51
|
Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 2016; 30:2152-2159. [PMID: 27479182 DOI: 10.1038/leu.2016.213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Programmed apoptotic cell death is critical to maintain tissue homeostasis and cellular integrity in the lymphatic system. Accordingly, the evasion of apoptosis is a critical milestone for the transformation of lymphocytes on their way to becoming overt lymphomas. The anti-apoptotic BCL-2 family proteins are pivotal regulators of the mitochondrial apoptotic pathway and genetic aberrations in these genes are associated with lymphomagenesis and chemotherapeutic resistance. Pharmacological targeting of BCL-2 is highly effective in certain indolent B-cell lymphomas; however, recent evidence highlights a critical role for the BCL-2 family member MCL-1 in several lymphoma subtypes. MCL-1 is recurrently highly expressed in various kinds of cancer including non-Hodgkin's lymphoma of B- and T-cell origin. Moreover, both indolent and aggressive forms of lymphoma require MCL-1 for lymphomagenesis and for their continued survival. This review summarizes the role of MCL-1 in B- and T-cell lymphoma and discusses its potential as a therapeutic target.
Collapse
|
52
|
Wolfsperger F, Hogh-Binder SA, Schittenhelm J, Psaras T, Ritter V, Bornes L, Huber SM, Jendrossek V, Rudner J. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis 2016; 7:e2039. [PMID: 26775694 PMCID: PMC4816183 DOI: 10.1038/cddis.2015.405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022]
Abstract
Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1 and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude that USP9x can control survival and radiosensitivity in glioblastoma cells by Mcl-1-dependent and Mcl-1-independent mechanisms.
Collapse
Affiliation(s)
- F Wolfsperger
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - S A Hogh-Binder
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - J Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - T Psaras
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - V Ritter
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - L Bornes
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - S M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - V Jendrossek
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - J Rudner
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| |
Collapse
|
53
|
Ngo J, Matsuyama M, Kim C, Poventud-Fuentes I, Bates A, Siedlak SL, Lee HG, Doughman YQ, Watanabe M, Liner A, Hoit B, Voelkel N, Gerson S, Hasty P, Matsuyama S. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis 2015; 6:e1706. [PMID: 25811803 PMCID: PMC4385910 DOI: 10.1038/cddis.2015.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/13/2023]
Abstract
Ku70 (Lupus Ku autoantigen p70) is essential in nonhomologous end joining DNA double-strand break repair, and ku70−/− mice age prematurely because of increased genomic instability and DNA damage responses. Previously, we found that Ku70 also inhibits Bax, a key mediator of apoptosis. We hypothesized that Bax-mediated apoptosis would be enhanced in the absence of Ku70 and contribute to premature death observed in ku70−/− mice. Here, we show that ku70−/−bax+/− and ku70−/−bax−/− mice have better survival, especially in females, than ku70−/− mice, even though Bax deficiency did not decrease the incidence of lymphoma observed in a Ku70-null background. Moreover, we found that ku70−/− mice develop lung diseases, like emphysema and pulmonary arterial (PA) occlusion, by 3 months of age. These lung abnormalities can trigger secondary health problems such as heart failure that may account for the poor survival of ku70−/− mice. Importantly, Bax deficiency appeared to delay the development of emphysema. This study suggests that enhanced Bax activity exacerbates the negative impact of Ku70 deletion. Furthermore, the underlying mechanisms of emphysema and pulmonary hypertension due to PA occlusion are not well understood, and therefore ku70−/− and Bax-deficient ku70−/− mice may be useful models to study these diseases.
Collapse
Affiliation(s)
- J Ngo
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Matsuyama
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - C Kim
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - I Poventud-Fuentes
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Bates
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - S L Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H-G Lee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Y Q Doughman
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Watanabe
- 1] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Liner
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - B Hoit
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Pulmonary Obstructive Research, Virginia Commonwealth University, Richmond, VA, USA
| | - S Gerson
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - P Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Matsuyama
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
54
|
Jia J, Ren J, Yan D, Xiao L, Sun R. Association between the XRCC6 polymorphisms and cancer risks: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94:e283. [PMID: 25569644 PMCID: PMC4602821 DOI: 10.1097/md.0000000000000283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A number of studies have been carried out to investigate the association of X-ray repair complementing defective repair in Chinese hamster cells 6 (XRCC6) polymorphisms and cancer risks, and the results remained inconsistent and inconclusive.To assess the effect of XRCC6 polymorphisms on cancer susceptibility, we conducted a meta-analysis, up to May 23rd 2014, 6267 cases with different types of tumor and 7536 controls from 20 published case-control studies. Summary odds ratios and corresponding 95% confidence intervals for XRCC6 polymorphism and cancer risk were estimated using fixed- or random-effects models when appropriate. Heterogeneity was assessed by chi-squared-based Q-statistic test, and the sources of heterogeneity were explored by subgroup analyses, logistic meta-regression analyses and Galbraith plot. Publication bias was evaluated by Begg funnel plot and Egger test. Sensitivity analyses were also performed.The rs2267437 polymorphism was associated with a significant increase in risks of overall cancers, breast cancer, renal cell carcinoma and hepatocellular carcinoma, and it could increase the cancer risk in Asian population; the rs5751129 polymorphism could increase the cancer risk in overall cancers; the rs132770 polymorphism was associated with the increased renal cell carcinoma risk; furthermore, the rs132793 polymorphism could decrease breast cancer risk and increase risks in "other cancers".Overall, the results provided evidences that the single nucleotide polymorphisms in XRCC6 promoter region might play different roles in various cancers, indicating different cancers have different tumorigenesis mechanisms. Our studies may perhaps supplement for the disease monitoring of cancers in the future, and additional studies to determine the exact molecular mechanism might provide us with interventions to protect the susceptible subgroups.
Collapse
Affiliation(s)
- Jing Jia
- From the Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China (JJ, JR, DY); Department of Urology, the First People's Hospital of Yunnan Province, KunMing University of Science and Technology, Kunming 650041, Yunnan, P.R. China (LX); Central Laboratory, Yunnan University of Chinese Traditional Medicine, Kunming 650500, Yunnan, P.R. China (RS); and Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China (RS)
| | | | | | | | | |
Collapse
|
55
|
Chandra A, Lin T, Zhu J, Tong W, Huo Y, Jia H, Zhang Y, Liu XS, Cengel K, Xia B, Qin L. PTH1-34 blocks radiation-induced osteoblast apoptosis by enhancing DNA repair through canonical Wnt pathway. J Biol Chem 2014; 290:157-67. [PMID: 25336648 DOI: 10.1074/jbc.m114.608158] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1-34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1-34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/β-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the β-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1-34 or Wnt agonist as possible therapy for radiation-induced osteoporosis.
Collapse
Affiliation(s)
| | - Tiao Lin
- From the Department of Orthopaedic Surgery, the Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ji Zhu
- From the Department of Orthopaedic Surgery
| | - Wei Tong
- From the Department of Orthopaedic Surgery, the Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
| | - Yanying Huo
- the Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, and
| | - Haoruo Jia
- From the Department of Orthopaedic Surgery
| | - Yejia Zhang
- Departments of Physical Medicine & Rehabilitation and Orthopedic Surgery, and the Translational Musculoskeletal Research Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
| | | | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bing Xia
- the Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, and
| | - Ling Qin
- From the Department of Orthopaedic Surgery,
| |
Collapse
|
56
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|
57
|
Yasser M, Shaikh R, Chilakapati MK, Teni T. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One 2014; 9:e97777. [PMID: 24841281 PMCID: PMC4026477 DOI: 10.1371/journal.pone.0097777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/23/2014] [Indexed: 01/24/2023] Open
Abstract
Radiotherapy is an important treatment modality for oral cancer. However, development of radioresistance is a major hurdle in the efficacy of radiotherapy in oral cancer patients. Identifying predictors of radioresistance is a challenging task and has met with little success. The aim of the present study was to explore the differential spectral profiles of the established radioresistant sublines and parental oral cancer cell lines by Raman spectroscopy. We have established radioresistant sublines namely, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B from its parental UPCI:SCC029B cell line, by using clinically admissible 2Gy fractionated ionizing radiation (FIR). The developed radioresistant character was validated by clonogenic cell survival assay and known radioresistance-related protein markers like Mcl-1, Bcl-2, Cox-2 and Survivin. Altered cellular morphology with significant increase (p<0.001) in the number of filopodia in radioresistant cells with respect to parental cells was observed. The Raman spectra of parental UPCI:SCC029B, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B cells were acquired and spectral features indicate possible differences in biomolecules like proteins, lipids and nucleic acids. Principal component analysis (PCA) provided three clusters corresponding to radioresistant 50Gy, 70Gy-UPCI:SCC029B sublines and parental UPCI:SCC029B cell line with minor overlap, which suggest altered molecular profile acquired by the radioresistant cells due to multiple doses of irradiation. The findings of this study support the potential of Raman spectroscopy in prediction of radioresistance and possibly contribute to better prognosis of oral cancer.
Collapse
Affiliation(s)
- Mohd Yasser
- KS-121, Teni Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
| | - Rubina Shaikh
- KS-04, Chilakapati Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
| | - Murali Krishna Chilakapati
- KS-04, Chilakapati Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
- * E-mail: (MKC); (TT)
| | - Tanuja Teni
- KS-121, Teni Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
- * E-mail: (MKC); (TT)
| |
Collapse
|