51
|
Yam XY, Birago C, Fratini F, Di Girolamo F, Raggi C, Sargiacomo M, Bachi A, Berry L, Fall G, Currà C, Pizzi E, Breton CB, Ponzi M. Proteomic analysis of detergent-resistant membrane microdomains in trophozoite blood stage of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2013; 12:3948-61. [PMID: 24045696 DOI: 10.1074/mcp.m113.029272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum.
Collapse
Affiliation(s)
- Xue Yan Yam
- University Montpellier II, CNRS UMR 5235, 34095 Montpellier, Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, Wu X, Zhang Y, Ma H, Huang D, Li W, Xia Z, Han J. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 2013; 288:16247-16261. [PMID: 23612963 DOI: 10.1074/jbc.m112.435545] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor interacting protein 3 (RIP3) is a protein kinase essential for TNF-induced necroptosis. Phosphorylation on Ser-227 in human RIP3 (hRIP3) is required for its interaction with human mixed lineage kinase domain-like (MLKL) in the necrosome, a signaling complex induced by TNF stimulation. RIP1 and RIP3 mediate necrosome aggregation leading to the formation of amyloid-like signaling complexes. We found that TNF induces Thr-231 and Ser-232 phosphorylation in mouse RIP3 (mRIP3) and this phosphorylation is required for mRIP3 to interact with mMLKL. Ser-232 in mRIP3 corresponds to Ser-227 in hRIP3, whereas Thr-231 is not conserved in hRIP3. Although the RIP3-MLKL interaction is required for necroptosis in both human and mouse cells, hRIP3 does not interact with mMLKL and mRIP3 cannot bind to hMLKL. The species specificity of the RIP3-MLKL interaction is primarily determined by the sequence differences in the phosphorylation sites and the flanking sequence around the phosphorylation sites in hRIP3 and mRIP3. It appears that the RIP3-MLKL interaction has been selected as an evolutionarily conserved mechanism in mediating necroptosis signaling despite that differing structural and mechanistic bases for this interaction emerged simultaneously in different organisms. In addition, we further revealed that the interaction of RIP3 with MLKL prevented massive abnormal RIP3 aggregation, and therefore should be crucial for formation of the amyloid signaling complex of necrosomes. We also found that the interaction between RIP3 and MLKL is required for the translocation of necrosomes to mitochondria-associated membranes. Our data demonstrate the importance of the RIP3-MLKL interaction in the formation of functional necrosomes and suggest that translocation of necrosomes to mitochondria-associated membranes is essential for necroptosis signaling.
Collapse
Affiliation(s)
- Wanze Chen
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Zhenru Zhou
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Lisheng Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Xinru Zheng
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Xiurong Wu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Huan Ma
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Deli Huang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005.
| |
Collapse
|
53
|
Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1256-68. [PMID: 23434681 DOI: 10.1016/j.bbamcr.2013.02.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
Mitochondrial morphology changes dynamically by coordinated fusion and fission and cytoskeleton-based transport. Cycles of outer and inner membrane fusion and fission are required for the exchange of damaged mitochondrial genome DNA, proteins, and lipids with those of healthy mitochondria to maintain robust mitochondrial structure and function. These dynamics are crucial for cellular life and death, because they are essential for cellular development and homeostasis, as well as apoptosis. Disruption of these functions leads to cellular dysfunction, resulting in neurologic disorders and metabolic diseases. The cytoplasmic dynamin-related GTPase Drp1 plays a key role in mitochondrial fission, while Mfn1, Mfn2 and Opa1 are involved in fusion reaction. Here, we review current knowledge regarding the regulation and physiologic relevance of Drp1-dependent mitochondrial fission: the initial recruitment and assembly of Drp1 on the mitochondrial fission foci, regulation of Drp1 activity by post-translational modifications, and the role of mitochondrial fission in cell pathophysiology.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
54
|
Mitsopoulos P, Madrenas J. Identification of multimolecular complexes and supercomplexes in compartment-selective membrane microdomains. Methods Cell Biol 2013; 117:411-31. [PMID: 24143990 DOI: 10.1016/b978-0-12-408143-7.00022-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular membranes contain specialized microdomains that play important roles in a wide range of cellular processes. These microdomains can be found in the plasma membrane and other membranes within the cell. Initially labeled lipid rafts and defined as being resistant to extraction by nonionic detergents and enriched in cholesterol and glycosphingolipids, we now understand that these membrane microdomains are very dynamic and heterogeneous membrane structures whose composition and function can vary widely depending on their cellular location. Indeed, though they are classically associated with the plasma membrane and have been shown to facilitate a wide variety of processes, including signal transduction and membrane trafficking, specialized membrane microdomains have also been identified in other membranes including those in the mitochondria. These mitochondrial membrane microdomains are enriched in cardiolipin, the signature phospholipid of the mitochondria, and may have important implications in metabolism by facilitating optimal assembly and function of the mitochondrial respiratory chain. Furthermore, isolation of multimolecular complexes while retaining their supramolecular interactions has been critical to the study of mitochondrial respiratory supercomplexes. Here, we discuss methods to isolate various membrane microdomains, including detergent-insoluble glycosphingolipid microdomains, mitochondrial cardiolipin-enriched microdomains, and blue-native gel electrophoresis of mitochondrial membranes.
Collapse
|
55
|
Nunn A, Guy G, Bell JD. Endocannabinoids in neuroendopsychology: multiphasic control of mitochondrial function. Philos Trans R Soc Lond B Biol Sci 2012; 367:3342-52. [PMID: 23108551 PMCID: PMC3481535 DOI: 10.1098/rstb.2011.0393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.
Collapse
Affiliation(s)
- Alistair Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | | | | |
Collapse
|
56
|
Sorice M, Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W. Dynamics of mitochondrial raft-like microdomains in cell life and death. Commun Integr Biol 2012; 5:217-9. [PMID: 22808338 PMCID: PMC3376069 DOI: 10.4161/cib.19145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the basis of the biochemical nature of lipid rafts, composed by glycosphingolipids, cholesterol and signaling proteins, it has been suggested that they are part of the complex framework of subcellular intermixing activities that lead to CD95/Fas-triggered apoptosis. We demonstrated that, following CD95/Fas triggering, cellular prion protein (PrPC), which represents a paradigmatic component of lipid rafts, was redistributed to mitochondrial raft-like microdomains via endoplasmic reticulum (ER)-mitochondria associated membranes (MAM) and microtubular network.
Raft-like microdomains appear to be involved in a series of intracellular functions, such as: (1) the membrane “scrambling” that participates in cell death execution pathways, (2) the remodeling of organelles, (3) the recruitment of proteins to the mitochondria; (4) the mitochondrial oxidative phosphorylation and ATP production.
In conclusion, we suggest that lipid raft components can exert their regulatory activity in apoptosis execution at three different levels: (1) in the DISC formation at the plasma membrane; (2) in the intracellular redistribution at cytoplasmic organelles, and, (3) in the structural and functional mitochondrial modifications associated with apoptosis execution.
Collapse
|
57
|
Christie DA, Mitsopoulos P, Blagih J, Dunn SD, St-Pierre J, Jones RG, Hatch GM, Madrenas J. Stomatin-like Protein 2 Deficiency in T Cells Is Associated with Altered Mitochondrial Respiration and Defective CD4+T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:4349-60. [DOI: 10.4049/jimmunol.1103829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
58
|
Sorice M, Mattei V, Tasciotti V, Manganelli V, Garofalo T, Misasi R. Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 2012; 6:354-8. [PMID: 22842913 DOI: 10.4161/pri.20479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular form of prion protein (PrP (c)) is a highly conserved cell surface GPI-anchored glycoprotein that was identified in cholesterol-enriched, detergent-resistant microdomains, named "rafts." The association with these specialized portions of the cell plasma membrane is required for conversion of PrP (c) to the transmissible spongiform encephalopathy-associated protease-resistant isoform. Usually, PrP (c) is reported to be a plasma membrane protein, however several studies have revealed PrP (c) as an interacting protein mainly with the membrane/organelles, as well as with cytoskeleton network. Recent lines of evidence indicated its association with ER lipid raft-like microdomains for a correct folding of PrP (c), as well as for the export of the protein to the Golgi and proper glycosylation. During cell apoptosis, PrP (c) can undergo intracellular re-localization, via ER-mitochondria associated membranes (MAM) and microtubular network, to mitochondrial raft-like microdomains, where it induced the loss of mitochondrial membrane potential and citochrome c release, after a contained raise of calcium concentration. We suggest that PrP (c) may play a role in the multimolecular signaling complex associated with cell apoptosis Lipid rafts and their components may, thus, be investigated as pharmacological targets of interest, introducing a novel and innovative task in modern pharmacology, i.e., the development of glycosphingolipid targeted drugs.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
59
|
Zhao J, Lendahl U, Nistér M. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 2012; 70:951-76. [PMID: 22806564 PMCID: PMC3578726 DOI: 10.1007/s00018-012-1066-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden,
| | | | | |
Collapse
|
60
|
Ciarlo L, Manganelli V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Marconi M, Grasso M, Misasi R, Sorice M, Malorni W. Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington's disease. J Lipid Res 2012; 53:2057-2068. [PMID: 22773688 DOI: 10.1194/jlr.m026062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disease characterized by an exceedingly high number of contiguous glutamine residues in the translated protein, huntingtin (Htt). The primary site of cell toxicity is the nucleus, but mitochondria have been identified as key components of cell damage. The present work has been carried out in immortalized lymphocytes from patients with HD. These cells, in comparison with lymphoid cells from healthy subjects, displayed: i) a redistribution of mitochondria, forming large aggregates; ii) a constitutive hyperpolarization of mitochondrial membrane; and iii) a constitutive alteration of mitochondrial fission machinery, with high apoptotic susceptibility. Moreover, mitochondrial fission molecules, e.g., protein dynamin-related protein 1, as well as Htt, associated with mitochondrial raft-like microdomains, glycosphingolipid-enriched structures detectable in mitochondria. These findings, together with the observation that a ceramide synthase inhibitor and a raft disruptor are capable of impairing the peculiar mitochondrial remodeling in HD cells, suggest that mitochondrial alterations occurring in these cells could be due to raft-mediated defects of mitochondrial fission/fusion machinery.
Collapse
Affiliation(s)
- Laura Ciarlo
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Matarrese
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy; Center of Integrated Metabolomics, Rome, Italy; and
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | | | - Lucrezia Gambardella
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Grasso
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Walter Malorni
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy; San Raffaele Institute Sulmona, L'Aquila, Italy.
| |
Collapse
|
61
|
Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:150-61. [PMID: 22580041 DOI: 10.1016/j.bbamcr.2012.05.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022]
Abstract
Mitochondria exist as a highly dynamic tubular network, and their morphology is governed by the delicate balance between frequent fusion and fission events, as well as by interactions with the cytoskeleton. Alterations in mitochondrial morphology are associated with changes in metabolism, cell development and cell death, whilst several human pathologies have been associated with perturbations in the cellular machinery that coordinate these processes. Mitochondrial fission also contributes to ensuring the proper distribution of mitochondria in response to the energetic requirements of the cell. The master mediator of fission is Dynamin related protein 1 (Drp1), which polymerises and constricts mitochondria to facilitate organelle division. The activity of Drp1 at the mitochondrial outer membrane is regulated through post-translational modifications and interactions with mitochondrial receptor and accessory proteins. This review will concentrate on recent advances made in delineating the mechanism of mitochondrial fission, and will highlight the importance of mitochondrial fission in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Kirstin Elgass
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | | | | |
Collapse
|
62
|
Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W, Sorice M. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 2011; 22:4842-53. [PMID: 22031292 PMCID: PMC3237627 DOI: 10.1091/mbc.e11-04-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PrPC is identified as a new component of mitochondrial raft-like microdomains in T cells undergoing CD95/Fas–mediated apoptosis, and microtubular network integrity and function could play a role in the redistribution of PrPC from the plasma membrane to the mitochondria. We examined the possibility that cellular prion protein (PrPC) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrPC to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrPC was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria–associated membranes. Our in vitro experiments also demonstrated that, although PrPC had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrPC in apoptosis execution was also analyzed in PrPC-small interfering RNA–transfected cells, which were found to be significantly less susceptible to CD95/Fas–induced apoptosis. Taken together, these results suggest that PrPC might play a role in the complex multimolecular signaling associated with CD95/Fas receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Sabina Universitas, 02100 Rieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Poston CN, Duong E, Cao Y, Bazemore-Walker CR. Proteomic analysis of lipid raft-enriched membranes isolated from internal organelles. Biochem Biophys Res Commun 2011; 415:355-60. [PMID: 22037461 DOI: 10.1016/j.bbrc.2011.10.072] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
The mitochondria-associated membrane (MAM) is a sub-region of the endoplasmic reticulum (ER) that facilitates crosstalk between the ER and mitochondria. The MAM actively influences vital cellular processes including Ca(2+) signaling and protein folding. Detergent-resistant microdomains (DRMs) may localize proteins to the mitochondria/MAM interface to coordinate these events. However, the protein composition of DRMs isolated from this region is not known. Lipid-raft enriched DRMs were isolated from a combined mitochondria/MAM sample and analyzed using two-dimensional reversed-phased tandem mass spectrometry. Strict post-acquisition filtering of the acquired data led to the confident identification 250 DRM proteins. The majority (58%) of the identified proteins are bona fide mitochondrial or ER proteins according to Gene Ontology annotation. Additionally, 74% of the proteins have previously been noted as MAM-resident or -associated proteins. Furthermore, ∼20% of the identified proteins have a documented association with lipid rafts. Most importantly, known internal LR marker proteins (inositol 1,4,5-trisphosphate receptor type 3, erlin-2, and voltage-dependent anion channel 1) were detected as well as most of the components of the mitochondrial/MAM-localized Ca(2+) signaling complex. Our study provides the basis for future work probing how the protein activities at the mitochondrion/MAM interface are dependent upon the integrity of these internal lipid-raft-like domains.
Collapse
Affiliation(s)
- Chloe N Poston
- Brown University, Department of Chemistry, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
64
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
65
|
Mollinedo F, Fernández M, Hornillos V, Delgado J, Amat-Guerri F, Acuña AU, Nieto-Miguel T, Villa-Pulgarín JA, González-García C, Ceña V, Gajate C. Involvement of lipid rafts in the localization and dysfunction effect of the antitumor ether phospholipid edelfosine in mitochondria. Cell Death Dis 2011; 2:e158. [PMID: 21593790 PMCID: PMC3122120 DOI: 10.1038/cddis.2011.41] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment.
Collapse
Affiliation(s)
- F Mollinedo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Cepińska MN, Veenhuis M, van der Klei IJ, Nagotu S. Peroxisome Fission is Associated with Reorganization of Specific Membrane Proteins. Traffic 2011; 12:925-37. [DOI: 10.1111/j.1600-0854.2011.01198.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
67
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Crimi M, Esposti MD. Apoptosis-induced changes in mitochondrial lipids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:551-7. [PMID: 20888373 DOI: 10.1016/j.bbamcr.2010.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
Apoptosis is an active and tightly regulated form of cell death, which can also be considered a stress-induced process of cellular communication. Recent studies reveal that the lipid network within cells is involved in the regulation and propagation of death signalling. Despite the vast growth of our current knowledge on apoptosis, little is known of the specific role played by lipid molecules in the central event of apoptosis-the piercing of mitochondrial membranes. Here we review the information regarding changes in mitochondrial lipids that are associated with apoptosis and discuss whether they may be involved in the permeabilization of mitochondria to release their apoptogenic factors, or just lie downstream of this permeabilization leading to the amplification of caspase activation. We focus on the earliest changes that physiological apoptosis induces in mitochondrial membranes, which may derive from an upstream alteration of phospholipid metabolism that reverberates on the mitochondrial re-modelling of their characteristic lipid, cardiolipin. Hopefully, this review will lead to an increased understanding of the role of mitochondrial lipids in apoptosis and also help revealing new stress sensing mechanisms in cells. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Massimo Crimi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy
| | | |
Collapse
|