertiary interactions of the PDZ-SH3-GK supramodule weaken the PALS1-Crb interaction and compromise PALS1-mediated polarity establishment in Madin-Darby canine kidney (MDCK) cysts. We further show that specific target binding of other members of membrane-associated guanylate kinases (MAGUKs) (e.g., CASK binding to neurexin) also requires the presence of their PDZ-SH3-GK tandems.
Collapse
|
65
|
Abstract
Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs and SCRIB. The location and interaction between the components of these complexes defines distinct structural domains of epithelial cells. Establishment and maintenance of apico-basal polarity is regulated through various conserved cell signalling pathways including TGF beta, Integrin and WNT signalling. Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an overview of the apico-basal polarity complexes and their regulation, their role in cell migration, and finally their involvement in carcinogenesis.
Collapse
Affiliation(s)
- Mohammed Khursheed
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500 001, India
| | | |
Collapse
|
66
|
Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, Tambutté S. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol 2014; 32:44-62. [PMID: 25246700 DOI: 10.1093/molbev/msu265] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| |
Collapse
|
67
|
Yeom E, Hong ST, Choi KW. Crumbs interacts with Xpd for nuclear division control in Drosophila. Oncogene 2014; 34:2777-89. [PMID: 25065591 DOI: 10.1038/onc.2014.202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/09/2014] [Accepted: 05/23/2014] [Indexed: 01/03/2023]
Abstract
Crumbs (Crb) family proteins are crucial for cell polarity. Recent studies indicate that they are also involved in growth regulation and cancer. However, it is not well-understood how Crb participates in mitotic processes. Here, we report that Drosophila Crb is critically involved in nuclear division by interacting with Xeroderma pigmentosum D (XPD). A novel gene named galla-1 was identified from a genetic screen for crb modifiers. Galla-1 protein shows homology to MIP18, a subunit of the mitotic spindle-associated MMS19-XPD complex. Loss-of-function galla-1 mutants show abnormal chromosome segregation, defective centrosome positions and branched spindles during nuclear division in early embryos. Embryos with loss-of-function or overexpression of crb show similar mitotic defects and genetic interaction with galla-1. Both Galla-1 and Crb proteins show overlapping localization with spindle microtubules during nuclear division. Galla-1 physically interacts with the intracellular domain of Crb. Interestingly, Galla-1 shows little binding to the Drosophila homolog of XPD, but a related protein Galla-2 binds both Crb and Xpd. Loss-of-function galla-2 mutants show similar mitotic defects as galla-1 and strong genetic interaction with crb. Xpd can form a physical complex with Crb. In imaginal disc, Crb overexpression causes tissue overgrowth as well as DNA damages marked by H2Av phosphorylation. These phenotypes are suppressed by reduction of Xpd. Taken together, this study identifies a novel Crb-Galla-Xpd complex and its function for proper chromosome segregation during nuclear division, implicating a potential link between Crb and Xpd-related genome instability.
Collapse
Affiliation(s)
- E Yeom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - S-T Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - K-W Choi
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea [2] Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
68
|
Ribeiro P, Holder M, Frith D, Snijders AP, Tapon N. Crumbs promotes expanded recognition and degradation by the SCF(Slimb/β-TrCP) ubiquitin ligase. Proc Natl Acad Sci U S A 2014; 111:E1980-9. [PMID: 24778256 PMCID: PMC4024906 DOI: 10.1073/pnas.1315508111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In epithelial tissues, growth control depends on the maintenance of proper architecture through apicobasal polarity and cell-cell contacts. The Hippo signaling pathway has been proposed to sense tissue architecture and cell density via an intimate coupling with the polarity and cell contact machineries. The apical polarity protein Crumbs (Crb) controls the activity of Yorkie (Yki)/Yes-activated protein, the progrowth target of the Hippo pathway core kinase cassette, both in flies and mammals. The apically localized Four-point-one, Ezrin, Radixin, Moesin domain protein Expanded (Ex) regulates Yki by promoting activation of the kinase cascade and by directly tethering Yki to the plasma membrane. Crb interacts with Ex and promotes its apical localization, thereby linking cell polarity with Hippo signaling. We show that, as well as repressing Yki by recruiting Ex to the apical membrane, Crb promotes phosphorylation-dependent ubiquitin-mediated degradation of Ex. We identify Skp/Cullin/F-box(Slimb/β-transducin repeats-containing protein) (SCF(Slimb/β-TrCP)) as the E3 ubiquitin ligase complex responsible for Ex degradation. Thus, Crb is part of a homeostatic mechanism that promotes Ex inhibition of Yki, but also limits Ex activity by inducing its degradation, allowing precise tuning of Yki function.
Collapse
Affiliation(s)
- Paulo Ribeiro
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom;Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Maxine Holder
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom
| | - David Frith
- Protein Analysis and Proteomics, Cancer Research UK, London Research Institute, Herts EN6 3LD, United Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics, Cancer Research UK, London Research Institute, Herts EN6 3LD, United Kingdom
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom;
| |
Collapse
|
69
|
Apical localisation of crumbs in the boundary cells of the Drosophila hindgut is independent of its canonical interaction partner stardust. PLoS One 2014; 9:e94038. [PMID: 24710316 PMCID: PMC3977972 DOI: 10.1371/journal.pone.0094038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
The transmembrane protein Crumbs/Crb is a key regulator of apico-basal epithelial cell polarity, both in Drosophila and in vertebrates. In most cases studied so far, the apical localisation of Drosophila Crumbs depends on the interaction of its C-terminal amino acids with the scaffolding protein Stardust. Consequently, embryos lacking either Crumbs or Stardust develop a very similar phenotype, characterised by the loss of epithelial tissue integrity and cell polarity in many epithelia. An exception is the hindgut, which is not affected by the loss of either gene. The hindgut is a single layered epithelial tube composed of two cell populations, the boundary cells and the principal cells. Here we show that Crumbs localisation in the principal cells depends on Stardust, similarly to other embryonic epithelia. In contrast, localisation of Crumbs in the boundary cells does not require Stardust and is independent of its PDZ domain- and FERM-domain binding motifs. In line with this, the considerable upregulation of Crumbs in boundary cells is not followed by a corresponding upregulation of its canonical binding partners. Our data are the first to suggest a mechanism controlling apical Crumbs localisation, which is independent of its conserved FERM- and PDZ-domain binding motifs.
Collapse
|
70
|
Alves CH, Pellissier LP, Wijnholds J. The CRB1 and adherens junction complex proteins in retinal development and maintenance. Prog Retin Eye Res 2014; 40:35-52. [PMID: 24508727 DOI: 10.1016/j.preteyeres.2014.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/30/2022]
Abstract
The early developing retinal neuroepithelium is composed of multipotent retinal progenitor cells that differentiate in a time specific manner, giving rise to six major types of neuronal and one type of glial cells. These cells migrate and organize in three distinct nuclear layers divided by two plexiform layers. Apical and adherens junction complexes have a crucial role in this process by the establishment of polarity and adhesion. Changes in these complexes disturb the spatiotemporal aspects of retinogenesis, leading to retinal degeneration resulting in mild or severe impairment of retinal function and vision. In this review, we summarize the mouse models for the different members of the apical and adherens junction protein complexes and describe the main features of their retinal phenotypes. The knowledge acquired from the different mutant animals for these proteins corroborate their importance in retina development and maintenance of normal retinal structure and function. More recently, several studies have tried to unravel the connection between the apical proteins, important cellular signaling pathways and their relation in retina development. Still, the mechanisms by which these proteins function remain largely unknown. Here, we hypothesize how the mammalian apical CRB1 complex might control retinogenesis and prevents onset of Leber congenital amaurosis or retinitis pigmentosa.
Collapse
Affiliation(s)
- Celso Henrique Alves
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Lucie P Pellissier
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
71
|
Steffensmeier AM, Tare M, Puli OR, Modi R, Nainaparampil J, Kango-Singh M, Singh A. Novel neuroprotective function of apical-basal polarity gene crumbs in amyloid beta 42 (aβ42) mediated neurodegeneration. PLoS One 2013; 8:e78717. [PMID: 24260128 PMCID: PMC3832507 DOI: 10.1371/journal.pone.0078717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/22/2013] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300), a progressive neurodegenerative disorder with no cure to date, is caused by the generation of amyloid-beta-42 (Aβ42) aggregates that trigger neuronal cell death by unknown mechanism(s). We have developed a transgenic Drosophila eye model where misexpression of human Aβ42 results in AD-like neuropathology in the neural retina. We have identified an apical-basal polarity gene crumbs (crb) as a genetic modifier of Aβ42-mediated-neuropathology. Misexpression of Aβ42 caused upregulation of Crb expression, whereas downregulation of Crb either by RNAi or null allele approach rescued the Aβ42-mediated-neurodegeneration. Co-expression of full length Crb with Aβ42 increased severity of Aβ42-mediated-neurodegeneration, due to three fold induction of cell death in comparison to the wild type. Higher Crb levels affect axonal targeting from the retina to the brain. The structure function analysis identified intracellular domain of Crb to be required for Aβ42-mediated-neurodegeneration. We demonstrate a novel neuroprotective role of Crb in Aβ42-mediated-neurodegeneration.
Collapse
Affiliation(s)
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Rohan Modi
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | - Jaison Nainaparampil
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | - Madhuri Kango-Singh
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
72
|
Abstract
Establishing and maintaining epithelial polarity is crucial during development and for adult tissue homeostasis. A complex network of evolutionarily conserved proteins regulates this compartmentalization. One such protein is Crumbs, a type I transmembrane protein initially shown to be an important apical determinant in Drosophila. We discuss recent studies that have advanced our understanding of the function and regulation of Crumbs. New findings obtained in flies and fish, reporting homotypic interactions of the extracellular domain and retromer-mediated recycling, shed light on the regulation of Crumbs levels and activity. These results - obtained in different organisms, tissues and developmental stages - point to more complex functions and regulation than previously assumed.
Collapse
Affiliation(s)
- Shirin Meher Pocha
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | | |
Collapse
|
73
|
Zou J, Wen Y, Yang X, Wei X. Spatial-temporal expressions of Crumbs and Nagie oko and their interdependence in zebrafish central nervous system during early development. Int J Dev Neurosci 2013; 31:770-82. [PMID: 24071007 DOI: 10.1016/j.ijdevneu.2013.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022] Open
Abstract
A vast number of apicobasal polarity proteins play essential roles in the polarization and morphogenesis of the neuroepithelia. Crumbs (Crb) type I transmembrane cell-cell adhesion proteins are among these proteins. Five crb genes have been identified in zebrafish. However, their expressional and functional differences during early neural development remain to be fully elucidated. Here, we study the spatial-temporal expression patterns and functions of Crb1, Crb2a, and Crb2b in the central nervous system (CNS) during the neurulation period. We show that: 1, the optic vesicle and undifferentiated retinal neuroepithelium only express Crb2a; 2, Crb1 and Crb2a expressions overlap extensively in the undifferentiated neural tube epithelium; 3, Crb2b expression is the weakest of the three and is restricted to the ventral-most regions of the anterior CNS; and 4, Nok and Crb proteins require each other for their apical localization in neuroepithelium. The commencements of Crb1, Crb2a, and Crb2b expressions follow a spatial-temporal spread from anterior to posterior and from ventral to dorsal and lag behind that of adherens junction components, such as ZO-1 and actin bundles. Genetic and morpholino suppression analyses suggest that in regions where these Crb expressions overlap, they are functionally redundant in maintaining apicobasal polarity of the undifferentiated neuroepithelium.
Collapse
Affiliation(s)
- Jian Zou
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States
| | | | | | | |
Collapse
|
74
|
Repiso A, Bergantiños C, Serras F. Cell fate respecification and cell division orientation drive intercalary regeneration in Drosophila wing discs. Development 2013; 140:3541-51. [PMID: 23903186 DOI: 10.1242/dev.095760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To understand the cellular parameters that govern Drosophila wing disc regeneration, we genetically eliminated specific stripes of the wing disc along the proximodistal axis and used vein and intervein markers to trace tissue regeneration. We found that veins could regenerate interveins and vice versa, indicating respecification of cell fates. Moreover, respecification occurred in cells close to the wound. The newly generated domains were intercalated to fill in the missing parts. This intercalation was driven by increased proliferation, accompanied by changes in the orientation of the cell divisions. This reorientation depended on Fat (Ft) and Crumbs (Crb), which acted, at least partly, to control the activity of the effector of the Hippo pathway, Yorkie (Yki). Increased Yki, which promotes proliferation, affected the final shape and size. Heterozygous ft or crb, which normally elicit size and shape defects in regenerated wings, could be rescued by yki heterozygosity. Thus, Ft and Crb act as sensors to drive cell orientation during intercalary regeneration and control Yki levels to ensure a proper balance between proliferation and cell reorientation. We propose a model based on intercalation of missing cell identities, in which a coordinated balance between orientation and proliferation is required for normal organ shape and size.
Collapse
Affiliation(s)
- Ada Repiso
- Departament de Genètica, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona, Diagonal 643, Barcelona, Spain
| | | | | |
Collapse
|
75
|
Fosmid-based structure-function analysis reveals functionally distinct domains in the cytoplasmic domain of Drosophila crumbs. G3-GENES GENOMES GENETICS 2013; 3:153-65. [PMID: 23390593 PMCID: PMC3564977 DOI: 10.1534/g3.112.005074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The evolutionarily conserved transmembrane protein Crumbs is required for epithelial polarity and morphogenesis in the embryo, control of tissue size in imaginal discs and morphogenesis of photoreceptor cells, and prevents light-dependent retinal degeneration. The small cytoplasmic domain contains two highly conserved regions, a FERM (i.e., protein 4.1/ezrin/radixin/moesin)-binding and a PDZ (i.e., postsynaptic density/discs large/ZO-1)-binding domain. Using a fosmid-based transgenomic approach, we analyzed the role of the two domains during invagination of the tracheae and the salivary glands in the Drosophila embryo. We provide data to show that the PDZ-binding domain is essential for the maintenance of cell polarity in both tissues. In contrast, in embryos expressing a Crumbs protein with an exchange of a conserved Tyrosine residue in the FERM-binding domain to an Alanine, both tissues are internalized, despite some initial defects in apical constriction, phospho-Moesin recruitment, and coordinated invagination movements. However, at later stages these embryos fail to undergo dorsal closure, germ band retraction, and head involution. In addition, frequent defects in tracheal fusion were observed. These results suggest stage and/or tissue specific binding partners. We discuss the power of this fosmid-based system for detailed structure-function analyses in comparison to the UAS/Gal4 system.
Collapse
|
76
|
Polarity protein complex Scribble/Lgl/Dlg and epithelial cell barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:149-70. [PMID: 23397623 DOI: 10.1007/978-1-4614-4711-5_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Scribble polarity complex or module is one of the three polarity modules that regulate cell polarity in multiple epithelia including blood-tissue barriers. This protein complex is composed of Scribble, Lethal giant larvae (Lgl) and Discs large (Dlg), which are well conserved across species from fruitflies and worms to mammals. Originally identified in Drosophila and C. elegans where the Scribble complex was found to work with the Par-based and Crumbs-based polarity modules to regulate apicobasal polarity and asymmetry in cells and tissues during embryogenesis, their mammalian homologs have all been identified in recent years. Components of the Scribble complex are known to regulate multiple cellular functions besides cell polarity, which include cell proliferation, assembly and maintenance of adherens junction (AJ) and tight junction (TJ), and they are also tumor suppressors. Herein, we provide an update on the Scribble polarity complex and how this protein complex modulates cell adhesion with some emphasis on its role in Sertoli cell blood-testis barrier (BTB) function. It should be noted that this is a rapidly developing field, in particular the role of this protein module in blood-tissue barriers, and this short chapter attempts to provide the information necessary for investigators studying reproductive biology and blood-tissue barriers to design future studies. We also include results of recent studies from flies and worms since this information will be helpful in planning experiments for future functional studies in the testis to understand how Scribble-based proteins regulate BTB dynamics and spermatogenesis.
Collapse
|
77
|
Sousa-Nunes R, Somers WG. Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:79-102. [PMID: 23696353 DOI: 10.1007/978-94-007-6621-1_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila central nervous system develops from polarised asymmetric divisions of precursor cells, called neuroblasts. Decades of research on neuroblasts have resulted in a substantial understanding of the factors and molecular events responsible for fate decisions of neuroblasts and their progeny. Furthermore, the cell-cycle dependent mechanisms responsible for asymmetric cortical protein localisation, resulting in the unequal partitioning between daughters, are beginning to be exposed. Disruption to the appropriate partitioning of proteins between neuroblasts and differentiation-committed daughters can lead to supernumerary neuroblast-like cells and the formation of tumours. Many of the factors responsible for regulating asymmetric division of Drosophila neuroblasts are evolutionarily conserved and, in many cases, have been shown to play a functionally conserved role in mammalian neurogenesis. Recent genome-wide studies coupled with advancements in live-imaging technologies have opened further avenues of research into neuroblast biology. We review our current understanding of the molecular mechanisms regulating neuroblast divisions, a powerful system to model mammalian neurogenesis and tumourigenesis.
Collapse
Affiliation(s)
- Rita Sousa-Nunes
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK.
| | | |
Collapse
|
78
|
Abstract
The Drosophila compound eye is a regular structure, in which about 750 units, called ommatidia, are arranged in a highly regular pattern. Eye development proceeds in a stereotypical fashion, where epithelial cells of the eye imaginal discs are specified, recruited, and differentiated in a sequential order that leads to the highly precise structure of an adult eye. Even small perturbations, for example in signaling pathways that control proliferation, cell death, or differentiation, can impair the regular structure of the eye, which can be easily detected and analyzed. In addition, the Drosophila eye has proven to be an ideal model for studying the genetic control of neurodegeneration, since the eye is not essential for viability. Several human neurodegeneration diseases have been modeled in the fly, leading to a better understanding of the function/misfunction of the respective gene. In many cases, the genes involved and their function are conserved between flies and human. More strikingly, when ectopically expressed in the fly eye some human genes without a Drosophila counterpart can induce neurodegeneration, detectable by aberrant phototaxis, impaired electrophysiology, or defects in eye morphology. These defects are often rather subtle alteration in shape, size, or arrangement of the cells, and can be easily scored at the ultrastructural level. This chapter aims to provide an overview regarding the analysis of the retina by various means.
Collapse
Affiliation(s)
- Monalisa Mishra
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
79
|
Pénalva C, Mirouse V. Tissue-specific function of Patj in regulating the Crumbs complex and epithelial polarity. Development 2012; 139:4549-54. [PMID: 23136386 DOI: 10.1242/dev.085449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patj is described as a core component of the Crumbs complex. Along with the other components, Crumbs and Stardust, Patj has been proposed as essential for epithelial polarity. However, no proper in vivo genetic analysis of Patj function has been performed in any organism. We have generated the first null mutants for Drosophila Patj. These mutants are lethal. However, Patj is not required in all epithelia where the Crumbs complex is essential. Patj is dispensable for ectoderm polarity and embryonic development, whereas more severe defects are observed in the adult follicular epithelium, including mislocalisation of the Crumbs complex from the apical domain, as well as morphogenetic defects. These defects are similar to those observed with crumbs and stardust mutants, although weaker and less frequent. Also, gain-of-function of Crumbs and Patj mutation genetically suppress each other in follicular cells. We also show that the first PDZ domain of Patj associated with the Stardust-binding domain are sufficient to fully rescue both Drosophila viability and Crumbs localisation. We propose that the only crucial function of Patj hinges on the ability of its first two domains to positively regulate the Crumbs complex, defining a new developmental level of regulation of its dynamics.
Collapse
Affiliation(s)
- Clothilde Pénalva
- GReD Laboratory, Faculté de Médecine, UMR CNRS 6293, Clermont Université, INSERM U1103, place Henri-Dunant, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
80
|
Sen A, Nagy-Zsvér-Vadas Z, Krahn MP. Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. ACTA ACUST UNITED AC 2012; 199:685-98. [PMID: 23128243 PMCID: PMC3494860 DOI: 10.1083/jcb.201206064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The assembly and consolidation of the adherens junctions (AJs) are key events in the establishment of an intact epithelium. However, AJs are further modified to obtain flexibility for cell migration and morphogenetic movements. Intact AJs in turn are a prerequisite for the establishment and maintenance of apical-basal polarity in epithelial cells. In this study, we report that the conserved PDZ (PSD95, Discs large, ZO-1) domain-containing protein PATJ (Pals1-associated tight junction protein) was not per se crucial for the maintenance of apical-basal polarity in Drosophila melanogaster epithelial cells but rather regulated Myosin localization and phosphorylation. PATJ directly bound to the Myosin-binding subunit of Myosin phosphatase and decreased Myosin dephosphorylation, resulting in activated Myosin. Thereby, PATJ supports the stability of the Zonula Adherens. Notably, weakening of AJ in a PATJ mutant epithelium led first to a loss of Myosin from the AJ, subsequently to a disassembly of the AJ, and finally, to a loss of apical-basal polarity and disruption of the tissue.
Collapse
Affiliation(s)
- Arnab Sen
- Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
81
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
82
|
Zhou W, Hong Y. Drosophila Patj plays a supporting role in apical-basal polarity but is essential for viability. Development 2012; 139:2891-6. [PMID: 22791898 DOI: 10.1242/dev.083162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patj has been characterized as one of the so-called polarity proteins that play essential and conserved roles in regulating cell polarity in many different cell types. Studies of Drosophila and mammalian cells suggest that Patj is required for the apical polarity protein complex Crumbs-Stardust (Pals1 or Mpp5 in mammalian cells) to establish apical-basal polarity. However, owing to the lack of suitable genetic mutants, the exact in vivo function of Patj in regulating apical-basal polarity and development remains to be elucidated. Here, we generated molecularly defined null mutants of Drosophila Patj (dPatj). Our data show conclusively that dPatj only plays supporting and non-essential roles in regulating apical-basal polarity, although such a supporting role may become crucial in cells such as photoreceptors that undergo complex cellular morphogenesis. In addition, our results confirm that dPatj possesses an as yet unidentified function that is essential for pupal development.
Collapse
Affiliation(s)
- Wenke Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
83
|
Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev Cell 2012; 22:1261-74. [PMID: 22579223 DOI: 10.1016/j.devcel.2012.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 01/16/2012] [Accepted: 03/16/2012] [Indexed: 12/21/2022]
Abstract
Cone photoreceptors are assembled by unknown mechanisms into geometrically regular mosaics in many vertebrate species. The formation and maintenance of photoreceptor mosaics are speculated to require differential cell-cell adhesion. However, the molecular basis for this theory has yet to be identified. The retina and many other tissues express Crumbs (Crb) polarity proteins. The functions of the extracellular domains of Crb proteins remain to be understood. Here we report cell-type-specific expression of the crb2a and crb2b genes at the cell membranes of photoreceptor inner segments and Müller cell apical processes in the zebrafish retina. We demonstrate that the extracellular domains of Crb2a and Crb2b mediate a cell-cell adhesion function, which plays an essential role in maintaining the integrity of photoreceptor layer and cone mosaics. Because Crb proteins are expressed in many types of epithelia, the Crb-based cell-cell adhesion may underlie cellular patterning in other epithelium-derived tissues as well.
Collapse
|
84
|
Zhang J, Yang X, Wang Z, Zhou H, Xie X, Shen Y, Long J. Structure of an L27 domain heterotrimer from cell polarity complex Patj/Pals1/Mals2 reveals mutually independent L27 domain assembly mode. J Biol Chem 2012; 287:11132-40. [PMID: 22337881 DOI: 10.1074/jbc.m111.321216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The assembly of supramolecular complexes in multidomain scaffold proteins is crucial for the control of cell polarity. The scaffold protein of protein associated with Lin-7 1 (Pals1) forms a complex with two other scaffold proteins, Pals-associated tight junction protein (Patj) and mammalian homolog-2 of Lin-7 (Mals2), through its tandem Lin-2 and Lin-7 (L27) domains to regulate apical-basal polarity. Here, we report the crystal structure of a 4-L27 domain-containing heterotrimer derived from the tripartite complex Patj/Pals1/Mals2. The heterotrimer consists of two cognate pairs of heterodimeric L27 domains with similar conformations. Structural analysis and biochemical data further show that the dimers assemble mutually independently. Additionally, such mutually independent assembly of the two heterodimers can be observed in another tripartite complex, Disks large homolog 1 (DLG1)/calcium-calmodulin-dependent serine protein kinase (CASK)/Mals2. Our results reveal a novel mechanism for tandem L27 domain-mediated, supramolecular complex assembly with a mutually independent mode.
Collapse
Affiliation(s)
- Jinxiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
85
|
Huang J, Huang L, Chen YJ, Austin E, Devor CE, Roegiers F, Hong Y. Differential regulation of adherens junction dynamics during apical-basal polarization. J Cell Sci 2011; 124:4001-13. [PMID: 22159415 DOI: 10.1242/jcs.086694] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and β-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.
Collapse
Affiliation(s)
- Juan Huang
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Muschalik N, Knust E. Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci 2011; 124:3715-25. [PMID: 22025631 DOI: 10.1242/jcs.091223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photoreceptor morphogenesis in Drosophila requires remodelling of apico-basal polarity and adherens junctions (AJs), and includes cell shape changes, as well as differentiation and expansion of the apical membrane. The evolutionarily conserved transmembrane protein Crumbs (Crb) organises an apical membrane-associated protein complex that controls photoreceptor morphogenesis. Expression of the small cytoplasmic domain of Crb in crb mutant photoreceptor cells (PRCs) rescues the crb mutant phenotype to the same extent as the full-length protein. Here, we show that overexpression of the membrane-tethered cytoplasmic domain of Crb in otherwise wild-type photoreceptor cells has major effects on polarity and morphogenesis. Whereas early expression causes severe abnormalities in apico-basal polarity and ommatidial integrity, expression at later stages affects the shape and positioning of AJs. This result supports the importance of Crb for junctional remodelling during morphogenetic changes. The most pronounced phenotype observed upon early expression is the formation of ectopic apical membrane domains, which often develop into a complete second apical pole, including ectopic AJs. Induction of this phenotype requires members of the Par protein network. These data point to a close integration of the Crb complex and Par proteins during photoreceptor morphogenesis and underscore the role of Crb as an apical determinant.
Collapse
Affiliation(s)
- Nadine Muschalik
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307-Dresden, Germany
| | | |
Collapse
|
87
|
Zhou B, Wu Y, Lin X. Retromer regulates apical-basal polarity through recycling Crumbs. Dev Biol 2011; 360:87-95. [PMID: 21958744 DOI: 10.1016/j.ydbio.2011.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 01/15/2023]
Abstract
Epithelial cells are characterized by an "apical-basal" polarization. The transmembrane protein Crumbs (Crb) is an essential apical determinant which confers apical membrane identity. Previous studies indicated that Crb did not constantly reside on the apical membrane, but was actively recycled. However, the cellular mechanism(s) underlying this process was unclear. Here we showed that in Drosophila, retromer, which was a retrograde complex recycling certain transmembrane proteins from endosomes to trans-Golgi network (TGN), regulated Crb in epithelial cells. In the absence of retromer, Crb was mis-targeted into lysosomes and degraded, causing a disruption of the apical-basal polarity. We further showed that Crb co-localized and interacted with retromer, suggesting that retromer regulated the retrograde recycling of Crb. Our data presented here uncover the role of retromer in regulating apical-basal polarity in epithelial cells and identify retromer as a novel regulator of Crb recycling.
Collapse
Affiliation(s)
- Bo Zhou
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and the Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
88
|
Laprise P. Emerging role for epithelial polarity proteins of the Crumbs family as potential tumor suppressors. J Biomed Biotechnol 2011; 2011:868217. [PMID: 21912482 PMCID: PMC3168773 DOI: 10.1155/2011/868217] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/09/2011] [Indexed: 12/21/2022] Open
Abstract
Defects in apical-basal polarity regulation are associated with tissue overgrowth and tumorogenesis, yet the molecular mechanisms linking epithelial polarity regulators to hyperplasia or neoplasia remain elusive. In addition, exploration of the expression and function of the full complement of proteins required for the polarized architecture of epithelial cells in the context of cancer is awaited. This paper provides an overview of recent studies performed on Drosophila and vertebrates showing that apical polarity proteins of the Crumbs family act to repress tissue growth and epithelial to mesenchymal transition. Thus, these proteins emerge as potential tumor suppressors. Interestingly, analysis of the molecular function of Crumbs proteins reveals a function for these polarity regulators in junctional complexes stability and control of signaling pathways regulating proliferation and apoptosis. Thereby, these studies provide a molecular basis explaining how regulation of epithelial polarity is coupled to tumorogenesis.
Collapse
Affiliation(s)
- Patrick Laprise
- Department of Molecular Biology, Medical Biochemistry and Pathology/Cancer Research Center, Laval University and CRCHUQ-Hôtel-Dieu de Québec, 9 McMahon, Québec, QC, Canada G1R 2J6.
| |
Collapse
|
89
|
Laprise P, Tepass U. Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol 2011; 21:401-8. [DOI: 10.1016/j.tcb.2011.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 01/04/2023]
|
90
|
League GP, Nam SC. Role of kinesin heavy chain in Crumbs localization along the rhabdomere elongation in Drosophila photoreceptor. PLoS One 2011; 6:e21218. [PMID: 21695062 PMCID: PMC3117887 DOI: 10.1371/journal.pone.0021218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022] Open
Abstract
Background Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. Methodology/Principal Findings Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. Conclusions/Significance In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Sang-Chul Nam
- Department of Biology, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
91
|
Liu ZQ, Liu XL, Gong FL, Ren XF, Chen C, Li L, Pan ZH, Yuan LL, Chen R. Clinical significance of the expression of TSLC1 and MPP3 in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2011; 19:379-383. [DOI: 10.11569/wcjd.v19.i4.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance of the expression of TSLC1 (tumor suppressor in lung cancer 1) and MPP3 (membrane protein, palmitoylated 3) in pancreatic cancer.
METHODS: Immunohistochemistry was used to measure the expression of TSLC1 and MPP3 in 10 normal pancreatic tissue specimens, 12 pancreatitis specimens, and 37 pancreatic cancer specimens.
RESULTS: The positive rates of TSLC1 and MPP3 expression in pancreatic carcinoma were significantly lower than those in normal pancreatic tissue and pancreatitis (21.62% vs 70.00%, 75.00%; 27.03% vs 80.00%, 66.67%, all P < 0.05 or 0.01). The expression of TSLC1 and MPP3 was significantly correlated with tumor differentiation, lymph node metastasis, and TNM stage in pancreatic cancer (all P < 0.05), but not with gender, age, tumor location, and pathological type (all P > 0.05). A significant positive correlation was found between the expression of TSLC1 and MPP3 in pancreatic cancer (P < 0.01).
CONCLUSION: Down-regulated expression of TSLC1 and MPP3 may be involved the pathogenesis, progression, and metastasis of pancreatic carcinoma.
Collapse
|
92
|
Pieczynski J, Margolis B. Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol 2011; 300:F589-601. [PMID: 21228104 DOI: 10.1152/ajprenal.00615.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Establishment of epithelial apicobasal polarity is crucial for proper kidney development and function. In recent years, there have been important advances in our understanding of the factors that mediate the initiation of apicobasal polarization. Key among these are the polarity complexes that are evolutionarily conserved from simple organisms to humans. Three of these complexes are discussed in this review: the Crumbs complex, the Par complex, and the Scribble complex. The apical Crumbs complex consists of three proteins, Crumbs, PALS1, and PATJ, whereas the apical Par complex consists of Par-3, Par-6, and atypical protein kinase C. The lateral Scribble complex consists of Scribble, discs large, and lethal giant larvae. These complexes modulate kinase and small G protein activity such that the apical and basolateral complexes signal antagonistically, leading to the segregation of the apical and basolateral membranes. The polarity complexes also serve as scaffolds to direct and retain proteins at the apical membrane, the basolateral membrane, or the intervening tight junction. There is plasticity in apicobasal polarity, and this is best seen in the processes of epithelial-to-mesenchymal transition and the converse mesenchymal-to-epithelial transition. These transitions are important in kidney disease as well as kidney development, and modulation of the polarity complexes are critical for these transitions.
Collapse
Affiliation(s)
- Jay Pieczynski
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
93
|
Letizia A, Sotillos S, Campuzano S, Llimargas M. Regulated Crb accumulation controls apical constriction and invagination in Drosophila tracheal cells. J Cell Sci 2010; 124:240-51. [PMID: 21172808 DOI: 10.1242/jcs.073601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many epithelial tissues undergo extensive remodelling during morphogenesis. How their epithelial features, such as apicobasal polarity or adhesion, are maintained and remodelled and how adhesion and polarity proteins contribute to morphogenesis are two important questions in development. Here, we approach these issues by investigating the role of the apical determinant protein Crumbs (Crb) during the morphogenesis of the embryonic Drosophila tracheal system. Crb accumulates differentially throughout tracheal development and is required for different tracheal events. The earliest requirement for Crb is for tracheal invagination, which is preceded by an enhanced accumulation of Crb in the invagination domain. There, Crb, acting in parallel with the epidermal growth factor receptor (Egfr) pathway, is required for tracheal cell apical constriction and for organising an actomyosin complex, which we propose is mediated by Crb recruitment of moesin (Moe). The ability of a Crb isoform unable to rescue polarity in crb mutants to otherwise rescue their invagination phenotype, and the converse inability of a FERM-binding domain mutant Crb to rescue faulty invagination, support our hypothesis that it is the absence of Crb-dependent Moe enrichment, and not the polarity defect, that mainly underlies the crb invagination phenotype. This hypothesis is supported by the phenotype of lethal giant larvae (lgl); crb double mutants. These results unveil a link between Crb and the organisation of the actin cytoskeleton during morphogenesis.
Collapse
Affiliation(s)
- Annalisa Letizia
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
94
|
Krahn MP, Bückers J, Kastrup L, Wodarz A. Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. ACTA ACUST UNITED AC 2010; 190:751-60. [PMID: 20819933 PMCID: PMC2935580 DOI: 10.1083/jcb.201006029] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recruitment of the Crumbs–Stardust polarity complex depends on interactions between Bazooka and the Stardust PDZ domain and is regulated by aPKC-mediated phosphorylation. Apical–basal polarity in Drosophila melanogaster epithelia depends on several evolutionarily conserved proteins that have been assigned to two distinct protein complexes: the Bazooka (Baz)–PAR-6 (partitioning defective 6)–atypical protein kinase C (aPKC) complex and the Crumbs (Crb)–Stardust (Sdt) complex. These proteins operate in a functional hierarchy, in which Baz is required for the proper subcellular localization of all other proteins. We investigated how these proteins interact and how this interaction is regulated. We show that Baz recruits Sdt to the plasma membrane by direct interaction between the Postsynaptic density 95/Discs large/Zonula occludens 1 (PDZ) domain of Sdt and a region of Baz that contains a phosphorylation site for aPKC. Phosphorylation of Baz causes the dissociation of the Baz–Sdt complex. Overexpression of a nonphosphorylatable version of Baz blocks the dissociation of Sdt from Baz, causing phenotypes very similar to those of crb and sdt mutations. Our findings provide a molecular mechanism for the phosphorylation-dependent interaction between the Baz–PAR-3 and Crb complexes during the establishment of epithelial polarity.
Collapse
Affiliation(s)
- Michael P Krahn
- Abteilung Stammzellbiologie, Forschungszentrum der Deutschen Forschungsgemeinschaft für Molekularphysiologie des Gehirns (CMPB), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
95
|
Abstract
First discovered in Drosophila, the Hippo signaling pathway is a conserved regulator of organ size. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the oncoprotein Yki (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation and survival. Here, I review recent progress in elucidating the molecular mechanism and physiological function of Hippo signaling in Drosophila and mammals. These studies suggest that the core Hippo kinase cascade integrates multiple upstream inputs, enabling dynamic regulation of tissue homeostasis in animal development and physiology.
Collapse
|
96
|
Bulgakova NA, Rentsch M, Knust E. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells. Mol Biol Cell 2010; 21:3915-25. [PMID: 20861315 PMCID: PMC2982133 DOI: 10.1091/mbc.e09-10-0917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Two Stardust isoforms are expressed in adult Drosophila photoreceptors, which associate with Crumbs and PATJ, but form distinct complexes. Sdt-H and Sdt-D have antagonistic functions on stalk membrane length and light-dependent retinal degeneration, suggesting a fine-tuned balance of different Crumbs complexes regulating photoreceptor homeostasis. Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs–Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.
Collapse
Affiliation(s)
- Natalia A Bulgakova
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | |
Collapse
|
97
|
The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A 2010; 107:15810-5. [PMID: 20798049 DOI: 10.1073/pnas.1004060107] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Defects in apical-basal cell polarity and abnormal expression of cell polarity determinants are often associated with cancer in vertebrates. In Drosophila, abnormal expression of apical-basal determinants can cause neoplastic phenotypes, including loss of cell polarity and overproliferation. However, the pathways through which apical-basal polarity determinants affect growth are poorly understood. Here, we investigated the mechanism by which the apical determinant Crumbs (Crb) affects growth in Drosophila imaginal discs. Overexpression of Crb causes severe overproliferation, and we found that loss of Crb similarly results in overgrowth of imaginal discs. Crb gain and loss of function caused defects in Hippo signaling, a key signaling pathway that controls tissue growth in Drosophila and mammals. Manipulation of Crb levels caused the up-regulation of Hippo target genes, genetically interacted with known Hippo pathway components, and required Yorkie, a transcriptional coactivator that acts downstream in the Hippo pathway, for target gene induction and overgrowth. Interestingly, Crb regulates growth and cell polarity through different motifs in its intracellular domain. A juxtamembrane FERM domain-binding motif is responsible for growth regulation and induction of Hippo target gene expression, whereas Crb uses a PDZ-binding motif to form a complex with other polarity factors. The Hippo pathway component Expanded, an apically localized adaptor protein, is mislocalized in both crb mutant cells and Crb overexpressing tissues, whereas the other Hippo pathway components, Fat and Merlin, are unaffected. Taken together, our data show that Crb regulates growth through Hippo signaling, and thus identify Crb as a previously undescribed upstream input into the Hippo pathway.
Collapse
|
98
|
Walther RF, Pichaud F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol 2010; 20:1065-74. [PMID: 20493700 DOI: 10.1016/j.cub.2010.04.049] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In Drosophila epithelial cells, specification and maintenance of the zonula adherens (za) is crucial to ensure epithelial tissue integrity. This depends on the intertwined function of Bazooka (Baz), Par6-DaPKC, and the Crumbs (Crb)-Stardust (Sdt)-PATJ complex. However, the detailed molecular basis for the interplay between these factors during this process is not fully understood. RESULTS We demonstrate that during photoreceptor apicobasal polarity remodeling, Crb is required to exclude Baz from the subapical domain. This is achieved by recruiting Par6 and DaPKC to this membrane domain. This molecular sorting depends on Baz phosphorylation by DaPKC at the conserved serine 980 and on the activity of the small GTPase Cdc42 associated with Par6. Our data indicate that although Cdc42 binding to Par6 is not required for Baz phosphorylation by DaPKC, it is required for optimum recruitment of Crb at the subapical membrane, a process necessary for delineating the nascent za from this membrane domain. CONCLUSION Binding of Cdc42 to the DaPKC regulatory subunit Par6 is required to promote Crb- and DaPKC-dependent apical exclusion of Baz. This molecular sorting mechanism results in setting up the boundary between the photoreceptor subapical membrane and the za.
Collapse
Affiliation(s)
- Rhian F Walther
- Medical Research Council (MRC) Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, WC1E 6BT London, UK
| | | |
Collapse
|
99
|
Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y, Wu S, Pan D. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 2010; 107:10532-10537. [PMID: 20498073 PMCID: PMC2890787 DOI: 10.1073/pnas.1004279107] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. At the core of the Hippo pathway is a kinase cascade extending from the Hippo (Hpo) tumor suppressor to the Yorkie (Yki) oncoprotein. The Hippo kinase cascade, in turn, is regulated by apical membrane-associated proteins such as the FERM domain proteins Merlin and Expanded (Ex), and the WW- and C2-domain protein Kibra. How these apical proteins are themselves regulated remains poorly understood. Here, we identify the transmembrane protein Crumbs (Crb), a determinant of epithelial apical-basal polarity in Drosophila embryos, as an upstream component of the Hippo pathway in imaginal disk growth control. Loss of Crb leads to tissue overgrowth and target gene expression characteristic of defective Hippo signaling. Crb directly binds to Ex through its juxtamembrane FERM-binding motif (FBM). Loss of Crb or mutation of its FBM leads to mislocalization of Ex to basolateral domain of imaginal disk epithelial cells. These results shed light on the mechanism of Ex regulation and provide a molecular link between apical-basal polarity and tissue growth. Furthermore, our studies implicate Crb as a putative cell surface receptor for Hippo signaling by uncovering a transmembrane protein that directly binds to an apical component of the Hippo pathway.
Collapse
Affiliation(s)
- Chen Ling
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Feng Yin
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jianzhong Yu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Juan Huang
- Department of Cell Biology and Physiology, University of Pittsburgh Medical School, Pittsburgh, PA 15261; and
| | - Yang Hong
- Department of Cell Biology and Physiology, University of Pittsburgh Medical School, Pittsburgh, PA 15261; and
| | - Shian Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Genetics and Cell Biology, School of Life Sciences, Nankai University, Tianjin 300071, China
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
100
|
The Drosophila Crumbs signal peptide is unusually long and is a substrate for signal peptide peptidase. Eur J Cell Biol 2010; 89:449-61. [DOI: 10.1016/j.ejcb.2010.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/14/2022] Open
|