51
|
Khacho P, Wang B, Ahlskog N, Hristova E, Bergeron R. Differential effects of N-acetyl-aspartyl-glutamate on synaptic and extrasynaptic NMDA receptors are subunit- and pH-dependent in the CA1 region of the mouse hippocampus. Neurobiol Dis 2015; 82:580-592. [PMID: 26303888 DOI: 10.1016/j.nbd.2015.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/30/2022] Open
Abstract
Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-d-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent subunit-specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR EPSCs, while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and pH. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions make NAAG a prime therapeutic agent for the treatment of ischemic events.
Collapse
Affiliation(s)
- Pamela Khacho
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Boyang Wang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nina Ahlskog
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Elitza Hristova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard Bergeron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Psychiatry, University of Ottawa, Ottawa, ON K1Z 7K4, Canada; Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada.
| |
Collapse
|
52
|
Wei R, Wang J, Xu Y, Yin B, He F, Du Y, Peng G, Luo B. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 2015; 301:168-77. [PMID: 26047730 DOI: 10.1016/j.neuroscience.2015.05.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/14/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Probenecid has been used for decades to treat gout, and recent studies have revealed it is also a specific inhibitor of the pannexin-1 channel. It has been reported that the pannexin-1 channel is involved in ischemic injury. Here, we investigated the neuroprotective effect and the possible mechanisms of action of probenecid in global cerebral ischemia/reperfusion (I/R) injury in rats. Twenty minutes of transient global cerebral I/R injury was induced using the four-vessel occlusion (4-VO) method in male Sprague-Dawley rats. Different doses of probenecid were administered intravenously, intraperitoneally, or by gavage before or after reperfusion. Probenecid via all three routes protected against CA1 neuronal death when given before reperfusion. This protective effect continued when probenecid was given at 2h after reperfusion, but not at 6h. Interestingly, the protective effect regained if probenecid was given continuously for 7days after reperfusion. The release of cathepsin B and overexpression of calpain-1 after reperfusion were inhibited, while the upregulation of Hsp70 was strengthened by probenecid pre-treatment. Furthermore, the activation and proliferation of microglia and astrocytes after I/R injury were suppressed by continuous given for 7days, but only partly by a single dose at 6h of reperfusion. Thus, our data indicate that probenecid protects against transient global cerebral I/R injury probably by inhibiting calpain-cathepsin pathway and the inflammatory reaction.
Collapse
Affiliation(s)
- R Wei
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - J Wang
- Department of Neurology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Y Xu
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Yin
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430000, China
| | - F He
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Y Du
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - G Peng
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Luo
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
53
|
Bravo D, Maturana CJ, Pelissier T, Hernández A, Constandil L. Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: Possible role on chronic pain. Pharmacol Res 2015. [PMID: 26211949 DOI: 10.1016/j.phrs.2015.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pannexin 1 (Panx1) is a glycoprotein that acts as a membrane channel in a wide variety of tissues in mammals. In the central nervous system (CNS) Panx1 is expressed in neurons, astrocytes and microglia, participating in the pathophysiology of some CNS diseases, such as epilepsy, anoxic depolarization after stroke and neuroinflammation. In these conditions Panx1 acts as an important modulator of the neuroinflammatory response, by secreting ATP, by interacting with the P2X7 receptor (P2X7R), and as an amplifier of NMDA receptor (NMDAR) currents, particularly in conditions of pathological neuronal hyperexcitability. Here, we briefly reviewed the current evidences that support the interaction of Panx1 with NMDAR and P2X7R in pathological contexts of the CNS, with special focus in recent data supporting that Panx1 is involved in chronic pain signaling by interacting with NMDAR in neurons and with P2X7R in glia. The participation of Panx1 in chronic pain constitutes a novel topic for research in the field of clinical neurosciences and a potential target for pharmacological interventions in chronic pain.
Collapse
Affiliation(s)
- D Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile; School of Kinesiology, Faculty of Sport, Health and Recreation, University Bernardo O'Higgins, Chile.
| | - C J Maturana
- Departamento de Fisiología, Pontificia Universidad Católica De Chile, Chile
| | - T Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile
| | - A Hernández
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| | - L Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| |
Collapse
|
54
|
Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke. PLoS One 2015; 10:e0122840. [PMID: 25822337 PMCID: PMC4379059 DOI: 10.1371/journal.pone.0122840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
The neuroprotective activity of conantokin-G (con-G), a naturally occurring antagonist of N-methyl-D-aspartate receptors (NMDAR), was neurologically and histologically compared in the core and peri-infarct regions after ischemia/reperfusion brain injury in male Sprague-Dawley rats. The contralateral regions served as robust internal controls. Intrathecal injection of con-G, post-middle carotid artery occlusion (MCAO), caused a dramatic decrease in brain infarct size and swelling at 4 hr, compared to 26 hr, and significant recovery of neurological deficits was observed at 26 hr. Administration of con-G facilitated neuronal recovery in the peri-infarct regions as observed by decreased neurodegeneration and diminished calcium microdeposits at 4 hr and 26 hr. Intact Microtubule Associated Protein (MAP2) staining and neuronal cytoarchitecture was observed in the peri-infarct regions of con-G treated rats at both timepoints. Con-G restored localization of GluN1 and GluN2B subunits in the neuronal soma, but not that of GluN2A, which was perinuclear in the peri-infarct regions at 4 hr and 26 hr. This suggests that molecular targeting of the GluN2B subunit has potential for reducing detrimental consequences of ischemia. Overall, the data demonstrated that stroke-induced NMDAR excitoxicity is ameliorated by con-G-mediated repair of neurological and neuroarchitectural deficits, as well as by reconstituting neuronal localization of GluN1 and GluN2B subunits in the peri-infarct region of the stroked brain.
Collapse
|
55
|
Li C, Meng L, Li X, Li D, Jiang LH. Non-NMDAR neuronal Ca2+–permeable channels in delayed neuronal death and as potential therapeutic targets for ischemic brain damage. Expert Opin Ther Targets 2015; 19:879-92. [DOI: 10.1517/14728222.2015.1021781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
56
|
Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal 2015; 8:ra17. [PMID: 25690012 DOI: 10.1126/scisignal.2005824] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.
Collapse
Affiliation(s)
- Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thibaud Parpaite
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephanie M Mutchler
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mykhaylo V Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Thu H Le
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
57
|
Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 2015; 12:21. [PMID: 25644504 PMCID: PMC4322456 DOI: 10.1186/s12974-015-0239-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 02/08/2023] Open
Abstract
An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1β cytokine into the mature interleukin-1β. Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required. Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Claudio Cardinali
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy. .,Department of Molecular Medicine, Sapienza University, Rome, 00185, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy. .,Department of Molecular Medicine, Sapienza University, Rome, 00185, Italy.
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, 60126, Italy.
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| |
Collapse
|
58
|
Thompson RJ. Pannexin channels and ischaemia. J Physiol 2014; 593:3463-70. [PMID: 25384783 DOI: 10.1113/jphysiol.2014.282426] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022] Open
Abstract
An ischaemic stroke occurs during loss of blood flow in the brain from the occlusion of a blood vessel. The ischaemia itself comprises a complex array of insults, including oxygen and glucose deprivation (OGD), glutamate excitotoxicity, acidification/hypercapnia, and loss of sheer forces. A substantial amount of knowledge has accumulated that define the excitotoxic cascade downstream of N-methyl-d-aspartate receptors (NMDARs). While the NMDAR can influence numerous downstream elements, one critical target during ischaemia is the ion channel, pannexin-1 (Panx1). The C-terminal region of Panx1 appears critical for its regulation under a host of physiological and pathological stimuli. We have shown using hippocampal brain slices that Panx1 is activated by NMDARs through Src family kinases. However, it is not yet certain if this involves direct phosphorylation of Panx1 or an allosteric interaction between the channel's C-terminal tail and Src. Interestingly, Panx1 opening during ischaemia and NMDAR over-activation is antagonized by an interfering peptide that comprises amino acids 305-318 of Panx1. Thus, targeting the activation of Panx1 by NMDARs and Src kinases is an attractive mechanism to reduce anoxic depolarizations and neuronal death.
Collapse
Affiliation(s)
- Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
59
|
Mondal P, Trigun SK. Pannexin1 as a novel cerebral target in pathogenesis of hepatic encephalopathy. Metab Brain Dis 2014; 29:1007-15. [PMID: 24807590 DOI: 10.1007/s11011-014-9556-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) represents a nervous system disorder caused due to liver dysfunction. HE is broadly classified as acute/overt and moderate-minimal HE. Since HE syndrome severely affects quality of life of the patients and it may be life threatening, it is important to develop effective therapeutic strategy against HE. Mainly ammonia neurotoxicity is considered accountable for HE. Increased level of ammonia in the brain activates glutamate-NMDA (N-methyl-D-aspartate) receptor (NMDAR) pathway leading to Ca(2+) influx, energy deficit and oxidative stress in the post synaptic neurons. Moreover, NMDAR blockage has been found to be a poor therapeutic option, as this neurotransmitter receptor plays important role in maintaining normal neurophysiology of the brain. Thus, searching new molecular players in HE pathogenesis is of current concern. There is an evolving concept about roles of the trans-membrane channels in the pathogenesis of a number of neurological complications. Pannexin1 (Panx1) is one of them and has been described to be implicated in stroke, epilepsy and ischemia. Importantly, the pathogenesis of these complications relates to some extent with NMDAR over activation. Thus, it is speculated that HE pathogenesis might also involve Panx1. Indeed, some recent observations in the animal models of HE provide support to this argument. Since opening of Panx1 channel is mostly associated with the neuronal dysfunctions, down regulation of this channel could serve as a relevant therapeutic strategy without producing any serious side effects. In the review article an attempt has been made to summarize the current information on implication of Panx1 in the brain disorders and its prospects for being examined as pharmacological target in HE pathogenesis.
Collapse
Affiliation(s)
- Papia Mondal
- Biochemistry Section Centre of Advanced Study in Zoology, Banaras Hindu university, Varanasi, 221005, India
| | | |
Collapse
|
60
|
Abstract
Pannexins (PANXs) are channel-forming proteins implicated in cellular communication through the secretion of biomolecules, such as ATP and glutamate. PANX1 and PANX3 are expressed in the male rat reproductive tract and their levels are regulated by androgens in the epididymis. There is currently no information on the regulation of the Panx1 promoter. The objective of the present study was to characterize the Panx1 promoter in order to understand its regulation in the epididymis. RNA ligase-mediated rapid amplification of cDNA ends identified three transcriptional start sites, at positions -443, -429, and -393. In silico analysis revealed that transcription was initiated downstream of binding sites for CREB and ETV4 transcription factors, in a CpG island context. To determine the importance of this region in gene transactivation, a 2-kb fragment of the promoter was cloned into a vector containing a luciferase reporter gene. Deletion constructs indicated that the highest transactivation levels were achieved with shorter constructs (-973 to -346 and -550 to -346). Electrophoretic mobility shift assay and supershifts indicated that both transcription factors were able to bind to the promoter region. Chromatin immunoprecipitation using rat caput epididymis cells confirmed the binding of ETV4 and CREB on the Panx1 promoter. Site mutation of either the ETV4 or CREB binding site decreased the transactivation of the reporter gene. Previous studies indicated that orchidectomy increased epididymal PANX1 levels. Likewise, we observed an increase in both ETV4 and CREB in orchidectomized rats. These results indicate that ETV4 and cAMP response elements play a role in the transcriptional regulation of Panx1 in the epididymis.
Collapse
Affiliation(s)
- Julie Dufresne
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Daniel G Cyr
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
61
|
Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci 2014; 15:3596-611. [PMID: 24583849 PMCID: PMC3975356 DOI: 10.3390/ijms15033596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 11/16/2022] Open
Abstract
Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses.
Collapse
|
62
|
Shestopalov VI, Slepak VZ. Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 2014; 5:23. [PMID: 24575045 PMCID: PMC3920106 DOI: 10.3389/fphys.2014.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/10/2014] [Indexed: 01/09/2023] Open
Abstract
Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K(+), Zn(2+), fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca(2+). Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these "danger signals" triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.
Collapse
Affiliation(s)
- Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine Miami, FL, USA ; Vavilov Institute of General Genetics, Moscow, Russian Federation, University of Miami Miller School of Medicine Miami, FL, USA
| | - Vladlen Z Slepak
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA ; Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|