51
|
Puik JR, Meijer LL, Le Large TY, Prado MM, Frampton AE, Kazemier G, Giovannetti E. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017; 18:1343-1358. [PMID: 28832247 DOI: 10.2217/pgs-2017-0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy originating from the biliary tract epithelium. Most patients are diagnosed at an advanced stage. Even after resection with curative intent, prognosis remains poor. Previous studies have reported the evolving role of miRNAs as novel biomarkers in cancer diagnosis, prognostication and chemotherapy response. Various miRNAs, such as miR-21, miR-26, miR-122 and miR-150, have been identified as possible blood-based biomarkers for noninvasive diagnosis of CCA. Moreover, epithelial-mesenchymal transition (EMT)- and angiogenesis-associated miRNAs have been implicated in tumor cell dissemination and are able to determine clinical outcome. In fact, miRNAs involved in cell survival might even determine chemotherapy response. This review provides an overview of known miRNAs as CCA-specific biomarkers.
Collapse
Affiliation(s)
- Jisce R Puik
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Laura L Meijer
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tessa Ys Le Large
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Laboratory of Experimental Oncology & Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
52
|
Kim J, Ryu JK, Lee SH, Kim YT. MicroRNA 141 Expression Is a Potential Prognostic Marker of Biliary Tract Cancers. Gut Liver 2017; 10:836-41. [PMID: 27172928 PMCID: PMC5003209 DOI: 10.5009/gnl15460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Background/Aims In recent years, a large number of micro-ribonucleic acids (miRNAs) have been identified as putative prognostic biomarkers for solid cancers because of their role in controlling the expression of oncogenes and tumor suppressor genes. The aim of this study was to verify the utility of miRNA 141 as a prognostic biomarker of biliary tract cancers. Methods From June 2010 to June 2012, common bile duct cancer tissue samples and matched noncancerous tissues from the ampulla of Vater were obtained from patients with biliary tract cancer undergoing endoscopic retrograde cholangiopancreatography. Using quantitative real-time polymerase chain reaction assays, we measured the mean relative expression levels of miRNA 141 in both groups of tissues. Overexpression of miRNA 141 was defined as a greater than 2-fold increase in expression levels as determined by the 2−ΔΔCt method. Results In a cohort of 38 patients with biliary tract cancers (seven gallbladder, 13 hilar, and 18 distal bile duct cancers), 26 patients (68.4%) were male, and the median age was 69.5 (52 to 85) years. Nineteen patients (50%) had undergone R0 resection procedures, including three Whipple operations, seven pylorus-preserving pancreaticoduodenectomies, six bile duct resections, and three extended lobectomies. Among the patients who had undergone R0 resection, the overexpression of miRNA 141 was significantly associated with shorter disease-free survival and a greater risk of angiolymphatic invasion. Among the patients who did not undergo R0 resection, miRNA 141 overexpression was significantly associated with reduced overall survival. Conclusions Overexpression of miRNA 141 is an indicator of a poor prognosis in patients with biliary tract cancer, suggesting that miRNA 141 may be a valuable prognostic biomarker of this disease.
Collapse
Affiliation(s)
- Jaihwan Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
53
|
Zheng B, Jeong S, Zhu Y, Chen L, Xia Q. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA). Oncotarget 2017; 8:100819-100830. [PMID: 29246025 PMCID: PMC5725067 DOI: 10.18632/oncotarget.19044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
The microRNAs are a group of 20 nucleotides-long non-coding RNAs. By binding to the 3'UTR region of target mRNA, microRNAs can perform extensive actions mediating gene expression at post-trancriptional stages. It makes microRNAs serve as very crucial regulators in various biological progress including carcinogenesis. Long non-coding RNAs, however, are a subgroup of RNA with the length of 200 nucleotides. Unlike microRNAs, long non-coding RNAs can form secondary of tertiary domain based on their length. With the ability of directly interacting with DNA, RNA, protein, long non-coding RNAs have promoting or inhibitive functions in gene expression regulation. Furthermore, the abnormal expression of certain long non-coding RNAs has roused people's interest in the role of long non-coding RNAs in tumorigenesis. Although the connection between microRNA/long non-coding RNA and CCA has been a hot field to researchers, the link between molecular mechanism and clinical outcome has been barely built. This review takes a retrospect at the latest researches on the link between microRNA/long non-coding RNA and cholangiocarcinoma and the potential of microRNA/long non-coding RNA serving as distinctive biomarkers for CCA in clinical practice.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yanjing Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
54
|
Overexpression of suppressor of zest 12 is associated with cervical node metastasis and unfavorable prognosis in tongue squamous cell carcinoma. Cancer Cell Int 2017; 17:26. [PMID: 28228691 PMCID: PMC5307854 DOI: 10.1186/s12935-017-0395-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/04/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Increased expression of suppressor of zest 12 (SUZ12), a core component of the polycomb repressive complex 2, contributes to human tumorigenesis and associates with patient prognosis. In the present study, we sought to investigate the expression of SUZ12 and its clinicopathological significance in primary tongue squamous cell carcinoma (TSCC). METHODS The expression of SUZ12 protein was determined by immunohistochemistry in clinical samples from a retrospective cohort of 72 patients with primary TSCC who were treated at our institution from Jan. 2007 to Dec. 2013. The potential associations between SUZ12 abundance and multiple clinicopathological parameters were assessed by Chi square test. Moreover, the effect of SUZ12 expression on patients' survival was further estimated by Kaplan-Meier and Cox regression analyses. RESULTS Our immunohistochemical staining data revealed aberrant overexpression of SUZ12 in a large subset of TSCC as compared to normal tongue mucosa. Elevated SUZ12 was found to be significantly associated with cervical nodes metastasis (P = 0.0325) and reduced overall as well as disease-free survival (Log-rank test, P = 0.0225, 0.0179, respectively). Both univariate and multivariate Cox regression analysis identified the expression status of SUZ12 (low/high) as an important independent prognostic factor for patients' survival. CONCLUSIONS Our data reveal that aberrant SUZ12 overexpression is associated with cervical nodes metastasis and reduced survival in TSCC. These findings suggest that SUZ12 might play critical roles during tongue tumorigenesis and serve as a novel biomarker with diagnostic and prognostic significance.
Collapse
|
55
|
The Emerging Role of miRNAs and Their Clinical Implication in Biliary Tract Cancer. Gastroenterol Res Pract 2016; 2016:9797410. [PMID: 28115929 PMCID: PMC5223017 DOI: 10.1155/2016/9797410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 12/04/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers are aggressive malignancies that include gallbladder cancer and tumors of intra- and extrahepatic ducts and have a poor prognosis. Surgical resection remains the main curative therapy. Nevertheless, numerous patients experience recurrence even after radical surgery. This scenario drives the research to identify biliary tract cancer biomarkers despite the limited progress that has been made. Recently, a large number of studies have demonstrated that deregulated expression of microRNAs is closely associated with cancer development and progression. In this review, we highlight the role and importance of microRNAs in biliary tract cancers with an emphasis on utilizing circulating microRNAs as potential biomarkers. Additionally, we report several single-nucleotide polymorphisms in microRNA genes that are associated with the susceptibility of biliary tract tumors.
Collapse
|
56
|
Relevance of MicroRNA200 Family and MicroRNA205 for Epithelial to Mesenchymal Transition and Clinical Outcome in Biliary Tract Cancer Patients. Int J Mol Sci 2016; 17:ijms17122053. [PMID: 27941621 PMCID: PMC5187853 DOI: 10.3390/ijms17122053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200 family (miR141, −200a/b/c, −429) and miR205 as well as the EMT-related proteins E-cadherin and vimentin in a panel of BTC cell lines and clinical specimens by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry, respectively. MicroRNA expression was correlated to (i) the expression patterns of E-cadherin and vimentin; (ii) clinicopathological characteristics; and (iii) survival data. MicroRNA-200 family and miR205 were expressed in all BTC cells and clinical specimens. E-cadherin and vimentin showed a mutually exclusive expression pattern in both, in vitro and in vivo. Expression of miR200 family members positively correlated with E-cadherin and negatively with vimentin expression in BTC cells and specimens. High expression of miR200 family members (but not miR205) and E-cadherin was associated with longer survival, while low miR200 family and high vimentin expression was a predictor of unfavorable survival. Overall, the current study demonstrates the relevance of the miR200 family in EMT of BTC tumors and suggests these miRs as predictors for positive outcome.
Collapse
|
57
|
Senfter D, Madlener S, Krupitza G, Mader RM. The microRNA-200 family: still much to discover. Biomol Concepts 2016; 7:311-319. [DOI: 10.1515/bmc-2016-0020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
AbstractIn the last decade, microRNAs (miRs or miRNAs) became of great interest in cancer research due to their multifunctional and active regulation in a variety of vital cellular processes. In this review, we discuss the miR-200 family, which is composed of five members (miR-141, miR-200a/200b/200c and miR-429). Although being among the best investigated miRNAs in the field, there are still many open issues. Here, we describe the potential role of miR-200 as prognostic and/or predictive biomarker, its influence on motility and cell migration as well as its role in epithelial to mesenchymal transition (EMT) and metastasis formation in different tumour types. Recent studies also demonstrated the influence of miR-200 on drug resistance and described a correlation between miR-200 expression levels and overall survival of patients. Despite intense research in this field, the full role of the miR-200 family in cancer progression and metastasis is not completely understood and seems to differ between different tumour types and different cellular backgrounds. To elucidate these differences further, a finer characterisation of the role of the individual miRNA-200 family members is currently under investigation.
Collapse
Affiliation(s)
- Daniel Senfter
- 1Department of Paediatrics, Molecular Neuro-Oncology Research Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sibylle Madlener
- 1Department of Paediatrics, Molecular Neuro-Oncology Research Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Georg Krupitza
- 2Institute of Clinical Pathology, Comprehensive Cancer Center of the Medical University of Vienna, A-1090 Vienna, Austria
| | - Robert M. Mader
- 3Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
58
|
BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research. Sci Rep 2016; 6:37140. [PMID: 27876826 PMCID: PMC5120305 DOI: 10.1038/srep37140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Reconstructing gene regulatory networks (GRNs) from gene expression data is a challenging problem. Existing GRN reconstruction algorithms can be broadly divided into model-free and model–based methods. Typically, model-free methods have high accuracy but are computation intensive whereas model-based methods are fast but less accurate. We propose Bayesian Gene Regulation Model Inference (BGRMI), a model-based method for inferring GRNs from time-course gene expression data. BGRMI uses a Bayesian framework to calculate the probability of different models of GRNs and a heuristic search strategy to scan the model space efficiently. Using benchmark datasets, we show that BGRMI has higher/comparable accuracy at a fraction of the computational cost of competing algorithms. Additionally, it can incorporate prior knowledge of potential gene regulation mechanisms and TF hetero-dimerization processes in the GRN reconstruction process. We incorporated existing ChIP-seq data and known protein interactions between TFs in BGRMI as sources of prior knowledge to reconstruct transcription regulatory networks of proliferating and differentiating breast cancer (BC) cells from time-course gene expression data. The reconstructed networks revealed key driver genes of proliferation and differentiation in BC cells. Some of these genes were not previously studied in the context of BC, but may have clinical relevance in BC treatment.
Collapse
|
59
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|
60
|
Bibi F, Naseer MI, Alvi SA, Yasir M, Jiman-Fatani AA, Sawan A, Abuzenadah AM, Al-Qahtani MH, Azhar EI. microRNA analysis of gastric cancer patients from Saudi Arabian population. BMC Genomics 2016; 17:751. [PMID: 27766962 PMCID: PMC5073958 DOI: 10.1186/s12864-016-3090-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The role of small non-coding microRNAs (miRNAs) in several types of cancer has been evident. However, its expression studies have never been performed in gastric cancer (GC) patients from Saudi population. First time this study was conducted to identify miRNAs that are differentially expressed in GC patients compared with normal controls. Methods We investigated the role of miRNAs in GC patients using formalin-fixed paraffin-embedded (FFPE) tissues of 34 samples from GC patients (early stage = 7 and late-stage = 26) and 15 from normal control. We have used miRNA microarray analysis and validated the results by Real-time quantitative PCR (RT-qPCR). Results We obtained data of 1082 expressed genes, from cancer tissues and noncancerous tissues (49 samples in total). Where 129 genes were up-regulated (P > 0.05) and 953 genes (P > 0.05) were down-regulated in 49 FFPE tissue samples. Only 33 miRNAs had significant expression in early and late-stage cancer tissues. After candidate miRNAs were selected, RT-qPCR further confirmed that four miRNAs (hsa-miR-200c-3p, hsa-miR-3613, hsa-miR-27b-3p, hsa-miR-4668-5p) were significantly aberrant in GC tissues compared to the normal gastric tissues. Conclusions In this study we provide miRNAs profile of GC where many miRNAs showed aberrant expression from normal tissues, suggesting their involvement in the development and progression of gastric cancer. In early and late-stage miR-200c-3p showed significant down regulation as compare to control samples. Many of miRNAs reported in our study showing up-regulation are new and not reported before may be due to population difference. In conclusion, our results suggest that miR-200c-3p had potential to use as diagnostic biomarker for distinguishing GC patients from normal individuals and can be used for diagnosis of cancer at early stage.
Collapse
Affiliation(s)
- Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
| | - Muhammad I Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sana Akhtar Alvi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Asif A Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Sawan
- Department of Anatomical Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
61
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
62
|
Goeppert B, Ernst C, Baer C, Roessler S, Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, Weichert W, Bähr M, Will R, Schirmacher P, Plass C, Weichenhan D. Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics 2016; 11:780-790. [PMID: 27593557 DOI: 10.1080/15592294.2016.1227899] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs.
Collapse
Affiliation(s)
| | - Christina Ernst
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Constance Baer
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | | | - Marcus Renner
- a Institute of Pathology, University Hospital Heidelberg , Germany
| | - Arianeb Mehrabi
- c Department of General , Visceral, and Transplantation Surgery, University Hospital Heidelberg , Germany
| | - Mohammadreza Hafezi
- c Department of General , Visceral, and Transplantation Surgery, University Hospital Heidelberg , Germany
| | - Anita Pathil
- d Department of Internal Medicine IV, Gastroenterology and Hepatology , University Hospital Heidelberg , Germany
| | - Arne Warth
- a Institute of Pathology, University Hospital Heidelberg , Germany
| | | | - Wilko Weichert
- e Technical University of Munich, University Hospital, Institute for General Pathology and Pathological Anatomy , Germany
| | - Marion Bähr
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Rainer Will
- f Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | | | - Christoph Plass
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Dieter Weichenhan
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
63
|
Sui CJ, Zhou YM, Shen WF, Dai BH, Lu JJ, Zhang MF, Yang JM. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J Mol Med (Berl) 2016; 94:1281-1296. [PMID: 27380494 DOI: 10.1007/s00109-016-1442-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in a variety of cancers. However, lncRNAs involved in hepatocellular carcinoma (HCC) initiation and progression remain largely unclear. In this study, we identified an lncRNA gradually increased during hepatocarcinogenesis (lncRNA-GIHCG) using publicly available microarray data. Our results further revealed that GIHCG is upregulated in HCC tissues in comparison with adjacent non-tumor tissues. High GIHCG expression is correlated with large tumor size, microvascular invasion, advanced BCLC stage, and poor survival of HCC patients. Functional experiments showed that GIHCG promotes HCC cells proliferation, migration, and invasion in vitro, and promotes xenografts growth and metastasis in vivo. Mechanistically, we demonstrated that GIHCG physically associates with EZH2 and the promoter of miR-200b/a/429, recruits EZH2 and DNMT1 to the miR-200b/a/429 promoter regions, upregulates histone H3K27 trimethylation and DNA methylation levels on the miR-200b/a/429 promoter, and dramatically silences miR-200b/a/429 expression. Furthermore, the biological functions of GIHCG on HCC are dependent on the silencing of miR-200b/a/429. Collectively, our results demonstrated the roles and functional mechanisms of GIHCG in HCC, and indicated GIHCG may act as a prognostic biomarker and potential therapeutic target for HCC. KEY MESSAGE: lncRNA-GIHCG is upregulated in HCC and associated with poor survival of patients. GIHCG significantly promotes tumor growth and metastasis of HCC. GIHCG physically associates with EZH2. GIHCG upregulates H3K27me3 and DNA methylation levels on the miR-200b/a/429 promoter. GIHCG epigenetically silences miR-200b/a/429 expression.
Collapse
Affiliation(s)
- Cheng-Jun Sui
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yan-Ming Zhou
- Department of Hepatobiliary & Pancreatovascular Surgery, First affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Wei-Feng Shen
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Bing-Hua Dai
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jiong-Jiong Lu
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Min-Feng Zhang
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jia-Mei Yang
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
64
|
Xiao P, Liu W, Zhou H. miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1. Mol Med Rep 2016; 14:1835-40. [PMID: 27356635 DOI: 10.3892/mmr.2016.5421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Distant metastasis of non-small cell lung cancer (NSCLC) leads to high postoperative recurrence and low long‑term survival rates. Deregulation of microRNA (miR)-200b has been demonstrated to be associated with NSCLC metastasis. However, the underlying molecular mechanism of miR‑200b in mediating NSCLC cell migration and invasion remains to be fully elucidated. In the current study, reverse transcription‑quantitative polymerase chain reaction data indicated that miR‑200b was significantly downregulated in several NSCLC cell lines, including A549, L78, H1229, H358 and H1650, compared with a normal human lung epithelial cell line, BEAS‑2B. Overexpression of miR‑200b significantly inhibited NSCLC cell migration and invasion. Bioinformatics analysis and a luciferase reporter assay were additionally conducted, which identified fascin actin‑bundling protein 1 (FSCN1) as a novel target of miR‑200b. In addition, miR‑200b negatively mediated the protein expression of FSCN1 in NSCLC H1229 cells. siRNA‑mediated FSCN1 inhibition also significantly inhibited the migration and invasion of H1229 cells. In addition, overexpression of FSCN1 effectively reversed the suppressive effect of miR‑200b overexpression on NSCLC cell migration and invasion. Accordingly, it is suggested that miR‑200b is able to inhibit the migration and invasion of NSCLC cells, partly at least, via targeting FSCN1. The current study provides novel insight into miR‑200 regulation in NSCLC metastasis.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Thoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Zhou
- Department of Medical Oncology, Tumor Hospital of Hunan, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
65
|
Zhang S, Zhang G, Liu J. Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS 2016; 124:649-58. [PMID: 27272214 DOI: 10.1111/apm.12555] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA PVT1 has been reported to be dysregulated and play vital roles in a variety of cancers. However, the functions and molecular mechanisms of PVT1 in cervical cancer remain unclear. The objective of this study was to investigate the expression, clinical significance, biological roles, and underlying functional mechanisms of PVT1 in cervical cancer. Our results revealed that PVT1 is upregulated in cervical cancer tissues. Enhanced expression of PVT1 is associated with larger tumor size, advanced International Federation of Gynecology and Obstetrics stage, and poor prognosis of cervical cancer patients. Using gain-of-function and loss-of-function approaches, we demonstrated that overexpression of PVT1 promotes cervical cancer cells proliferation, cell cycle progression and migration, and depletion of PVT1 inhibits cervical cancer cell proliferation, cell cycle progression, and migration. Mechanistically, we verified that PVT1 binds to EZH2, recruits EZH2 to the miR-200b promoter, increases histone H3K27 trimethylation level on the miR-200b promoter, and inhibits miR-200b expression. Furthermore, the effects of PVT1 on cervical cell proliferation and migration depend upon silencing of miR-200b. Taken together, our findings confirmed that PVT1 functions as an oncogene in cervical cancer and indicated that PVT1 is not only an important prognostic marker, but also a potential therapy target for cervical cancer.
Collapse
Affiliation(s)
- Shaorong Zhang
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Guanli Zhang
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Jingying Liu
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong Province, China
| |
Collapse
|
66
|
Li Y, Zeng C, Tu M, Jiang W, Dai Z, Hu Y, Deng Z, Xiao W. MicroRNA-200b acts as a tumor suppressor in osteosarcoma via targeting ZEB1. Onco Targets Ther 2016; 9:3101-11. [PMID: 27307751 PMCID: PMC4888717 DOI: 10.2147/ott.s96561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma is the most common type of cancer that develops in bone, mainly arising from the metaphysis of the long bones. MicroRNA (miR)-200b has been found to generally act as a tumor suppressor in multiple types of human cancers. However, the detailed role of miR-200b in osteosarcoma still remains to be fully understood. This study aimed to investigate the exact role of miR-200b in the progression of osteosarcoma and the underlying mechanism. Real-time reverse transcription-polymerase chain reaction data showed that miR-200b was significantly downregulated in osteosarcoma tissues compared to their matched adjacent nontumor tissues. Low miR-200b level was associated with the advanced clinical stage and positive distant metastasis. Besides, it was also downregulated in osteosarcoma cell lines (U2OS, Saos2, HOS, and MG63) compared to normal osteoblast cell line NHOst. In vitro study showed that restoration of miR-200b led to a significant decrease in proliferation, migration, and invasion of osteosarcoma cells. Moreover, ZEB1 was identified as a target gene of miR-200b, and its expression levels were negatively mediated by miR-200b in osteosarcoma cells. In addition, ZEB1 was significantly upregulated in osteosarcoma cells compared to the normal osteoblast cell line NHOst, and inhibition of ZEB1 expression also suppressed the proliferation, migration, and invasion in osteosarcoma cells. Finally, we showed that ZEB1 was frequently upregulated in osteosarcoma tissues compared to their matched adjacent normal tissues, and its expression was reversely correlated to the miR-200b levels in osteosarcoma tissues. Based on these findings, our study suggests that miR-200b inhibits the proliferation, migration, and invasion of osteosarcoma cells, probably via the inhibition of ZEB1 expression. Therefore, miR-200b/ZEB1 may become a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| | - Chao Zeng
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Tu
- Department of Orthopedics, Second People’s Hospital of Jingmen, Jingmen, Hubei, People’s Republic of China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, People’s Republic of China
| | - Zixun Dai
- Department of Orthopedics, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuling Hu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhenhan Deng
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
67
|
Howell JA, Khan SA. The role of miRNAs in cholangiocarcinoma. Hepat Oncol 2016; 3:167-180. [PMID: 30191036 PMCID: PMC6095304 DOI: 10.2217/hep-2015-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating malignancy with high mortality, in part due to the combination of late presentation, significant diagnostic challenges and limited effective treatment options. Late presentation and diagnosis contribute to the high mortality in CCA and there is an urgent unmet need for diagnostic and prognostic biomarkers to facilitate early diagnosis and treatment stratification to improve clinical outcomes. MiRs are small ncRNA molecules that regulate gene expression and modulate both tumor suppressive and oncogenic pathways. They have a well-defined role in carcinogenesis, including CCA. In this review, we outline the evidence for MiRs in the pathogenesis of CCA and their potential utility as diagnostic and prognostic biomarkers to guide clinical management.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, Level 10 QEQM Building, St Mary's Hospital Campus, Imperial College London, Praed Street, London, W2 1NY, UK
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria Pde, Fitzroy 3065, Victoria, Australia
| | - Shahid A Khan
- Department of Hepatology, Level 10 QEQM Building, St Mary's Hospital Campus, Imperial College London, Praed Street, London, W2 1NY, UK
- *Author for correspondence:
| |
Collapse
|
68
|
de Nigris F. Epigenetic regulators: Polycomb-miRNA circuits in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:697-704. [PMID: 26975854 DOI: 10.1016/j.bbagrm.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/09/2016] [Accepted: 03/10/2016] [Indexed: 01/23/2023]
Abstract
Polycomb group (PcG) proteins belong to a family of epigenetic modifiers and play a key role in dynamic control of their target genes. Several reports have found that aberrations in PcG-microRNA (miRNA) interplay in various cancer types often associated with poor clinical prognosis. This review discusses important PcG-miRNA molecular networks which act as critical interfaces between chromatin remodeling, and transcriptional and post-transcriptional regulation of their target genes in cancer. Moreover, here are discussed several compounds influencing the activity of PcG proteins entered in clinical arena for the treatment of solid tumors, multiple myeloma and B lymphomas, thus highlighting the therapeutic potential of targeting this protein family.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Biochemistry Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| |
Collapse
|
69
|
Cavalloni G, Peraldo-Neia C, Sassi F, Chiorino G, Sarotto I, Aglietta M, Leone F. Establishment of a patient-derived intrahepatic cholangiocarcinoma xenograft model with KRAS mutation. BMC Cancer 2016; 16:90. [PMID: 26868125 PMCID: PMC4750214 DOI: 10.1186/s12885-016-2136-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/07/2016] [Indexed: 12/30/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is an aggressive, highly lethal tumors and lacks of effective chemo and targeted therapies. Cell lines and animal models, even partially reflecting tumor characteristics, have limits to study ICC biology and drug response. In this work, we created and characterized a novel ICC patient-derived xenograft (PDX) model of Italian origin. Methods Seventeen primary ICC tumors derived from Italian patients were implanted into NOD (Non-Obese Diabetic)/Shi-SCID (severe combined immunodeficient) mice. To verify if the original tumor characteristics were maintained in PDX, immunohistochemical (cytokeratin 7, 17, 19, and epithelial membrane antigen) molecular (gene and microRNA expression profiling) and genetic analyses (comparative genomic hybridization array, and mutational analysis of the kinase domain of EGFR coding sequence, from exons 18 to 21, exons 2 to 4 of K-RAS, exons 2 to 4 of N-RAS, exons 9 and 20 of PI3KCA, and exon 15 of B-RAF) were performed after tumor stabilization. Results One out of 17 (5.8 %) tumors successfully engrafted in mice. A high molecular and genetic concordance between primary tumor (PR) and PDX was confirmed by the evaluation of biliary epithelial markers, tissue architecture, genetic aberrations (including K-RAS G12D mutation), and transcriptomic and microRNA profiles. Conclusions For the first time, we established a new ICC PDX model which reflects the histology and genetic characteristics of the primary tumor; this model could represent a valuable tool to understand the tumor biology and the progression of ICC as well as to develop novel therapies for ICC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2136-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy.
| | - Caterina Peraldo-Neia
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy.
| | - Francesco Sassi
- Unit of Molecular Pharmacology, Candiolo Cancer Institute-IRCCS, University of Turin Medical School, Candiolo, Italy.
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy.
| | - Ivana Sarotto
- Fondazione del Piemonte per l'Oncologia (FPO), Unit of Pathology, Candiolo Cancer Institute-IRCCS, Candiolo, Italy.
| | - Massimo Aglietta
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy. .,Oncology Department, Candiolo Cancer Institute-IRCCS, University of Turin Medical School, Candiolo, Italy.
| | - Francesco Leone
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy. .,Oncology Department, Candiolo Cancer Institute-IRCCS, University of Turin Medical School, Candiolo, Italy.
| |
Collapse
|
70
|
Ma T, Xue YX. MiRNA-200b Regulates RMP7-Induced Increases in Blood-Tumor Barrier Permeability by Targeting RhoA and ROCKII. Front Mol Neurosci 2016; 9:9. [PMID: 26903801 PMCID: PMC4742559 DOI: 10.3389/fnmol.2016.00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The primary goals of this study were to investigate the potential roles of miR-200b in regulating RMP7-induced increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect. Microarray analysis revealed 34 significantly deregulated miRNAs including miR-200b in the BTB as induced by RMP7 and 8 significantly up-regulated miRNAs in the BTB by RMP7. RMP7 induced tight junction (TJ) opening of the BTB, thereby increasing BTB permeability. Associated with this effect of RMP7 was a decrease in miR-200b expression within the human cerebral microvascular endothelial cells line hCMEC/D3 (ECs) of the BTB. Overexpression of miR-200b inhibited endothelial leakage and restored normal transendothelial electric resistance values. A simultaneous shift in occludin and claudin-5 distributions from insoluble to soluble fractions were observed to be significantly reduced. In addition, overexpression of miR-200b inhibited the relocation of occludin and claudin-5 from cellular borders into the cytoplasm as well as the production of stress fiber formation in GECs (ECs with U87 glioma cells co-culturing) of the BTB. MiR-200b silencing produced opposite results as that obtained from that of the miR-200b overexpression group. Overexpression of miR-200b was also associated with a down-regulation in RhoA and ROCKII expression, concomitant with a decrease in BTB permeability. Again, results which were opposite to that obtained with the miR-200b silencing group. We further found that miR-200b regulated BTB permeability by directly targeting RhoA and ROCKII. Collectively, these results suggest that miR-200b's contribution to the RMP7-induced increase in BTB permeability was associated with stress fiber formation and TJ disassembly as achieved by directly targeting RhoA and ROCKII.
Collapse
Affiliation(s)
- Teng Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| |
Collapse
|
71
|
Esparza-Baquer A, Labiano I, Bujanda L, Perugorria MJ, Banales JM. MicroRNAs in cholangiopathies: Potential diagnostic and therapeutic tools. Clin Res Hepatol Gastroenterol 2016; 40:15-27. [PMID: 26774196 DOI: 10.1016/j.clinre.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Cholangiopathies are the group of diseases targeting the bile duct epithelial cells (i.e. cholangiocytes). These disorders arise from different etiologies and represent a current diagnostic, prognostic and therapeutic challenge. Different molecular mechanisms participate in the development and progression of each type of biliary disease. However, microRNA deregulation is a common central event occurring in all of them that plays a key role in their pathogenesis. MicroRNAs are highly stable small non-coding RNAs present in cells, extracellular microvesicles and biofluids, representing valuable diagnostic tools and potential targets for therapy. In the following sections, the most novel and significant discoveries in this field are summarized and their potential clinical value is highlighted.
Collapse
Affiliation(s)
- Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - María J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
72
|
The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2016; 6:6472-98. [PMID: 25762624 PMCID: PMC4466628 DOI: 10.18632/oncotarget.3052] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a large family of small non-coding RNAs that negatively regulate protein-coding gene expression post-transcriptionally via base pairing between the 5′ seed region of a miRNA and the 3′ untranslated region (3′UTR) of a messenger RNA (mRNA). Recent evidence has supported the critical role that miRNAs play in many diseases including cancer. The miR-200 family consisting of 5 members (miR-200a, -200b, -200c, -141, -429) is an emerging miRNA family that has been shown to play crucial roles in cancer initiation and metastasis, and potentially be important for the diagnosis and treatment of cancer. While miR-200s were found to be critically involved in the metastatic colonization to the lungs in mouse mammary xenograft tumor models, a large number of studies demonstrated their strong suppressive effects on cell transformation, cancer cell proliferation, migration, invasion, tumor growth and metastasis. This review aims to discuss research findings about the role of the miR-200 family in cancer initiation, each step of cancer metastatic cascade, cancer diagnosis and treatment. A comprehensive summary of currently validated miR-200 targets is also presented. It is concluded that miR-200 family may serve as novel targets for the therapy of multiple types of cancer.
Collapse
|
73
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
74
|
Yu X, Li Z, Chan MTV, Wu WKK. microRNA deregulation in keloids: an opportunity for clinical intervention? Cell Prolif 2015; 48:626-30. [PMID: 26486103 DOI: 10.1111/cpr.12225] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/08/2015] [Indexed: 12/12/2022] Open
Abstract
Keloids are defined as benign dermal scars invading adjacent healthy tissue, characterized by aberrant fibroblast dynamics and overproduction of extracellular matrix. However, the aetiology and molecular mechanism of keloid production remain poorly understood. Recent discoveries have shed new light on the involvement of a class of non-coding RNAs known as microRNAs (miRNA), in keloid formation. A number of miRNAs have differential expression in keloid tissues and keloid-derived fibroblasts. These miRNAs have been characterized as novel regulators of cellular processes pertinent to wound healing, including extracellular matrix deposition and fibroblast proliferation. Delineating the functional significance of miRNA deregulation may help us better understand pathogenesis of keloids, and promote development of miRNA-directed therapeutics against this condition.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
75
|
Liu XY, Liu ZJ, He H, Zhang C, Wang YL. MicroRNA-101-3p suppresses cell proliferation, invasion and enhances chemotherapeutic sensitivity in salivary gland adenoid cystic carcinoma by targeting Pim-1. Am J Cancer Res 2015; 5:3015-3029. [PMID: 26693056 PMCID: PMC4656727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in carcinogenesis and tumor progression. Recent research has revealed miR-101-3p as an important regulator in several cancers. Nevertheless, its function in salivary gland Adenoid cystic carcinoma (ACC), a relatively rare malignance with poor long-term survival rate arisen in head and neck region, remain unknown. In this study, down-regulated miR-101-3p expression was detected in ACC tissues and ACC cell lines with high potential for metastasis. Ectopic expression of miR-101-3p significantly repressed the invasion, proliferation, colony formation, and formation of nude mice xenografts and induced potent apoptosis in ACC cell lines. The provirus integration site for Moloney murine leukemia virus 1 (Pim-1) oncogene was subsequently confirmed as a direct target gene of miR-101-3p in ACC. Functional restoration assays revealed that miR-101-3p inhibits cell growth and invasion by directly decreasing Pim-1 expression. Protein levels of Survivin, Cyclin D1 and β-catenin were also down-regulated by miR-101-3p. miR-101-3p enhanced the sensitivity of cisplatin in ACC cell lines. Taken together, our results demonstrate that the novel miR-101-3p/Pim-1 axis provides excellent insights into the carcinogenesis and tumor progression of ACC and may be a promising therapeutic target for this type of cancer.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan, China
| | - Zhi-Jian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan, China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan UniversityWuhan, China
| | - Chen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan, China
| | - Yun-Long Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan, China
| |
Collapse
|
76
|
Guo L, Wang J, Yang P, Lu Q, Zhang T, Yang Y. MicroRNA-200 promotes lung cancer cell growth through FOG2-independent AKT activation. IUBMB Life 2015; 67:720-5. [PMID: 26314828 DOI: 10.1002/iub.1412] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022]
Abstract
MicroRNA-200 (miR-200) has emerged as a regulator of the PI3K/AKT pathway and cancer cell growth. It was reported that miR-200 can activate PI3K/AKT by targeting FOG2 (friend of GATA 2), which directly binds to the p85α regulatory subunit of PI3K. We found that miR-200 was elevated in early stage lung adenocarcinomas when compared with normal lung tissues, and the expression of miR-200 promoted the tumor spheroid growth of lung adenocarcinoma cells. We show that AKT activation was essential for such oncogenic action of miR-200. However, depletion of FOG2 had little effect on AKT activation. By performing a reverse-phase protein array, we found that miR-200 not only activated AKT but also concomitantly inactivated S6K and increased IRS-1, an S6K substrate that is increased on S6K inactivation. Depletion of IRS-1 partially inhibited the miR-200-dependent AKT activation. Taken together, our results suggest that miR-200 may activate AKT in lung adenocarcinoma cells through a FOG2-independent mechanism involving IRS-1. Our findings also provide evidence that increased miR-200 expression may contribute to early lung tumorigenesis and that AKT inhibitors may be useful for the treatment of miR-200-dependent tumor cell growth.
Collapse
Affiliation(s)
- Lixia Guo
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jingyu Wang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ping Yang
- Division of Health Sciences, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Qiang Lu
- Division of Health Sciences, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ting Zhang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
77
|
Wang N, Xia S, Chen K, Xiang X, Zhu A. Genetic alteration regulated by microRNAs in biliary tract cancers. Crit Rev Oncol Hematol 2015; 96:262-73. [PMID: 26095617 DOI: 10.1016/j.critrevonc.2015.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 04/26/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
Biliary tract cancers (BTCs) constitute a relatively rare but highly malignant class of tumors with poor prognosis including gallbladder cancer, intra- and extra-hepatic cholangiocarcinoma. Recently, accumulated evidences have demonstrated that deregulated expression of microRNAs (miRNAs) is closely associated with the development, invasion, metastasis and prognosis of different cancers including BTCs. MiRNAs comprise an endogenously expressed and highly evolutionarily conserved group of small, non-coding, single-stranded RNAs which negatively regulate target genes expression by means of combining with 3' untranslated region (UTR) of corresponding mRNAs at the post-transcriptional level with significant roles in various fundamental cellular procedures including cell proliferation, differentiation, migration, cell cycle control and apoptosis. Recent studies have indicated that miRNAs could function as novel tumor-promoting genes or tumor suppressor genes to act as potential therapeutic targets in anticancer treatment because the genetic alteration regulated by miRNAs could result in tumorigenesis and tumor inhibition. Anomalous miRNAs expression patterns, acting as phenotypic signatures of distinct cancers, are promising to be used as diagnostic, prognostic, predictive biomarkers. In this review, we summarize the current findings from the studies about potential genetic alteration regulated by miRNAs and their roles in BTCs.
Collapse
Affiliation(s)
- Ning Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Xiaohui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China.
| | - Aijun Zhu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China.
| |
Collapse
|
78
|
Plieskatt J, Rinaldi G, Feng Y, Peng J, Easley S, Jia X, Potriquet J, Pairojkul C, Bhudhisawasdi V, Sripa B, Brindley PJ, Bethony J, Mulvenna J. A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma. BMC Cancer 2015; 15:309. [PMID: 25903557 PMCID: PMC4417245 DOI: 10.1186/s12885-015-1270-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive tumor of the bile duct, and a significant public health problem in East Asia, where it is associated with infection by the parasite Opisthorchis viverrini. ICC is often detected at an advanced stage and with a poor prognosis, making a biomarker for early detection a priority. METHODS We have comprehensively profiled miRNA expression levels in ICC tumor tissue using small RNA-Seq and validated these profiles using quantitative PCR on matched plasma samples. RESULTS Distinct miRNA profiles were associated with increasing histological differentiation of ICC tumor tissue. We also observed that histologically normal tissue adjacent to ICC tumor displayed miRNA expression profiles more similar to tumor than liver tissue from healthy donors. In plasma samples, an eight-miRNA signature associated with ICC, regardless of the degree of histological differentiation of its matched tissue, forming the basis of a circulating miRNA-based biomarker for ICC. CONCLUSIONS The association of unique miRNA profiles with different ICC subtypes suggests the involvement of specific miRNAs during ICC tumor progression. In plasma, an eight-miRNA signature associated with ICC could form the foundation of an accessible (plasma-based) miRNA-based biomarker for the early detection of ICC.
Collapse
Affiliation(s)
- Jordan Plieskatt
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Yanjun Feng
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Jin Peng
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Samantha Easley
- Department of Pathology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Xinying Jia
- QIMR Berghofer Medical Research Institute, Infectious Disease and Cancer, Brisbane, Queensland, 4006, Australia.
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Infectious Disease and Cancer, Brisbane, Queensland, 4006, Australia.
| | | | | | - Banchob Sripa
- Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Infectious Disease and Cancer, Brisbane, Queensland, 4006, Australia.
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
79
|
Gradilone SA, O’Hara SP, Masyuk TV, Pisarello MJL, LaRusso NF. MicroRNAs and benign biliary tract diseases. Semin Liver Dis 2015; 35:26-35. [PMID: 25632932 PMCID: PMC4413449 DOI: 10.1055/s-0034-1397346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholangiocytes, the epithelial cells lining the biliary tree, represent only a small portion of the total liver cell population (3-5%), but they are responsible for the secretion of up to 40% of total daily bile volume. In addition, cholangiocytes are the target of a diverse group of liver diseases affecting the biliary tract, the cholangiopathies; for most of these conditions, the pathological mechanisms are unclear. MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression. Thus, it is not surprising that altered miRNA profiles underlie the dysregulation of several proteins involved in the pathobiology of the cholangiopathies, as well as showing promise as diagnostic and prognostic tools. Here the authors review recent work relevant to the role of miRNAs in the etiopathogenesis of several of the cholangiopathies (i.e., fibroinflammatory cholangiopathies and polycystic liver diseases), discuss their value as prognostic and diagnostic tools, and provide suggestions for further research.
Collapse
Affiliation(s)
- Sergio A. Gradilone
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota,The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Tetyana V. Masyuk
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Maria Jose Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
80
|
Maemura K, Natsugoe S, Takao S. Molecular mechanism of cholangiocarcinoma carcinogenesis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:754-760. [DOI: 10.1002/jhbp.126] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Sonshin Takao
- Center for Biomedical Science and Swine Research; Kagoshima University; 8-35-1 Sakuragaoka Kagoshima 890-8520 Japan
| |
Collapse
|
81
|
O’Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. MicroRNAs in Cholangiopathies. CURRENT PATHOBIOLOGY REPORTS 2014; 2:133-142. [PMID: 25097819 PMCID: PMC4119442 DOI: 10.1007/s40139-014-0048-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholangiocytes, the cells lining bile ducts, comprise a small fraction of the total cellular component of the liver, yet perform the essential role of bile modification and transport of biliary and blood constituents. Cholangiopathies are a diverse group of biliary disorders with the cholangiocyte as the target cell; the etiopathogenesis of most cholangiopathies remains obscure. MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. These small RNAs may not only be involved in the etiopathogenesis of disease, but are showing promise as diagnostic and prognostic tools. In this brief review, we summarize recent work regarding the role of microRNAs in the etiopathogenesis of several cholangiopathies, and discuss their utility as prognostic and diagnostic tools.
Collapse
Affiliation(s)
- Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sergio A. Gradilone
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tetyana V. Masyuk
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James H. Tabibian
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
82
|
Chen X, Chen J, Liu X, Guo Z, Sun X, Zhang J. The real-time dynamic monitoring of microRNA function in cholangiocarcinoma. PLoS One 2014; 9:e99431. [PMID: 24918778 PMCID: PMC4053425 DOI: 10.1371/journal.pone.0099431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/11/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although many studies have confirmed a relationship between microRNAs (miRNAs) and cholangiocarcinoma (CCA), the real-time dynamics of miRNA function have not been examined. METHODS miRNA reporter constructs were generated using a recombinant adeno-associated virus vector, which contained complementary sequences for six miRNAs (miR-200a, miR-200b, miR-21, miR-146a, miR-155, and miR-221), along with two independent expression cassettes encoding the fluorescent reporter genes Fluc and Gluc. The spatio-temporal function of each miRNA was monitored both in CCA and control tissues. RESULTS All miRNAs participated in CCA development, with distinct patterns of expression over time. The activity of miR-21 was significantly lower in female T3N0M0 CCA tissue relative to controls at three time points, yet was higher in two male T3N1M0 CCA tissues. The difference in miR-200b function between two male T3N1M0 CCA tissues and their corresponding controls peaked at 24 h, while function in a female T3N0M0 CCA was detected only at 72 h. The four remaining miRNAs (miR-200a, miR146a, miR-155, and miR-221) displayed patient-specific activity patterns in both CCA and control tissues. CONCLUSION Significant variability was observed in the temporal function of all six miRNAs, which may play an important role in the development of CCA.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Gastroenterology, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zihao Guo
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxin Sun
- Department of Gastroenterology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Gastroenterology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
83
|
Wang Z, Humphries B, Xiao H, Jiang Y, Yang C. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation. J Biol Chem 2014; 289:18373-86. [PMID: 24841200 DOI: 10.1074/jbc.m114.554246] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3'-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation.
Collapse
Affiliation(s)
- Zhishan Wang
- From the Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Brock Humphries
- From the Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Hua Xiao
- From the Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Yiguo Jiang
- the Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182, China, and
| | - Chengfeng Yang
- From the Department of Physiology, Michigan State University, East Lansing, Michigan 48824, the Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
84
|
Lu YX, Yuan L, Xue XL, Zhou M, Liu Y, Zhang C, Li JP, Zheng L, Hong M, Li XN. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin Cancer Res 2014; 20:2631-42. [PMID: 24658157 DOI: 10.1158/1078-0432.ccr-13-2348] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To elucidate a novel mechanism of miR-200c in the regulation of stemness, growth, and metastasis in colorectal carcinoma (CRC). EXPERIMENTAL DESIGN Quantitative reverse transcription PCR was used to quantify miR-200c expression in CRC cell lines and tissues. A luciferase assay was adopted for the target evaluation. The functional effects of miR-200c in CRC cells were assessed by its forced or inhibited expression using lentiviruses. RESULTS MiR-200c was statistically lower in CRC clinical specimens and highly metastatic CRC cell lines compared with their counterparts. Sox2 was validated as a target for miR-200c. The knockdown of miR-200c significantly enhanced proliferation, migration, and invasion in CRC cell lines, whereas the upregulation of miR-200c exhibited an inverse effect. Moreover, rescue of Sox2 expression could abolish the effect of the upregulation of miR-200c. In addition, the reduction of miR-200c increased the expression of CRC stem cell markers and the sphere-forming capacity of CRC cell lines. Further study has shown that miR-200c and Sox2 reciprocally control their expression through a feedback loop. MiR-200c suppresses the expression of Sox2 to block the activity of the phosphoinositide 3-kinase (PI3K)-AKT pathway. CONCLUSION Our findings indicate that miR-200c regulates Sox2 expression through a feedback loop and is associated with CRC stemness, growth, and metastasis.
Collapse
Affiliation(s)
- Yan-Xia Lu
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yuan
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lei Xue
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhou
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Liu
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaAuthors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Ping Li
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Hong
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Nong Li
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
85
|
Bouyssou JMC, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta Rev Cancer 2014; 1845:255-65. [PMID: 24569228 DOI: 10.1016/j.bbcan.2014.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind to specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process.
Collapse
Affiliation(s)
- Juliette M C Bouyssou
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA; Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Salomon Manier
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Daisy Huynh
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Samar Issa
- Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA.
| |
Collapse
|
86
|
Haga H, Yan I, Takahashi K, Wood J, Patel T. Emerging insights into the role of microRNAs in the pathogenesis of cholangiocarcinoma. Gene Expr 2014; 16:93-9. [PMID: 24801170 PMCID: PMC4166576 DOI: 10.3727/105221614x13919976902174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The microRNAs (miRNAs) are small noncoding RNAs that are potent regulators of gene expression and can regulate several diverse biological functions. This minireview provides an overview of recent studies that have examined the role and involvement of miRNAs in cholangiocarcinomas. These studies provide evidence for deregulated expression of miRNA and are providing new insights into the potential contribution of these in the pathogenesis of cholangiocarcinoma.
Collapse
|