51
|
Zhou C, Li C, Zhou B, Sun H, Koullourou V, Holt I, Puckelwartz MJ, Warren DT, Hayward R, Lin Z, Zhang L, Morris GE, McNally EM, Shackleton S, Rao L, Shanahan CM, Zhang Q. Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum Mol Genet 2017; 26:2258-2276. [PMID: 28398466 PMCID: PMC5458344 DOI: 10.1093/hmg/ddx116] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
Nesprins-1 and -2 are highly expressed in skeletal and cardiac muscle and together with SUN (Sad1p/UNC84)-domain containing proteins and lamin A/C form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) bridging complex at the nuclear envelope (NE). Mutations in nesprin-1/2 have previously been found in patients with autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). In this study, three novel rare variants (R8272Q, S8381C and N8406K) in the C-terminus of the SYNE1 gene (nesprin-1) were identified in seven DCM patients by mutation screening. Expression of these mutants caused nuclear morphology defects and reduced lamin A/C and SUN2 staining at the NE. GST pull-down indicated that nesprin-1/lamin/SUN interactions were disrupted. Nesprin-1 mutations were also associated with augmented activation of the ERK pathway in vitro and in hearts in vivo. During C2C12 muscle cell differentiation, nesprin-1 levels are increased concomitantly with kinesin light chain (KLC-1/2) and immunoprecipitation and GST pull-down showed that these proteins interacted via a recently identified LEWD domain in the C-terminus of nesprin-1. Expression of nesprin-1 mutants in C2C12 cells caused defects in myoblast differentiation and fusion associated with dysregulation of myogenic transcription factors and disruption of the nesprin-1 and KLC-1/2 interaction at the outer nuclear membrane. Expression of nesprin-1α2 WT and mutants in zebrafish embryos caused heart developmental defects that varied in severity. These findings support a role for nesprin-1 in myogenesis and muscle disease, and uncover a novel mechanism whereby disruption of the LINC complex may contribute to the pathogenesis of DCM.
Collapse
Affiliation(s)
- Can Zhou
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chen Li
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Huaqin Sun
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education.,SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Victoria Koullourou
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10?7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5?5BG, UK
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek T Warren
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Robert Hayward
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Ziyuan Lin
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education.,SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10?7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5?5BG, UK
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1?9HN, UK
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Catherine M Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| |
Collapse
|
52
|
Çağlayan AO, Sezer RG, Kaymakçalan H, Ulgen E, Yavuz T, Baranoski JF, Bozaykut A, Harmanci AS, Yalcin Y, Youngblood MW, Yasuno K, Bilgüvar K, Gunel M. ALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features. Cold Spring Harb Mol Case Stud 2017. [PMID: 28630369 PMCID: PMC5593152 DOI: 10.1101/mcs.a001859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Primary cardiomyopathy is one of the most common inherited cardiac diseases and harbors significant phenotypic and genetic heterogeneity. Because of this, genetic testing has become standard in treatment of this disease group. Indeed, in recent years, next-generation DNA sequencing has found broad applications in medicine, both as a routine diagnostic tool for genetic disorders and as a high-throughput discovery tool for identifying novel disease-causing genes. We describe a male infant with primary dilated cardiomyopathy who was diagnosed using intrauterine echocardiography and found to progress to hypertrophic cardiomyopathy after birth. This proband was born to a nonconsanguineous family with a past history of a male fetus that died because of cardiac abnormalities at 30 wk of gestation. Using whole-exome sequencing, a novel homozygous frameshift mutation (c.2018delC; p.Gln675SerfsX30) in ALPK3 was identified and confirmed with Sanger sequencing. Heterozygous family members were normal with echocardiographic examination. To date, only two studies have reported homozygous pathogenic variants of ALPK3, with a total of seven affected individuals with cardiomyopathy from four unrelated consanguineous families. We include a discussion of the patient's phenotypic features and a review of relevant literature findings.
Collapse
Affiliation(s)
- Ahmet Okay Çağlayan
- Department of Medical Genetics, School of Medicine, Istanbul Bilim University, Istanbul 34394, Turkey.,Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Rabia Gonul Sezer
- Department of Pediatrics, University of Health Sciences, Zeynep Kamil Maternity and Childrens' Diseases Training and Research Hospital, Istanbul 34668, Turkey
| | - Hande Kaymakçalan
- Department of Pediatrics, School of Medicine, Istanbul Bilim University, Istanbul 34394, Turkey
| | - Ege Ulgen
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Taner Yavuz
- Division of Pediatric Cardiology, Department of Pediatrics, Zeynep Kamil Maternity and Childrens' Diseases Training and Research Hospital, Istanbul 34668, Turkey
| | - Jacob F Baranoski
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Abdulkadir Bozaykut
- Department of Pediatrics, University of Health Sciences, Zeynep Kamil Maternity and Childrens' Diseases Training and Research Hospital, Istanbul 34668, Turkey
| | - Akdes Serin Harmanci
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Yalim Yalcin
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Istanbul Bilim University, Istanbul 34394, Turkey
| | - Mark W Youngblood
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Katsuhito Yasuno
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Kaya Bilgüvar
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Murat Gunel
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
53
|
Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet 2017; 390:400-414. [PMID: 28190577 DOI: 10.1016/s0140-6736(16)31713-5] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathy is defined by the presence of left ventricular dilatation and contractile dysfunction. Genetic mutations involving genes that encode cytoskeletal, sarcomere, and nuclear envelope proteins, among others, account for up to 35% of cases. Acquired causes include myocarditis and exposure to alcohol, drugs and toxins, and metabolic and endocrine disturbances. The most common presenting symptoms relate to congestive heart failure, but can also include circulatory collapse, arrhythmias, and thromboembolic events. Secondary neurohormonal changes contribute to reverse remodelling and ongoing myocyte damage. The prognosis is worst for individuals with the lowest ejection fractions or severe diastolic dysfunction. Treatment of chronic heart failure comprises medications that improve survival and reduce hospital admission-namely, angiotensin converting enzyme inhibitors and β blockers. Other interventions include enrolment in a multidisciplinary heart failure service, and device therapy for arrhythmia management and sudden death prevention. Patients who are refractory to medical therapy might benefit from mechanical circulatory support and heart transplantation. Treatment of preclinical disease and the potential role of stem-cell therapy are being investigated.
Collapse
Affiliation(s)
- Robert G Weintraub
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Peter Macdonald
- St Vincent's Hospital, Sydney, NSW, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
54
|
England J, Loughna S, Rutland CS. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:E8. [PMID: 29367539 PMCID: PMC5715711 DOI: 10.3390/jcdd4030008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
Animals have frequently been used as models for human disorders and mutations. Following advances in genetic testing and treatment options, and the decreasing cost of these technologies in the clinic, mutations in both companion and commercial animals are now being investigated. A recent review highlighted the genes associated with both human and non-human dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human and animal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jennifer England
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Siobhan Loughna
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK.
| |
Collapse
|
55
|
Chorghade S, Seimetz J, Emmons R, Yang J, Bresson SM, Lisio MD, Parise G, Conrad NK, Kalsotra A. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife 2017; 6. [PMID: 28653618 PMCID: PMC5487213 DOI: 10.7554/elife.24139] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
The rate of protein synthesis in the adult heart is one of the lowest in mammalian tissues, but it increases substantially in response to stress and hypertrophic stimuli through largely obscure mechanisms. Here, we demonstrate that regulated expression of cytosolic poly(A)-binding protein 1 (PABPC1) modulates protein synthetic capacity of the mammalian heart. We uncover a poly(A) tail-based regulatory mechanism that dynamically controls PABPC1 protein synthesis in cardiomyocytes and thereby titrates cellular translation in response to developmental and hypertrophic cues. Our findings identify PABPC1 as a direct regulator of cardiac hypertrophy and define a new paradigm of gene regulation in the heart, where controlled changes in poly(A) tail length influence mRNA translation. DOI:http://dx.doi.org/10.7554/eLife.24139.001 Hundreds of thousands of different proteins are needed to build and maintain the cells in the human body. All proteins are produced when copies of genetic information in the form of molecules of messenger RNA (mRNAs) are translated by the ribosome. The rate at which proteins are made varies widely between different tissues and at different times. In particular, the adult heart has one of the lowest rates of protein production, though this rate can increase markedly during exercise and heart disease. The mechanisms that drive this kind of dynamic change in protein production remain unclear. A better understanding of this process would tell scientists more about how and why cells regulate the translation of mRNAs in general, and might uncover new ways for treating heart disease. Molecules of mRNA are composed of smaller building blocks called nucleotides. All mature mRNAs in humans have a long stretch at one end that contains the nucleotide adenosine – commonly referred to as A for short – repeated 200 to 300 times. This sequence is called the poly(A) tail, and specific proteins can bind to this tail and determine the final fate of the mRNA, such as how efficiently it is translated. One such poly(A) binding protein, called PABPC1, is known to promote mRNA translation. Now, Chorghade, Seimetz et al. examine how PABPC1 regulates protein production in mice and human cells. The experiments reveal that, before birth, ample amounts of PABPC1 are found in the heart, but that this protein is undetectable in the hearts of adults. Further experiments showed that the levels of the mRNA for PABPC1 in the heart are the same before birth and in adulthood. So why is the mRNA for PABPC1 translated inefficiently in adult hearts? In general, mRNAs with long tails tend to be translated more efficiently compared to those with short tails, and it turns out that the mRNA for PABPC1 has a substantially shorter poly(A) tail in the adult heart. This tail shortening limits the translation of this specific mRNA, which leads to reduced protein production. Chorghade, Seimetz et al. also showed that the length of the poly(A) tail on the mRNA and the levels of the PABPC1 protein are restored in adult hearts during a condition known as hypertrophy. This state of hypertrophy can be triggered by exercise or heart disease and is marked by an increase in the size of individual heart cells and enhanced protein production. Finally, Chorghade, Seimetz et al. found that experimentally raising the levels of PABPC1 in adult hearts could, by itself, make the heart cells produce more protein and the heart grow more. Further studies will explore if other mRNAs in the heart also undergo similar changes and whether this is a general mechanism for controlling protein production. DOI:http://dx.doi.org/10.7554/eLife.24139.002
Collapse
Affiliation(s)
- Sandip Chorghade
- Department of Biochemistry, University of Illinois, Illinois, United States
| | - Joseph Seimetz
- Department of Biochemistry, University of Illinois, Illinois, United States
| | - Russell Emmons
- Department of Kinesiology and Community Health, University of Illinois, Illinois, United States
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois, Illinois, United States
| | - Stefan M Bresson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Illinois, United States.,School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Illinois, United States.,Carl R. Woese Institute of Genomic Biology, University of Illinois, Illinois, United States
| |
Collapse
|
56
|
Roura S, Gálvez-Montón C, de Gonzalo-Calvo D, Valero AG, Gastelurrutia P, Revuelta-López E, Prat-Vidal C, Soler-Botija C, Llucià-Valldeperas A, Perea-Gil I, Iborra-Egea O, Borràs FE, Lupón J, Llorente-Cortés V, Bayes-Genis A. Extracellular vesicles do not contribute to higher circulating levels of soluble LRP1 in idiopathic dilated cardiomyopathy. J Cell Mol Med 2017; 21:3000-3009. [PMID: 28557183 PMCID: PMC5661250 DOI: 10.1111/jcmm.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Idiopathic dilated cardiomyopathy (IDCM) is a frequent cause of heart transplantation. Potentially valuable blood markers are being sought, and low‐density lipoprotein receptor‐related protein 1 (LRP1) has been linked to the underlying molecular basis of the disease. This study compared circulating levels of soluble LRP1 (sLRP1) in IDCM patients and healthy controls and elucidated whether sLRP1 is exported out of the myocardium through extracellular vesicles (EVs) to gain a better understanding of the pathogenesis of the disease. LRP1 α chain expression was analysed in samples collected from the left ventricles of explanted hearts using immunohistochemistry. sLRP1 concentrations were determined in platelet‐free plasma by enzyme‐linked immunosorbent assay. Plasma‐derived EVs were extracted by size‐exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis and cryo‐transmission electron microscopy. The distributions of vesicular (CD9, CD81) and myocardial (caveolin‐3) proteins and LRP1 α chain were assessed in SEC fractions by flow cytometry. LRP1 α chain was preferably localized to blood vessels in IDCM compared to control myocardium. Circulating sLRP1 was increased in IDCM patients. CD9‐ and CD81‐positive fractions enriched with membrane vesicles with the expected size and morphology were isolated from both groups. The LRP1 α chain was not present in these SEC fractions, which were also positive for caveolin‐3. The increase in circulating sLRP1 in IDCM patients may be clinically valuable. Although EVs do not contribute to higher sLRP1 levels in IDCM, a comprehensive analysis of EV content would provide further insights into the search for novel blood markers.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,Center of Regenerative Medicine in Barcelona, Barcelona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Gámez Valero
- Innovation in Vesicles and Cells for Application in Therapy Group, IGTP, Badalona, Spain
| | - Paloma Gastelurrutia
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Revuelta-López
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Cristina Prat-Vidal
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Llucià-Valldeperas
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Isaac Perea-Gil
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Oriol Iborra-Egea
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Francesc E Borràs
- Innovation in Vesicles and Cells for Application in Therapy Group, IGTP, Badalona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain
| | - Josep Lupón
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, HUGTiP, Badalona, Spain.,Department of Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, HUGTiP, Badalona, Spain.,Department of Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
| |
Collapse
|
57
|
Gu Q, Mendsaikhan U, Khuchua Z, Jones BC, Lu L, Towbin JA, Xu B, Purevjav E. Dissection of Z-disc myopalladin gene network involved in the development of restrictive cardiomyopathy using system genetics approach. World J Cardiol 2017; 9:320-331. [PMID: 28515850 PMCID: PMC5411966 DOI: 10.4330/wjc.v9.i4.320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/09/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the regulation of Myopalladin (Mypn) and identify its gene network involved in restrictive cardiomyopathy (RCM). METHODS Gene expression values were measured in the heart of a large family of BXD recombinant inbred (RI) mice derived from C57BL/6J and DBA/2J. The proteomics data were collected from Mypn knock-in and knock-out mice. Expression quantitative trait locus (eQTL) mapping methods and gene enrichment analysis were used to identify Mypn regulation, gene pathway and co-expression networks. RESULTS A wide range of variation was found in expression of Mypn among BXD strains. We identified upstream genetic loci at chromosome 1 and 5 that modulate the expression of Mypn. Candidate genes within these loci include Ncoa2, Vcpip1, Sgk3, and Lgi2. We also identified 15 sarcomeric genes interacting with Mypn and constructed the gene network. Two novel members of this network (Syne1 and Myom1) have been confirmed at the protein level. Several members in this network are already known to relate to cardiomyopathy with some novel genes candidates that could be involved in RCM. CONCLUSION Using systematic genetics approach, we constructed Mypn co-expression networks that define the biological process categories within which similarly regulated genes function. Through this strategy we have found several novel genes that interact with Mypn that may play an important role in the development of RCM.
Collapse
Affiliation(s)
- Qingqing Gu
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Uzmee Mendsaikhan
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Zaza Khuchua
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Byron C Jones
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Lu Lu
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Jeffrey A Towbin
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Biao Xu
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Enkhsaikhan Purevjav
- Qingqing Gu, Biao Xu, Department of Cardiology, Drum Tower Clinic Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| |
Collapse
|
58
|
Neonatal dilated cardiomyopathy. Rev Port Cardiol 2017; 36:201-214. [DOI: 10.1016/j.repc.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/25/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
|
59
|
Neonatal dilated cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2016.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
60
|
Quick AP, Landstrom AP, Wang Q, Beavers DL, Reynolds JO, Barreto-Torres G, Tran V, Showell J, Philippen LE, Morris SA, Skapura D, Bos JM, Pedersen SE, Pautler RG, Ackerman MJ, Wehrens XHT. Novel junctophilin-2 mutation A405S is associated with basal septal hypertrophy and diastolic dysfunction. ACTA ACUST UNITED AC 2017; 2:56-67. [PMID: 28393127 PMCID: PMC5384575 DOI: 10.1016/j.jacbts.2016.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A JPH2 A405S mutation was found in a human HCM patient. A novel echocardiographic imaging plane revealed septal hypertrophy in a mouse model bearing the human JPH2 mutation, thereby causally linking it to HCM pathogenesis. This alpha helical JPH2 mutation resulted in decreased transverse tubule regularity and aberrant calcium handling in septal cardiomyocytes.
Junctophilin-2 (JPH2) is a structural calcium (Ca2+) handling protein, which approximates the cardiomyocyte transverse tubules (TTs) to the sarcoplasmic reticulum. This facilitates communication of the voltage-gated Ca2+ channel and the ryanodine receptor RyR2. A human patient with hypertrophic cardiomyopathy was positive for a JPH2 mutation substituting alanine-405—located within the alpha helix domain—with a serine (A405S). Using a novel mouse echocardiography plane, we found that mice bearing this JPH2 mutation developed increased subvalvular septal thickness. Cardiomyocytes from the septa of these mice displayed irregular TTs and abnormal Ca2+ handling including increased SERCA activity.
Collapse
Affiliation(s)
- Ann P Quick
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Andrew P Landstrom
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
| | - Qiongling Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Julia O Reynolds
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Giselle Barreto-Torres
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Viet Tran
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| | - Jordan Showell
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Leonne E Philippen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Shaine A Morris
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
| | - Darlene Skapura
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - J Martijn Bos
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Steen E Pedersen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
61
|
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol (Oxf) 2017; 219:346-361. [PMID: 27009502 PMCID: PMC5297868 DOI: 10.1111/apha.12681] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β-cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β-cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR-200 and miR-29 families) and insulin exocytosis in the differentiated state is controlled by miR-7, miR-375 and miR-335. MiR-33a and MiR-33b play crucial roles in cholesterol and lipid metabolism, whereas miR-103 and miR-107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR-1, miR-133, miR-206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR-365, miR-133, miR-455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.
Collapse
Affiliation(s)
- S. Vienberg
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - J. Geiger
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - S. Madsen
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - L. T. Dalgaard
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
62
|
de Gonzalo-Calvo D, Quezada M, Campuzano O, Perez-Serra A, Broncano J, Ayala R, Ramos M, Llorente-Cortes V, Blasco-Turrión S, Morales F, Gonzalez P, Brugada R, Mangas A, Toro R. Familial dilated cardiomyopathy: A multidisciplinary entity, from basic screening to novel circulating biomarkers. Int J Cardiol 2017; 228:870-880. [PMID: 27889554 DOI: 10.1016/j.ijcard.2016.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
|
63
|
Clinical significance of cathepsin L and cathepsin B in dilated cardiomyopathy. Mol Cell Biochem 2017; 428:139-147. [PMID: 28074340 DOI: 10.1007/s11010-016-2924-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Dysregulated expression of lysosomal cysteine cathepsins is associated with adverse cardiac remodeling, a characteristic of several cardiovascular diseases. However, the information regarding the role of cysteine cathepsin L (CTSL) and cathepsin B (CTSB) in dilated cardiomyopathy (DCM) is limited. The present study was aimed to investigate the expression of CTSL and CTSB in animal model of doxorubicin (doxo)-induced cardiomyopathy as well as in peripheral blood samples of DCM patients. Cardiac tissue sections from doxo-treated and control rats were used to study the expression of CTSL and CTSB by enzyme assay and immunohistochemistry (IHC). Peripheral blood mononuclear cells (PBMCs) isolated from DCM patients (n = 29) along with age-matched healthy controls (n = 28) were used to assay enzymatic activity of these cathepsins. Activities of these proteases were further correlated with echocardiographic parameters of DCM patients. A significant increase in CTSL activity and protein expression was observed with no changes in CTSB levels in doxo-treated rats as compared to controls. We also observed a drastic increase in the functional activity of cathepsin L+cathepsin B (CTSL+B), CTSL, and CTSB in DCM patients compared to controls (p ≤ 0.001). Increased levels of these proteases exhibited a statistically significant correlation with reduced left ventricular ejection fraction (LVEF) in DCM patients (ρ = -0.58, p = 0.01). For the first time, this study demonstrates a correlation between increased expression of CTSL and CTSB in PBMCs with severity of left ventricular dysfunction in DCM patients. Thus, these proteases may serve as blood-based biomarker of DCM and prove useful in its management.
Collapse
|
64
|
Lu Y, Zhu X, Li J, Fang R, Wang Z, Zhang J, Li K, Li X, Bai H, Yang Q, Ben J, Zhang H, Chen Q. Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem Pharmacol 2017; 123:40-51. [PMID: 27836671 DOI: 10.1016/j.bcp.2016.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
|
65
|
Association of LIM Domain 7 Gene Polymorphisms and Plasma Levels of LIM Domain 7 with Dilated Cardiomyopathy in a Chinese Population. Appl Biochem Biotechnol 2016; 182:885-897. [PMID: 27988857 DOI: 10.1007/s12010-016-2368-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023]
Abstract
The aim of our study was to investigate the potential association of mRNA expression and plasma levels of the LIM domain 7 (LMO7) gene with the pathogenesis of dilated cardiomyopathy (DCM). Two SNPs of the LMO7 gene were genotyped in 310 patients with DCM and 415 controls. Our results showed that SNP rs7986131 (p = 0.002, OR = 1.38, 95% CI = 1.12-1.71), but not SNP rs4884021, was associated with DCM in the Han Chinese population. Haplotype analysis showed that the haplotype GT was associated with increased DCM susceptibility while AC was a protective haplotype. The Cox multivariate survival analysis indicated that the rs7986131 TT genotype (HR 1.659, 95% CI = 1.122-2.454, p = 0.011) was an independent multivariate predictor for shorter overall survival in patients with DCM. LMO7 mRNA expression and plasma LMO7 levels were significantly decreased in DCM (p < 0.0001). Spearman correlation test revealed that the plasma LMO7 level was negatively associated with left ventricular end-diastolic diameter (r = -0.384, p = 0.01), left ventricular end-diastolic volume (r = -0.375, p = 0.012), and brain natriuretic peptide (r = -0.482, p = 0.001). Our study suggested that the LMO7 gene may play an important role in the pathogenesis of DCM in the Han Chinese population.
Collapse
|
66
|
Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, Pahl E, Vasan RS, Ramasubbu K, Rasmusson K, Towbin JA, Yancy C. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association. Circulation 2016; 134:e579-e646. [PMID: 27832612 DOI: 10.1161/cir.0000000000000455] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
67
|
Bakeet MAE, Mohamed MM, Allam AA, Gamal R. Childhood Cardiomyopathies: A Study in Tertiary Care Hospital in Upper Egypt. Electron Physician 2016; 8:3164-3169. [PMID: 28070248 PMCID: PMC5217807 DOI: 10.19082/3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
Introduction Cardiomyopathy (CMP) is defined by the World Health Organization (WHO) as a disease of the myocardium associated with cardiac dysfunction. An understanding of CMP is very important, as it is a common cause of heart failure in children, and the most common indication for heart transplantation in children older than one year, but data on CMP in Egypt are scarce. The aim of this study was to determine the number, risk factors, clinical presentation, complications and outcome of different types of childhood cardiomyopathies in Sohag University Hospital. Methods This cross-sectional hospital based study enrolled fifty children with Cardiomyopathy in Pediatric Departments, Neonatal Care Units, and Cardiac Outpatient Clinics in Sohag University Hospital from March 01, 2014 to February 28, 2015. Results Cases with Dilated Cardiomyopathy (DCMP) were 38 (76%), and those who had Hypertrophic Cardiomyopathy (HCMP) were 12 (24%). Dyspnea was the most common presenting complaint in 71% of cases. In cases with DCMP, the mean EF was 33.8, and FS was 17.11, while in cases with HCMP, the mean EF was 70.75, FS was 37. Fifty percent of cases were found to have moderate to severe PHT. Serum CK-MB was elevated in 3 (6%) cases, while serum Troponin I was elevated in 2 (4.2%) cases who diagnosed as having myocarditis. Viral myocarditis was the most common identified etiological agent responsible for 14 (37%) cases with DCMP. Conclusions CMP represents a considerable percentage of children with cardiac disorders. DCMP is the most common type, usually presented with congestive heart failure, and the most common cause is myocarditis. L-Carnitine profile was normal in all cases, despite its routine use. Pediatricians need to raise their clinical suspicion to CMPs, as atypical presentations are not uncommon. To do screening for other family members, cardiac enzymes (CK-MB, Troponin I) have to be done in all newly diagnosed CMP cases, along with a revision of the routine prescription of L-Carnitine.
Collapse
Affiliation(s)
| | | | - Ahmed Ahmed Allam
- M.D., Lecturer of Clinical Pathology, Faculty of Medicine, Sohag University, Egypt
| | - Rania Gamal
- M.D., Assistant Lecturer of Pediatrics, Faculty of Medicine, Sohag University, Egypt
| |
Collapse
|
68
|
Koh W, Wong C, Tang WHW. Genetic Predispositions to Heart Failure. CURRENT CARDIOVASCULAR RISK REPORTS 2016. [DOI: 10.1007/s12170-016-0525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
69
|
Rather RA, Dhawan V. Genetic markers: Potential candidates for cardiovascular disease. Int J Cardiol 2016; 220:914-923. [PMID: 27416153 DOI: 10.1016/j.ijcard.2016.06.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 02/07/2023]
Abstract
The effective prevention of cardiovascular disease depends upon the ability to recognize the high-risk individuals at an early stage of the disease or long before the development of adverse events. Evolving technologies in the fields of proteomics, metabolomics, and genomics have played a significant role in the discovery of cardiovascular biomarkers, but so far these methods have achieved the modest success. Hence, there is a crucial need for more reliable, suitable, and lasting diagnostic and therapeutic markers to screen the disease well in time to start the clinical aid to the patients. Gene polymorphisms associated with the cardiovascular disease play a decisive role in the disease onset. Therefore, the genetic marker evaluation to classify high-risk patients from low-risk patients trends an effective approach to patient management and care. Currently, there are no genetic markers available for extensive adoption as risk factors for coronary vascular disease, yet, there are numerous promising, biologically acceptable candidates. Many of these gene biomarkers, alone or in combination, can play an essential role in the prediction of cardiovascular risk. The present review highlights some putative emerging genetic biomarkers that could facilitate more authentic and fast diagnosis of CVD. This review also briefly describes few technological approaches employed in the biomarker search.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
70
|
Plaisance I, Perruchoud S, Fernandez-Tenorio M, Gonzales C, Ounzain S, Ruchat P, Nemir M, Niggli E, Pedrazzini T. Cardiomyocyte Lineage Specification in Adult Human Cardiac Precursor Cells Via Modulation of Enhancer-Associated Long Noncoding RNA Expression. JACC Basic Transl Sci 2016; 1:472-493. [PMID: 29707678 PMCID: PMC5916868 DOI: 10.1016/j.jacbts.2016.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human CPCs produce predominantly smooth muscle cells. CPCs can be redirected to the cardiomyocyte fate by transient activation followed by inhibition of NOTCH signaling. Inhibition of NOTCH signaling during differentiation represses MIR-143/145 expression and blocks smooth muscle differentiation. Expression of the microRNAs is under control of CARMEN, a long noncoding RNA associated with an enhancer located in the MIR-143/145 locus and target of NOTCH signaling. The CARMEN/MIR-145/143 locus represents a promising therapeutic target to favor production of cardiomyocytes in cell replacement therapies.
The mechanisms controlling differentiation in adult cardiac precursor cells (CPCs) are still largely unknown. In this study, CPCs isolated from the human heart were found to produce predominantly smooth muscle cells but could be redirected to the cardiomyocyte fate by transient activation followed by inhibition of NOTCH signaling. NOTCH inhibition repressed MIR-143/145 expression, and blocked smooth muscle differentiation. Expression of the microRNAs is under control of CARMEN, a long noncoding RNA associated with an enhancer located in the MIR-143/145 locus and target of NOTCH signaling. The CARMEN/MIR-145/143 axis represents, therefore, a promising target to favor production of cardiomyocytes in cell replacement therapies.
Collapse
Affiliation(s)
- Isabelle Plaisance
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Stéphanie Perruchoud
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | | | - Christine Gonzales
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Patrick Ruchat
- Department of Cardiovascular Surgery, University of Lausanne Medical School, Lausanne, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- Reprint requests and correspondence: Dr. Thierry Pedrazzini, Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
71
|
Abstract
Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy. [BMB Reports 2015; 48(10): 541-548]
Collapse
Affiliation(s)
- Youn Wook Chung
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seok-Min Kang
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722; Cardiology Division, Severance Cardiovascular Hospital, Seoul 03722; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul 03722, Korea
| |
Collapse
|
72
|
Wang M, Ding H, Kang J, Hu K, Lu W, Zhou X, Xu L. Association between polymorphisms of the HSPB7 gene and Cheyne-Stokes respiration with central sleep apnea in patients with dilated cardiomyopathy and congestive heart failure. Int J Cardiol 2016; 221:926-31. [PMID: 27441470 DOI: 10.1016/j.ijcard.2016.07.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND CSR-CSA is frequent in patients with CHF. Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background, yet one of the leading etiological causes of CHF. Studies have showed that the HSPB7 gene is associated with DCM. OBJECTIVES We aimed to explore the prevalence of polymorphisms of the HSPB7 gene in the Chinese Han population with CSR-CSA and CHF caused by DCM. METHODS A total of 503 unrelated subjects of the Chinese Han population, including 283 CHF patients caused by DCM and 220 healthy controls, were involved in the study. The CHF patients were classified as the CSA-CHF group and the non-CSA-CHF group according to the PSG parameters. The rs1739843 polymorphisms of the HSPB7 gene were identified by real-time quantitative polymerase chain reaction. RESULTS In the present study, 35.8% of CHF patients caused by DCM had CSR-CSA. Comparison demonstrated that the CSA-CHF group had significantly higher TT genotype and T allele frequencies in the rs1739843 single nucleotide polymorphism (SNP) of the HSPB7 gene. There were no significant differences among the CC genotype distribution of the CSA-CHF group and the non-CSA-CHF group or the control group. CONCLUSIONS The rs1739843 polymorphism of the HSPB7 gene might be involved in the pathogenesis of CSR-CSA and CHF subjects caused by DCM in the Chinese Han population. This finding was from a genetic search for the role of the HSPB7 gene in CSR-CSA of CHF patients caused by DCM.
Collapse
Affiliation(s)
- Mengmei Wang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| | - Hao Ding
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| | - Jing Kang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| | - Wen Lu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| | - Xiufang Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| | - Lifang Xu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No. 99, Wuhan 430060, China.
| |
Collapse
|
73
|
Akinrinade O, Alastalo TP, Koskenvuo J. Relevance of truncating titin mutations in dilated cardiomyopathy. Clin Genet 2016; 90:49-54. [DOI: 10.1111/cge.12741] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- O. Akinrinade
- Children's Hospital Helsinki, Pediatric Cardiology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - T.-P. Alastalo
- Children's Hospital Helsinki, Pediatric Cardiology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
- Blueprint Genetics; Helsinki Finland
| | - J.W. Koskenvuo
- Blueprint Genetics; Helsinki Finland
- Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center; Helsinki University Central Hospital and University of Helsinki; Helsinki Finland
| |
Collapse
|
74
|
Expressing an inhibitor of PLCβ1b sustains contractile function following pressure overload. J Mol Cell Cardiol 2016; 93:12-7. [PMID: 26906633 DOI: 10.1016/j.yjmcc.2016.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
Abstract
The activity of phospholipase Cβ1b (PLCβ1b) is selectively elevated in failing myocardium and cardiac expression of PLCβ1b causes contractile dysfunction. PLCβ1b can be selectively inhibited by expressing a peptide inhibitor that prevents sarcolemmal localization. The inhibitory peptide, PLCβ1b-CT was expressed in heart from a mini-gene using adeno-associated virus (rAAV6-PLCβ1b-CT). rAAV6-PLCβ1b-CT, or blank virus, was delivered IV (4×10(9)vg/g body weight) and trans-aortic-constriction (TAC) or sham-operation was performed 8weeks later. Expression of PLCβ1b-CT prevented the loss of contractile function, eliminated lung congestion and improved survival following TAC with either a 'moderate' or 'severe' pressure gradient. Hypertrophy was attenuated but not eliminated. Expression of the PLCβ1b-CT peptide 2-3weeks after TAC reduced contractile dysfunction and lung congestion, without limiting hypertrophy. PLCβ1b inhibition ameliorates pathological responses following acute pressure overload. The targeting of PLCβ1b to the sarcolemma provides the basis for the development of a new class of inotropic agent.
Collapse
|
75
|
Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, Miki K, Okita K, Yoshida Y, Shiina T, Ogasawara K, Miyagawa S, Toda K, Okuyama H, Sawa Y. Cardiomyocytes Derived from MHC-Homozygous Induced Pluripotent Stem Cells Exhibit Reduced Allogeneic Immunogenicity in MHC-Matched Non-human Primates. Stem Cell Reports 2016; 6:312-20. [PMID: 26905198 PMCID: PMC4788782 DOI: 10.1016/j.stemcr.2016.01.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can serve as a source of cardiomyocytes (CMs) to treat end-stage heart failure; however, transplantation of genetically dissimilar iPSCs even within species (allogeneic) can induce immune rejection. We hypothesized that this might be limited by matching the major histocompatibility complex (MHC) antigens between the donor and the recipient. We therefore transplanted fluorescence-labeled (GFP) iPSC-CMs donated from a macaque with homozygous MHC haplotypes into the subcutaneous tissue and hearts of macaques having heterozygous MHC haplotypes (MHC-matched; group I) or without identical MHC alleles (group II) in conjunction with immune suppression. Group I displayed a higher GFP intensity and less immune-cell infiltration in the graft than group II. However, MHC-matched transplantation with single or no immune-suppressive drugs still induced a substantial host immune response to the graft. Thus, the immunogenicity of allogeneic iPSC-CMs was reduced by MHC-matched transplantation although a requirement for appropriate immune suppression was retained for successful engraftment. Cardiomyocytes from iPSCs can treat heart disease iPSC-CMs were transplanted into MHC-matched or unmatched cynomolgus macacques Matched iPSC-CM grafts had better survival and less host rejection immune response Immunosuppression was still required for successful allogeneic iPSC-CM engraftment
Collapse
Affiliation(s)
- Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kashiyama
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Miki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Yoshinori Yoshida
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
76
|
A Development of Nucleic Chromatin Measurements as a New Prognostic Marker for Severe Chronic Heart Failure. PLoS One 2016; 11:e0148209. [PMID: 26845691 PMCID: PMC4742272 DOI: 10.1371/journal.pone.0148209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Background Accurate prediction of both mortality and morbidity is of significant importance, but it is challenging in patients with severe heart failure. It is especially difficult to detect the optimal time for implanting mechanical circulatory support devices in such patients. We aimed to analyze the morphometric ultrastructure of nuclear chromatin in cardiomyocytes by developing an original clinical histopathological method. Using this method, we developed a biomarker to predict poor outcome in patients with dilated cardiomyopathy (DCM). Methods and Results As a part of their diagnostic evaluation, 171 patients underwent endomyocardial biopsy (EMB). Of these, 63 patients diagnosed with DCM were included in this study. We used electron microscopic imaging of cardiomyocyte nuclei and an automated image analysis software program to assess whether it was possible to detect discontinuity of the nuclear periphery. Twelve months after EMB, all patients with a discontinuous nuclear periphery (Group A, n = 11) died from heart failure or underwent left ventricular assist device (VAD) implantation. In contrast, in patients with a continuous nuclear periphery (Group N, n = 52) only 7 patients (13%) underwent VAD implantation and there were no deaths (p<0.01). We then evaluated chromatin particle density (Nuc-CS) and chromatin thickness in the nuclear periphery (Per-CS) in Group N patients; these new parameters were able to identify patients with poor prognosis. Conclusions We developed novel morphometric methods based on cardiomyocyte nuclear chromatin that may provide pivotal information for early prediction of poor prognosis in patients with DCM.
Collapse
|
77
|
Al-Yacoub N, Shaheen R, Awad SM, Kunhi M, Dzimiri N, Nguyen HC, Xiong Y, Al-Buraiki J, Al-Habeeb W, Alkuraya FS, Poizat C. FBXO32, encoding a member of the SCF complex, is mutated in dilated cardiomyopathy. Genome Biol 2016; 17:2. [PMID: 26753747 PMCID: PMC4707779 DOI: 10.1186/s13059-015-0861-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/29/2015] [Indexed: 01/12/2023] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy causing systolic dysfunction and heart failure. Rare variants in more than 30 genes, mostly encoding sarcomeric proteins and proteins of the cytoskeleton, have been implicated in familial DCM to date. Yet, the majority of variants causing DCM remain to be identified. The goal of the study is to identify novel mutations causing familial dilated cardiomyopathy. Results We identify FBXO32 (ATROGIN 1), a member of the F-Box protein family, as a novel DCM-causing locus. The missense mutation affects a highly conserved amino acid and is predicted to severely impair binding to SCF proteins. This is validated by co-immunoprecipitation experiments from cells expressing the mutant protein and from human heart tissue from two of the affected patients. We also demonstrate that the hearts of the patients with the FBXO32 mutation show accumulation of selected proteins regulating autophagy. Conclusion Our results indicate that abnormal SCF activity with subsequent impairment of the autophagic flux due to a novel FBXO32 mutation is implicated in the pathogenesis of DCM. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0861-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadya Al-Yacoub
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Salma Mahmoud Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Nduna Dzimiri
- Cardiovascular & Pharmacogenetics, Genetics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jehad Al-Buraiki
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
78
|
Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects. Sci Rep 2016; 6:19248. [PMID: 26750556 PMCID: PMC4707500 DOI: 10.1038/srep19248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common group of major birth defects. Presently there are no clinically used biomarkers for prenatally detecting CHDs. Here, we performed a comprehensive maternal serum proteomics assessment, combined with immunoassays, for the discovery of non-invasive biomarkers for prenatal diagnosis of CHDs. A total of 370 women were included in this study. An isobaric tagging for relative and absolute quantification (iTRAQ) proteomic approach was used first to compare protein profiles in pooled serum collected from women who had CHD-possessing or normal fetuses, and 47 proteins displayed significant differential expressions. Targeted verifications were performed on 11 proteins using multiple reaction monitoring mass spectrometry (MRM-MS), and the resultant candidate biomarkers were then further validated using ELISA analysis. Finally, we identified a biomarker panel composed of 4 cytoskeletal proteins capable of differentiating CHD-pregnancies from normal ones [with an area under the receiver operating characteristic curve (AUC) of 0.938, P < 0.0001]. The discovery of cytoskeletal protein changes in maternal serum not only could help us in prenatal diagnosis of CHDs, but also may shed new light on CHD embryogenesis studies.
Collapse
|
79
|
Domingues JS, Vale MDP, Barbosa MP. Partial Left Ventriculectomy: Have Well-Succeeded Cases and Innovations in the Procedure Been Observed in the Last 12 Years? Braz J Cardiovasc Surg 2016; 30:579-85. [PMID: 26735606 PMCID: PMC4690664 DOI: 10.5935/1678-9741.20150061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/16/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE In 1996, the Brazilian cardiovascular surgeon, Dr. Randas Batista, introduced a
surgical technique called partial left ventriculectomy, where he admitted the
possibility of reducing the diameter of the left ventricle through the sectioning
of one section of its wall. After the publication of this study, thousands of case
reports and procedure analysis have been published, and due to several
disappointing results, many doctors and institutions failed to execute it. As the
main objective of this study, stands out the search for success cases of
ventriculectomy in the last 12 years and if during this period it was achieved
some significant development in this procedure that allows obtaining lower
mortality rate postoperatively. METHODS Systematic review of indexed scientific literature over the past 12 years and the
term "Partial Left Ventriculectomy". RESULTS There has been a considerable number of reported successful cases and highly
significant findings in regard to determining the most suitable region for the
section, proper selection of the patients indicated to the procedure, including
the influence of the coronary artery anatomy in the nomination procedure and the
need for preservation of ventricular geometry to ensure better quality of
ventricular contractions after the sectioning. CONCLUSION This surgical procedure has been successfully performed, mainly in Japan,
improvements in its efficiency were found and the need for a mathematical modeling
of the slice to be severed is a prominent factor in many studies.
Collapse
Affiliation(s)
- José Sérgio Domingues
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcos Pinotti Barbosa
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
80
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
81
|
|
82
|
Imaging in Deciphering Histological Substrates in Hypertrophic Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-015-9355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Mizuno Y, Uchinaka A, Horii Y, Mori S, Hamada Y, Miyagawa S, Saito A, Sawa Y, Matsuura N, Kawaguchi N. Improvement of cardiac function after implanting the osteopontin-derived peptide SVVYGLR in a hamster model of dilated cardiomyopathy. Interact Cardiovasc Thorac Surg 2015; 21:506-14. [DOI: 10.1093/icvts/ivv197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
|
84
|
Kimura A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet 2015; 61:41-50. [PMID: 26178429 DOI: 10.1038/jhg.2015.83] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
Cardiomyopathy is defined as a disease of functional impairment in the cardiac muscle and its etiology includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is called as primary cardiomyopathy of which two major clinical phenotypes are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Genetic approaches have revealed the disease genes for hereditary primary cardiomyopathy and functional studies have demonstrated that characteristic functional alterations induced by the disease-associated mutations are closely related to the clinical types, such that increased and decreased Ca(2+) sensitivities of muscle contraction are associated with HCM and DCM, respectively. In addition, recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere, respectively. Moreover, functional analysis of mutations in the other components of cardiac muscle have suggested that the altered response to metabolic stresses is associated with cardiomyopathy, further indicating the heterogeneity in the etiology and pathogenesis of cardiomyopathy.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
85
|
Akinrinade O, Ollila L, Vattulainen S, Tallila J, Gentile M, Salmenperä P, Koillinen H, Kaartinen M, Nieminen MS, Myllykangas S, Alastalo TP, Koskenvuo JW, Heliö T. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur Heart J 2015; 36:2327-37. [PMID: 26084686 PMCID: PMC4561350 DOI: 10.1093/eurheartj/ehv253] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022] Open
Abstract
Genetic analysis among patients with dilated cardiomyopathy (DCM) is becoming an important part of clinical assessment, as it is in hypertrophic cardiomyopathy (HCM). The genetics of DCM is complex and therefore next-generation sequencing strategies are essential when providing genetic diagnostics. To achieve maximum yield, the diagnostic approach should include comprehensive clinical phenotyping combined with high-quality, high-coverage deep sequencing of DCM-associated genes and clinical variant classification as a basis for defining true yield in genetic testing. Our study has combined a novel sequencing strategy and clinical interpretation to analyse the yield and genotype–phenotype correlations among well-phenotyped Finnish DCM patients. Aims Despite our increased understanding of the genetic basis of dilated cardiomyopathy (DCM), the clinical utility and yield of clinically meaningful findings of comprehensive next-generation sequencing (NGS)-based genetic diagnostics in DCM has been poorly described. We utilized a high-quality oligonucleotide-selective sequencing (OS-Seq)-based targeted sequencing panel to investigate the genetic landscape of DCM in Finnish population and to evaluate the utility of OS-Seq technology as a novel comprehensive diagnostic tool. Methods and results Using OS-Seq, we targeted and sequenced the coding regions and splice junctions of 101 genes associated with cardiomyopathies in 145 unrelated Finnish patients with DCM. We developed effective bioinformatic variant filtering strategy and implemented strict variant classification scheme to reveal diagnostic yield and genotype–phenotype correlations. Implemented OS-Seq technology provided high coverage of the target region (median coverage 410× and 99.42% of the nucleotides were sequenced at least 15× read depth). Diagnostic yield was 35.2% (familial 47.6% and sporadic 25.6%, P = 0.004) when both pathogenic and likely pathogenic variants are considered as disease causing. Of these, 20 (53%) were titin (TTN) truncations (non-sense and frameshift) affecting all TTN transcripts. TTN truncations accounted for 20.6% and 14.6% of the familial and sporadic DCM cases, respectively. Conclusion Panel-based, high-quality NGS enables high diagnostic yield especially in the familial form of DCM, and bioinformatic variant filtering is a reliable step in the process of interpretation of genomic data in a clinical setting.
Collapse
Affiliation(s)
- Oyediran Akinrinade
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Laura Ollila
- Heart and Lung Center HUCH, University of Helsinki, Helsinki, Finland
| | - Sanna Vattulainen
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | | - Hannele Koillinen
- Department of Genetics, University Hospital Helsinki, Helsinki, Finland
| | - Maija Kaartinen
- Heart and Lung Center HUCH, University of Helsinki, Helsinki, Finland
| | - Markku S Nieminen
- Heart and Lung Center HUCH, University of Helsinki, Helsinki, Finland
| | - Samuel Myllykangas
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland Blueprint Genetics, Helsinki, Finland
| | - Tero-Pekka Alastalo
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland Blueprint Genetics, Helsinki, Finland
| | - Juha W Koskenvuo
- Blueprint Genetics, Helsinki, Finland Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Tiina Heliö
- Heart and Lung Center HUCH, University of Helsinki, Helsinki, Finland
| |
Collapse
|
86
|
p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol 2015; 85:183-98. [PMID: 26055447 DOI: 10.1016/j.yjmcc.2015.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
The rates of death and disability caused by severe heart failure are still unacceptably high. There is evidence that the sterile inflammatory response has a critical role in the progression of cardiac remodeling in the failing heart. The p53 signaling pathway has been implicated in heart failure, but the pathological link between p53 and inflammation in the failing heart is largely unknown. Here we demonstrate a critical role of p53-induced inflammation in heart failure. Expression of p53 was increased in cardiac endothelial cells and bone marrow cells in response to pressure overload, leading to up-regulation of intercellular adhesion molecule-1 (ICAM1) expression by endothelial cells and integrin expression by bone marrow cells. Deletion of p53 from endothelial cells or bone marrow cells significantly reduced ICAM1 or integrin expression, respectively, as well as decreasing cardiac inflammation and ameliorating systolic dysfunction during pressure overload. Conversely, overexpression of p53 in bone marrow cells led to an increase of integrin expression and cardiac inflammation that reduced systolic function. Norepinephrine markedly increased p53 expression in endothelial cells and macrophages. Reducing β2-adrenergic receptor expression in endothelial cells or bone marrow cells attenuated cardiac inflammation and improved systolic dysfunction during pressure overload. These results suggest that activation of the sympathetic nervous system promotes cardiac inflammation by up-regulating ICAM1 and integrin expression via p53 signaling to exacerbate cardiac dysfunction. Inhibition of p53-induced inflammation may be a novel therapeutic strategy for heart failure.
Collapse
|
87
|
Mu Y, Jing R, Peter AK, Lange S, Lin L, Zhang J, Ouyang K, Fang X, Veevers J, Zhou X, Evans SM, Cheng H, Chen J. Cypher and Enigma homolog protein are essential for cardiac development and embryonic survival. J Am Heart Assoc 2015; 4:jah3966. [PMID: 25944877 PMCID: PMC4599425 DOI: 10.1161/jaha.115.001950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The striated muscle Z-line, a multiprotein complex at the boundary between sarcomeres, plays an integral role in maintaining striated muscle structure and function. Multiple Z-line-associated proteins have been identified and shown to play an increasingly important role in the pathogenesis of human cardiomyopathy. Cypher and its close homologue, Enigma homolog protein (ENH), are 2 Z-line proteins previously shown to be individually essential for maintenance of postnatal cardiac function and stability of the Z-line during muscle contraction, but dispensable for cardiac myofibrillogenesis and development. Methods and Results The current studies were designed to test whether Cypher and ENH play redundant roles during embryonic development. Here, we demonstrated that mice lacking both ENH and Cypher exhibited embryonic lethality and growth retardation. Lethality in double knockout embryos was associated with cardiac dilation and abnormal Z-line structure. In addition, when ENH was ablated in conjunction with selective ablation of either Cypher short isoforms (CypherS), or Cypher long isoforms (CypherL), only the latter resulted in embryonic lethality. Conclusions Cypher and ENH redundantly play an essential role in sustaining Z-line structure from the earliest stages of cardiac function, and are redundantly required to maintain normal embryonic heart function and embryonic viability.
Collapse
Affiliation(s)
- Yongxin Mu
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Ran Jing
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.) Xiangya Hospital, Central South University, Changsha, China (R.J., X.Z.)
| | - Angela K Peter
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Stephan Lange
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Lizhu Lin
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.) Department of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA (L.L., S.M.E.)
| | - Jianlin Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Kunfu Ouyang
- Key Laboratory of Chemical Genomics, Drug Discovery Center, Peking University Shenzhen Graduate School, Shenzhen, China (K.O.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Jennifer Veevers
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Xinmin Zhou
- Xiangya Hospital, Central South University, Changsha, China (R.J., X.Z.)
| | - Sylvia M Evans
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.) Department of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA (L.L., S.M.E.)
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China (H.C.)
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| |
Collapse
|
88
|
Sun J, Lu Y, Huang Y, Zhang L, Ma Y. Engineered heart tissue transplantation alters electrical-conduction function in rats with myocardial infarction. Life Sci 2015; 118:34-8. [PMID: 25445439 DOI: 10.1016/j.lfs.2014.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/19/2014] [Accepted: 10/05/2014] [Indexed: 11/26/2022]
Abstract
AIMS To investigate how affects electrical-conduction function following myocardial infarction (MI) in rats. MAIN METHODS Thirty SD rats of either sex (220-250 g) were anesthetized using chlorine hydrate and were randomly divided into three groups: control group, MI group and transplantation group. The field potential (FP) morphology and activation-conduction duration were recorded with microeletrode array techniques. KEY FINDINGS The MEA recorded clear FP morphology. Activation-conduction duration was (6.5 ± 2.12) ms in the control group, (17.5 ± 3.54) ms in the MI group, and (9.13 ± 1.31) ms in the transplantation group. SIGNIFICANCE EHT transplantation can improve electrical-conduction and function of MI rats.
Collapse
|
89
|
Hsieh YL, Tsai YL, Shibu MA, Su CC, Chung LC, Pai P, Kuo CH, Yeh YL, Viswanadha VP, Huang CY. ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation. Mol Cell Biochem 2015; 405:1-9. [PMID: 25869677 DOI: 10.1007/s11010-015-2389-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/26/2015] [Indexed: 01/19/2023]
Abstract
Cardiomyocyte hypertrophy is an adaptive response of heart to various stress conditions. During the period of stress accumulation, transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Our previous studies found that ZAK, a sterile alpha motif and leucine zipper containing kinase, was highly expressed in infarcted human hearts and demonstrated that overexpression of ZAK induced cardiac hypertrophy. This study evaluates, cellular events associated with the expression of two doxycycline (Dox) inducible Tet-on ZAK expression systems, a Tet-on ZAK WT (wild-type), and a Tet-on ZAK DN (mutant, Dominant-negative form) in H9c2 myoblast cells; Tet-on ZAK WT was found to increase cell size and hypertrophic marker BNP in a dose-dependent manner. To ascertain the mechanism of ZAK-mediated hypertrophy, expression analysis with various inhibitors of the related upstream and downstream proteins was performed. Tet-on ZAK WT expression triggered the p38 and JNK pathway and also activated the expression and nuclear translocation of p-GATA4 and p-c-Jun transcription factors, without the involvement of p-ERK or NFATc3. However, Tet-on ZAK DN showed no effect on the p38 and JNK signaling cascade. The results showed that the inhibitors of JNK1/2 and p38 significantly suppressed ZAK-induced BNP expression. The results show the role of ZAK and/or the ZAK downstream events such as JNK and p38 phosphorylation, c-Jun, and GATA-4 nuclear translocation in cardiac hypertrophy. ZAK and/or the ZAK downstream p38, and JNK pathway could therefore be potential targets to ameliorate cardiac hypertrophy symptoms in ZAK-overexpressed patients.
Collapse
Affiliation(s)
- You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.
Collapse
|
91
|
A novel de novo mutation of β-cardiac myosin heavy chain gene found in a twelve-year-old boy with hypertrophic cardiomyopathy. J Genet 2015; 93:557-60. [PMID: 25189259 DOI: 10.1007/s12041-014-0414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
92
|
Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, Bodine P, Schermuly RT, George I, Schulze PC, D'Armiento JM. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail 2015; 8:362-72. [PMID: 25669938 DOI: 10.1161/circheartfailure.114.001274] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The Wnt/β-catenin signaling pathway plays a central role during cardiac development and has been implicated in cardiac remodeling and aging. However, the role of Wnt modulators in this process is unknown. In this study, we examined the role of the Wnt signaling inhibitor secreted frizzled-related protein-1 (sFRP-1) in aged wild-type and sFRP-1-deficient mice. METHODS AND RESULTS sFRP-1 gene deletion mice were grossly normal with no difference in mortality but developed abnormal cardiac structure and dysfunction with progressive age. Ventricular dilation and hypertrophy in addition to deterioration of cardiac function and massive cardiac fibrosis, all features present in dilated cardiomyopathy, were observed in the aged sFRP-1 knockout mice. Loss of sFRP-1 led to increased expression of Wnt ligands (Wnt1, 3, 7b, and 16) and Wnt target genes (Wisp1 and Lef1) in aged hearts, which correlated with increased protein levels of β-catenin. Cardiac fibroblasts lacking endogenous sFRP-1 showed increased α-smooth muscle actin expression, higher cell proliferation rates, and increased collagen production consistent with the cardiac phenotype exhibited in aged sFRP-1 knockout mice. The clinical relevance of these findings was supported by the demonstration of decreased sFRP-1 gene expression and increased Wisp-1 levels in the left ventricles of patients with ischemic dilated cardiomyopathy and dilated cardiomyopathy. CONCLUSIONS This study identifies a novel role of sFRP-1 in age-related cardiac deterioration and fibrosis. Further exploration of this pathway will identify downstream molecules important in these processes and also suggest the potential use of Wnt signaling agents as therapeutic targets for age-related cardiovascular disorders in humans.
Collapse
Affiliation(s)
- Piotr Sklepkiewicz
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Takayuki Shiomi
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Rajbir Kaur
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Jie Sun
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Susan Kwon
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Becky Mercer
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Peter Bodine
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Ralph Theo Schermuly
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Isaac George
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - P Christian Schulze
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.)
| | - Jeanine M D'Armiento
- From the Center for Molecular Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY (P.S., T.S., R.K., J.S., S.K., B.M., J.M.D.); Women's Health Research Institute, Department of Osteoporosis, Wyeth Research, Collegeville, PA (P.B.); Max Planck Institute, Department of Pathophysiology and Pulmonary, Bad Nauheim, Germany (R.T.S.); Center for Advanced Cardiac Care, Columbia University Medical Center, New York, NY (C.S.); and Division of Cardiothoracic Surgery, Department of Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY (I.G.).
| |
Collapse
|
93
|
Ikeda U, Minamisawa M, Koyama J. Isolated left ventricular non-compaction cardiomyopathy in adults. J Cardiol 2015; 65:91-7. [DOI: 10.1016/j.jjcc.2014.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/28/2014] [Accepted: 10/06/2014] [Indexed: 01/14/2023]
|
94
|
Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf) 2015; 213:60-83. [PMID: 25362848 DOI: 10.1111/apha.12416] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Innovative, more stringent diagnostic and prognostic biomarkers and effective treatment options are needed to lessen its burden. In recent years, microRNAs have emerged as master regulators of gene expression - they bind to complementary sequences within the mRNAs of their target genes and inhibit their expression by either mRNA degradation or translational repression. microRNAs have been implicated in all major cellular processes, including cell cycle, differentiation and metabolism. Their unique mode of action, fine-tuning gene expression rather than turning genes on/off, and their ability to simultaneously regulate multiple elements of relevant pathways makes them enticing potential biomarkers and therapeutic targets. Indeed, cardiovascular patients have specific patterns of circulating microRNA levels, often early in the disease process. This article provides a systematic overview of the role of microRNAs in the pathophysiology, diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- A. Wronska
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| | - I. Kurkowska-Jastrzebska
- Department of Experimental and Clinical Pharmacology; Medical University of Warsaw; Warsaw Poland
- 2nd Department of Neurology; National Institute of Psychiatry and Neurology; Warsaw Poland
| | - G. Santulli
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| |
Collapse
|
95
|
Tariq M, Ware SM. Importance of genetic evaluation and testing in pediatric cardiomyopathy. World J Cardiol 2014; 6:1156-1165. [PMID: 25429328 PMCID: PMC4244613 DOI: 10.4330/wjc.v6.i11.1156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/29/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders that are responsible for significant morbidity and mortality. Phenotypes include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, left ventricular noncompaction and arrhythmogenic right ventricular cardiomyopathy. There is substantial evidence for a genetic contribution to pediatric cardiomyopathy. To date, more than 100 genes have been implicated in cardiomyopathy, but comprehensive genetic diagnosis has been problematic because of the large number of genes, the private nature of mutations, and difficulties in interpreting novel rare variants. This review will focus on current knowledge on the genetic etiologies of pediatric cardiomyopathy and their diagnostic relevance in clinical settings. Recent developments in sequencing technologies are greatly impacting the pace of gene discovery and clinical diagnosis. Understanding the genetic basis for pediatric cardiomyopathy and establishing genotype-phenotype correlations may help delineate the molecular and cellular events necessary to identify potential novel therapeutic targets for heart muscle dysfunction in children.
Collapse
|
96
|
Umbilical cord blood-derived mesenchymal stem cells: new therapeutic weapons for idiopathic dilated cardiomyopathy? Int J Cardiol 2014; 177:809-18. [PMID: 25305679 DOI: 10.1016/j.ijcard.2014.09.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
Dilated cardiomyopathy is the most frequent etiology of non-ischemic heart failure. In a majority of cases the causal mechanism is unknown, giving rise to the term 'idiopathic' dilated cardiomyopathy (IDCM). Major pathological derangements include patchy interstitial fibrosis, degenerated cardiomyocytes, and dilatation of the cardiac chambers, but recent evidence suggests that disease progression may also have the signature of cardiac endothelial dysfunction. As we better understand the molecular basis of IDCM, novel therapeutic approaches, mainly gene transfer and cell-based therapies, are being explored. Cells with regenerative potential have been extensively tested in cardiac diseases of ischemic origin in both pre-clinical and clinical settings. However, whether cell therapy has any clinical value in IDCM patients is still being evaluated. This article is a concise summary of cell therapy studies for IDCM, with a focus on recent advances that highlight the vascular potential exhibited by umbilical cord blood-derived mesenchymal stem cells (UCBMSCs). We also provide an overview of cardiac vasculature as a key regulator of subjacent myocardial integrity and function, and discuss the potential mechanisms of UCBMSC amelioration of IDCM myocardium. Consideration of these issues shows that these cells are conceivably new therapeutic agents for this complex and elusive human disorder.
Collapse
|
97
|
Abstract
Cardiomyopathies (ie, diseases of the heart muscle) are major causes of morbidity and mortality. A significant percentage of patients with cardiomyopathies have genetic-based, inheritable disease and, over the past 2 decades the genetic causes of these disorders have been increasingly discovered. The genes causing these disorders when they are mutated appear to encode proteins that frame a "final common pathway" for that specific disorder, but the specifics of the phenotype, including age of onset, severity, and outcome is variable for reasons not yet understood. The "final common pathways" for the classified forms of cardiomyopathy include the sarcomere in the primarily diastolic dysfunction disorders hypertrophic cardiomyopathy and restrictive cardiomyopathy, the linkage of the sarcomere and sarcolemma in the systolic dysfunction disorder dilated cardiomyopathy, and the desmosome in arrhythmogenic cardiomyopathy. Left ventricular noncompaction cardiomyopathy (LVNC) is an overlap disorder and it appears that any of these "final common pathways" can be involved depending on the specific form of LVNC. The genetics and mechanisms responsible for these clinical phenotypes will be described.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- The Heart Institute, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
98
|
Roh JI, Cheong C, Sung YH, Lee J, Oh J, Lee BS, Lee JE, Gho YS, Kim DK, Park CB, Lee JH, Lee JW, Kang SM, Lee HW. Perturbation of NCOA6 leads to dilated cardiomyopathy. Cell Rep 2014; 8:991-8. [PMID: 25131203 DOI: 10.1016/j.celrep.2014.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a progressive heart disease characterized by left ventricular dilation and contractile dysfunction. Although many candidate genes have been identified with mouse models, few of them have been shown to be associated with DCM in humans. Germline depletion of Ncoa6, a nuclear hormone receptor coactivator, leads to embryonic lethality and heart defects. However, it is unclear whether Ncoa6 mutations cause heart diseases in adults. Here, we report that two independent mouse models of NCOA6 dysfunction develop severe DCM with impaired mitochondrial function and reduced activity of peroxisome proliferator-activated receptor δ (PPARδ), an NCOA6 target critical for normal heart function. Sequencing of NCOA6-coding regions revealed three independent nonsynonymous mutations present in 5 of 50 (10%) patients with idiopathic DCM (iDCM). These data suggest that malfunction of NCOA6 can cause DCM in humans.
Collapse
Affiliation(s)
- Jae-Il Roh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea; Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, South Korea
| | - Cheolho Cheong
- Laboratory of Cellular Physiology and Immunology, Institut de Recherches Cliniques de Montréal, Montréal QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal QC H3T 1J4, Canada
| | - Young Hoon Sung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea; Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, South Korea
| | - Jeehyun Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea; Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, South Korea
| | - Jaewon Oh
- Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Beom Seob Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jong-Eun Lee
- DNA Link, Inc., Songpa-Gu, Seoul 138-736, South Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Gyeongbuk 790-784, South Korea
| | - Duk-Kyung Kim
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, South Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 443-380, South Korea
| | - Ji Hyun Lee
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul 120-752, South Korea
| | - Jae Woon Lee
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Seok-Min Kang
- Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 120-752, South Korea; Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea; Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, South Korea.
| |
Collapse
|
99
|
Mis-sesnse mutations in Tafazzin (TAZ) that escort to mild clinical symptoms of Barth syndrome is owed to the minimal inhibitory effect of the mutations on the enzyme function: In-silico evidence. Interdiscip Sci 2014; 7:21-35. [PMID: 25118650 DOI: 10.1007/s12539-013-0019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/24/2013] [Accepted: 11/06/2013] [Indexed: 01/16/2023]
Abstract
Tafazzin (EC 2.3.1.23) is a Phospholipid Transacylase involved in Cardiolipin remodeling on mitochondrial membrane and coded by TAZ gene (Cytogenetic Location: Xq28) in human. Its mutations cause Barth syndrome (MIM ID: #302060)/3-Methyl Glutaconyl Aciduria Type II, an inborn error of metabolism often leading to foetal or infantile fatality. Nevertheless, some mis-sense mutations result in mild clinical symptoms. To evaluate the rationale of mild symptoms and for an insight of Tafazzin active site, sequence based and structure based ramifications of wild and mutant Tafazzins were compared in-silico. Sequence based domain predictions, surface accessibilities on substitution & conserved catalytic sites with statistical drifts, as well as thermal stability changes for the mutations and the interaction analysis of Tafazzin were performed. Crystal structure of Tafazzin is not yet resolved experimentally, therefore 3D coordinates of Tafazzin and its mutants were spawned through homology modeling. Energetically minimized and structurally validated models were used for comparative docking simulations. We analyzed active site geometry of the models in addition to calculating overall substrate binding efficiencies for each of the enzyme-ligand complex deduced from binding energies instead of comparing only the docking scores. Also, individual binding energies of catalytic residues on conserved HX4D motif of Acyltransferase superfamily present in Tafazzins were estimated. This work elucidates the basis of mild symptoms in patients with mis-sense mutations, identifies the most pathogenic mutant among others in the study and also divulges the critical role of HX4D domain towards successful transacylation by Taffazin. The in-silico observations are in complete agreement with clinical findings reported for the patients with mutations.
Collapse
|
100
|
Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. Inborn errors of metabolism underlying primary immunodeficiencies. J Clin Immunol 2014; 34:753-71. [PMID: 25081841 DOI: 10.1007/s10875-014-0076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
Abstract
A number of inborn errors of metabolism (IEM) have been shown to result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity. These phenotypes are mostly caused by defects that affect the (i) quality or quantity of essential structural building blocks (e.g., nucleic acids, and amino acids), (ii) cellular energy economy (e.g., glucose metabolism), (iii) post-translational protein modification (e.g., glycosylation) or (iv) mitochondrial function. Presenting as multisystemic defects, they also affect innate or adaptive immunity, or both, and display various types of immune dysregulation. Specific and potentially curative therapies are available for some of these diseases, whereas targeted treatments capable of inducing clinical remission are available for others. We will herein review the pathogenesis, diagnosis, and treatment of primary immunodeficiencies (PIDs) due to underlying metabolic disorders.
Collapse
Affiliation(s)
- Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran,
| | | | | | | | | |
Collapse
|