51
|
Chen R, Lai LA, Sullivan Y, Wong M, Wang L, Riddell J, Jung L, Pillarisetty VG, Brentnall TA, Pan S. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Sci Rep 2017; 7:7950. [PMID: 28801576 PMCID: PMC5554139 DOI: 10.1038/s41598-017-08436-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a lethal disease with poor prognosis. Gemcitabine has been the first line systemic treatment for pancreatic cancer. However, the rapid development of drug resistance has been a major hurdle in gemcitabine therapy leading to unsatisfactory patient outcomes. With the recent renewed understanding of glutamine metabolism involvement in drug resistance and immuno-response, we investigated the anti-tumor effect of a glutamine analog (6-diazo-5-oxo-L-norleucine) as an adjuvant treatment to sensitize chemoresistant pancreatic cancer cells. We demonstrate that disruption of glutamine metabolic pathways improves the efficacy of gemcitabine treatment. Such a disruption induces a cascade of events which impacts glycan biosynthesis through Hexosamine Biosynthesis Pathway (HBP), as well as cellular redox homeostasis, resulting in global changes in protein glycosylation, expression and functional effects. The proteome alterations induced in the resistant cancer cells and the secreted exosomes are intricately associated with the reduction in cell proliferation and the enhancement of cancer cell chemosensitivity. Proteins associated with EGFR signaling, including downstream AKT-mTOR pathways, MAPK pathway, as well as redox enzymes were downregulated in response to disruption of glutamine metabolic pathways.
Collapse
Affiliation(s)
- Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Yumi Sullivan
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Wong
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Lei Wang
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jonah Riddell
- Cell Signaling Technology, Inc, Danvers, MA, 01923, USA
| | - Linda Jung
- Cell Signaling Technology, Inc, Danvers, MA, 01923, USA
| | | | - Teresa A Brentnall
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
52
|
Amadio P, Tarantino E, Sandrini L, Tremoli E, Barbieri SS. Prostaglandin-endoperoxide synthase-2 deletion affects the natural trafficking of Annexin A2 in monocytes and favours venous thrombosis in mice. Thromb Haemost 2017; 117:1486-1497. [PMID: 28536720 DOI: 10.1160/th16-12-0968] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
Abstract
Deep-vein thrombosis (DVT) is a common condition that often leads to pulmonary thromboembolism (VTE) and death. The role of prostaglandin-endoperoxide synthase (PTGS)2 in arterial thrombosis has been well established, whereas its impact in venous thrombosis remains unclear. Here, we showed that PTGS2 deletion predisposes to venous thrombosis as suggested by greater clot firmness and clot elasticity, by higher plasma levels of functional fibrinogen, factor VIII and PAI-1 activity, and proved by bigger thrombi detected after inferior vena cava ligation (IVCL) compared to WT mice. PTGS2-/- thrombi have greater fibrin content, higher number of F4/80+, TF+ and ANXA2+ cells, and lower S100A10+ cells. Remarkably, monocyte depletion reduced thrombus size in mutant mice, suggesting an important role of PTGS2-/- monocytes in this experimental setting. Interestingly, PTGS2 deletion reduced membrane ANXA2, and total S100A10, promoted assembly of ANXA2/p50NF-kB complex and its nuclear accumulation, and induced TF in peritoneal macrophages, whereas ANXA2 silencing decreased dramatically TF. Finally, Carbaprostacyclin treatment prevented venous thrombus formation induced by IVCL in mutant mice, reduced the ANXA2 binding to p50NF-kB subunit and its nuclear trafficking, and decreased TF in PTGS2-/- macrophages. PTGS2 deletion, changing the natural distribution of ANXA2 in monocytes/macrophages, increases TF expression and activity predisposing to venous thrombosis. Interestingly, Carbaprostacyclin treatment, inhibiting nuclear ANXA2 trafficking, controls monocyte TF activity and prevents DVT occurrence. Our data are of help in elucidating the mechanisms by which PTGS2 inhibition increases DVT risk, and suggest a new role for ANXA2 in venous thrombosis.
Collapse
Affiliation(s)
| | | | | | | | - Silvia S Barbieri
- Silvia S. Barbieri, PhD, Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy, Tel.: +39 02 50318357, Fax: +39 02 50318250, E-mail:
| |
Collapse
|
53
|
Fang W, Fa ZZ, Xie Q, Wang GZ, Yi J, Zhang C, Meng GX, Gu JL, Liao WQ. Complex Roles of Annexin A2 in Host Blood-Brain Barrier Invasion by Cryptococcus neoformans. CNS Neurosci Ther 2017; 23:291-300. [PMID: 28130864 DOI: 10.1111/cns.12673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Fungal transversal across the brain microvascular endothelial cells (BMECs) is the essential step for the development of cryptococcal meningoencephalitis. Annexin A2 (AnxA2) is an important signaling protein involved in several intracellular processes such as membrane trafficking, endocytosis, and exocytosis. AIM To investigate the roles and mechanism of AnxA2 during cryptococcal transversal of BMECs. RESULTS Cryptococcus neoformans infection initiated upregulation of AnxA2 in mouse BMECs. Blockade with anti-AnxA2 antibody led to a reduction in fungal transcytosis activity but no change in its adhesion efficiency. Intriguingly, AnxA2 depletion caused a significant increase in fungal association activity but had no effect on their transcytosis. AnxA2 suppression resulted in marked reduction in its partner protein S100A10, and S100A10 suppression in BMECs significantly reduced the cryptococcal transcytosis efficiency. Furthermore, AnxA2 dephosphorylation at Tyr23 and dephosphorylation of downstream cofilin were required for cryptococcal transversal of BMECs, both of which might be primarily involved in the association of C. neoformans with host cells. CONCLUSIONS Our work indicated that AnxA2 played complex roles in traversal of C. neoformans across host BMECs, which might be dependent on downstream cofilin to inhibit fungal adhesion but rely on its partner S100A10 to promote cryptococcal transcytosis.
Collapse
Affiliation(s)
- Wei Fang
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Zhen-Zong Fa
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Gui-Zhen Wang
- ICU Department, Urumuqi Army General Hospital, Urumqi, Xinjiang, China
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Guang-Xun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju-Lin Gu
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Department of Dermatology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| |
Collapse
|
54
|
Wang D, Cao Y, Zheng L, Lv D, Chen L, Xing X, Zhu Z, Li X, Chai Y. Identification of Annexin A2 as a target protein for plant alkaloid matrine. Chem Commun (Camb) 2017; 53:5020-5023. [DOI: 10.1039/c7cc02227a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular target of matrine is identified.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Cao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Leyi Zheng
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Diya Lv
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Langdong Chen
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xinrui Xing
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Zhenyu Zhu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xiaoyu Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| |
Collapse
|
55
|
Wang Y, Deng J, Guo G, Tong A, Peng X, Chen H, Xu J, Liu Y, You C, Zhou L. Clinical and prognostic role of annexin A2 in adamantinomatous craniopharyngioma. J Neurooncol 2016; 131:21-29. [DOI: 10.1007/s11060-016-2273-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
|
56
|
Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells. PLoS One 2016; 11:e0162522. [PMID: 27626938 PMCID: PMC5023113 DOI: 10.1371/journal.pone.0162522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses and protein response-based biochemical pathways represents a key mechanism through which nickel induces cytotoxicity and carcinogenesis. To identify protein responses and biochemical pathways that are critical to nickel-induced toxicity responses, we measured cytotoxicity and changes in expression and phosphorylation status of 14 critical biochemical pathway regulators in human BEAS-2B cells exposed to four concentrations of nickel using an integrated proteomic approach. A subset of the pathway regulators, including interleukin-6, and JNK, were found to be linearly correlated with cell viability, and may function as molecular determinants of cytotoxic responses of BEAS-2B cells to nickel exposures. In addition, 128 differentially expressed proteins were identified by two dimensional electrophoresis (2-DE) and mass spectrometry. Principal component analysis, hierarchical cluster analyses, and ingenuity signaling pathway analysis (IPA) identified putative nickel toxicity pathways. Some of the proteins and pathways identified have not previously been linked to nickel toxicity. Based on the consistent results obtained from both ELISA and 2-DE proteomic analysis, we propose a core signaling pathway regulating cytotoxic responses of human BEAS-2B cells to nickel exposures, which integrates a small set of proteins involved in glycolysis and gluconeogenesis pathways, apoptosis, protein degradation, and stress responses including inflammation and oxidative stress.
Collapse
|
57
|
High Podocalyxin levels promote cell viability partially through up-regulation of Annexin A2. Biochem Biophys Res Commun 2016; 478:573-9. [DOI: 10.1016/j.bbrc.2016.07.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
|
58
|
Son MJ, Kim WK, Park A, Oh KJ, Kim JH, Han BS, Kim IC, Chi SW, Park SG, Lee SC, Bae KH. Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation. Mol Cell Endocrinol 2016; 431:46-53. [PMID: 27132805 DOI: 10.1016/j.mce.2016.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/03/2023]
Abstract
Brown adipose tissue, which is mainly composed of brown adipocytes, plays a key role in the regulation of energy balance via dissipation of extra energy as heat, and consequently counteracts obesity and its associated-disorders. Therefore, brown adipocyte differentiation should be tightly controlled at the multiple regulation steps. Among these, the regulation at the level of post-translational modifications (PTMs) is largely unknown. Here, we investigated the changes in the expression level of the enzymes involved in protein lysine methylation during brown adipocyte differentiation by using quantitative real-time PCR (qPCR) array analysis. Several enzymes showing differential expression patterns were identified. In particular, the expression level of methyltransferase Set7/9 was dramatically repressed during brown adipocyte differentiation. Although there was no significant change in lipid accumulation, ectopic expression of Set7/9 led to enhanced expression of several key thermogenic genes, such as uncoupling protein-1 (UCP-1), Cidea, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16). In contrast, knockdown of endogenous Set7/9 led to significantly reduced expression of these thermogenic genes. Furthermore, suppressed mitochondrial DNA content and decreased oxygen consumption rate were also detected upon Set7/9 knockdown. We found that p53 acetylation was regulated by Set7/9-dependent interaction with Sirt1. Based on these results, we suggest that Set7/9 acts as a fine regulator of the thermogenic program during brown adipocyte differentiation by regulation of p53 acetylation. Thus, Set7/9 could be used as a valuable target for regulating thermogenic capacity and consequently to overcome obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Min Jeong Son
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Anna Park
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Jeong-Hoon Kim
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Il Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung-Wook Chi
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Sung Goo Park
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
59
|
Lu Y, Ni S, He LN, Gao YJ, Jiang BC. Annexin A10 is involved in the development and maintenance of neuropathic pain in mice. Neurosci Lett 2016; 631:1-6. [PMID: 27507697 DOI: 10.1016/j.neulet.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
Abstract
ANXA10 (annexin A10) is a member of the annexin family, and its biological effects are mediated primarily through the calcium-dependent phospholipid-binding and calcium ion binding. We examined the gene expressions of the L5 spinal cord after spinal nerve ligation (SNL)-induced neuropathic pain in mice by gene chip. The results showed that Anxa10 mRNA was the most upregulated gene in annexin family with 73.7-fold increase. Although previous studies have reported that several annexins are involved in nociceptive pain, the role of Anxa10 in pain remains undefined. We aimed to evaluate the role of ANXA10 in mediating injury-induced heat hyperalgesia and mechanical allodynia. We found that SNL induced persistent upregulation of Anxa10 mRNA and protein in the spinal cord of mice. Moreover, ANXA10 was colocalized with the neuronal marker MAP2 and astrocytic marker glial fibrillary acidic protein (GFAP), but not with microglial marker CD11b. Finally, pretreatment with Anxa10 siRNA partially prevented SNL-induced mechanical allodynia and heat hyperalgesia. Posttreatment with Anxa10 siRNA attenuated SNL-induced neuropathic pain. These findings suggest that ANXA10 might be a novel target in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ying Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Jiangsu 226001, China; Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Sujie Ni
- Department of Medical Oncology, The affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Li-Na He
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
60
|
Shetty P, Patil VS, Mohan R, D’souza LC, Bargale A, Patil BR, Dinesh US, Haridas V, Kulkarni SP. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer. Ann Clin Biochem 2016; 54:463-471. [DOI: 10.1177/0004563216665867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background AnnexinA2 (AnxA2) membrane deposition has a critical role in HB-EGF shedding as well as IL-6 secretion in breast cancer cells. This autocrine cycle has a major role in cancer cell proliferation, migration and metastasis. The objective of the study is to demonstrate annexinA2-mediated autocrine regulation via HB-EGF and IL-6 in Her-2 negative breast cancer progression. Methods Secretory annexinA2, HB-EGF and IL-6 were analysed in the peripheral blood sample of Her-2 negative ( n = 20) and positive breast cancer patients ( n = 16). Simultaneously, tissue expression was analysed by immunohistochemistry. The membrane deposition of these secretory ligands and their autocrine regulation was demonstrated using triple-negative breast cancer cell line model. Results Annexina2 and HB-EGF expression are inversely correlated with Her-2, whereas IL-6 expression is seen in both Her-2 negative and positive breast cancer cells. RNA interference studies and upregulation of annexinA2 proved that annexinA2 is the upstream of this autocrine pathway. Abundant soluble serum annexinA2 is secreted in Her-2 negative breast cancer (359.28 ± 63.73 ng/mL) compared with normal (286.10 ± 70.04 ng/mL, P < 0.01) and Her-2 positive cases (217.75 ± 60.59 ng/mL, P < 0.0001). In Her-2 negative cases, the HB-EGF concentrations (179.16 ± 118.81 pg/mL) were highly significant compared with normal (14.92 ± 17.33 pg/mL, P < 0.001). IL-6 concentrations were increased significantly in both the breast cancer phenotypes as compared with normal ( P < 0.001). Conclusion The specific expression pattern of annexinA2 and HB-EGF in triple-negative breast cancer tissues, increased secretion compared with normal cells, and their major role in the regulation of EGFR downstream signalling makes these molecules as a potential tissue and serum biomarker and an excellent therapeutic target in Her-2 negative breast cancer.
Collapse
Affiliation(s)
- Praveenkumar Shetty
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Vidya S Patil
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Rajashekar Mohan
- Department of Surgery, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Leonard Clinton D’souza
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Anil Bargale
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | | | - US Dinesh
- Department of Pathology, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Vikram Haridas
- Department of Medicine, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Shrirang P Kulkarni
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| |
Collapse
|
61
|
Shi H, Xiao L, Duan W, He H, Ma L, Da M, Duan Y, Wang Q, Wu H, Song X, Hou Y. ANXA2 enhances the progression of hepatocellular carcinoma via remodeling the cell motility associated structures. Micron 2016; 85:26-33. [PMID: 27060670 DOI: 10.1016/j.micron.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. The detailed mechanism of signal regulation for HCC progression is still not known, and the high motility of cancer cells is known as a core property for cancer progression maintenance. Annexin A2 (ANXA2), a calcium-dependent phospholipids binding protein is highly expressed in HCC. To study the roles the excessively expressed ANXA2 during the progression of HCC, we inhibited the ANXA2 expression in SMMC-7721 cells using RNAi, followed by the analysis of cell growth, apoptosis and cell motility. To explore the relationship between the cell behaviors and its structures, the microstructure changes were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. Our findings demonstrated that down-regulation of ANXA2 results in decreased the cell proliferation and motility, enhanced apoptosis, suppressed cell pseudopodia/filopodia, inhibited expression of F-actin and β-tubulin, and inhibited or depolymerized Lamin B. The cell contact inhibition was also analyzed in the paper. Take together, our results indicate that ANXA2 plays an important role to enhance the malignant behaviors of HCC cells, and the enhancement is closely based on its remodeling to cell structures.
Collapse
Affiliation(s)
- Hongyan Shi
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Li Xiao
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Huimin He
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Lele Ma
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Miaomiao Da
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yan Duan
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Qian Wang
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Huayi Wu
- The High School Affiliated to Shaanxi Normal University, Xi'an, Shaanxi 710061, China
| | - Xigui Song
- The High School Affiliated to Shaanxi Normal University, Xi'an, Shaanxi 710061, China
| | - Yingchun Hou
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| |
Collapse
|
62
|
Jia Y, Xie J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis 2015; 2:299-306. [PMID: 30258872 PMCID: PMC6150077 DOI: 10.1016/j.gendis.2015.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Gemcitabine is the first-line treatment for pancreatic ductual adenocarcinoma (PDAC) as well as acts against a wide range of other solid tumors. Patients usually have a good initial response to gemcitabine-based chemotherapy but would eventually develop resistance. To improve survival and prognosis of cancer patients, better understanding of the mechanisms responsible for gemcitabine resistance and discovery of new therapeutic strategies are in great need. Amounting evidence indicate that the developmental pathways, such as Hedgehog (Hh), Wnt and Notch, become reactivated in gemcitabine-resistant cancer cells. Thus, the strategies for targeting these pathways may sensitize cancer cells to gemcitabine treatment. In this review, we will summarize recent development in this area of research and discuss strategies to overcome gemcitabine resistance. Given the cross-talk between these three developmental signaling pathways, designing clinical trials using a cocktail of inhibitory agents targeting all these pathways may be more effective. Ultimately, our hope is that targeting these developmental pathways may be an effective way to improve the gemcitabine treatment outcome in cancer patients.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, China
| | - Jingwu Xie
- Division of Hematology and Oncology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
63
|
Son MJ, Kim WK, Kwak M, Oh KJ, Chang WS, Min JK, Lee SC, Song NW, Bae KH. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation. NANOTECHNOLOGY 2015; 26:435101. [PMID: 26437254 DOI: 10.1088/0957-4484/26/43/435101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.
Collapse
Affiliation(s)
- Min Jeong Son
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|