51
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
52
|
Wezgowiec J, Derylo MB, Teissie J, Orio J, Rols MP, Kulbacka J, Saczko J, Kotulska M. Electric field-assisted delivery of photofrin to human breast carcinoma cells. J Membr Biol 2013; 246:725-35. [PMID: 23546012 PMCID: PMC3786094 DOI: 10.1007/s00232-013-9533-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
Abstract
The influence of electroporation on the Photofrin uptake and distribution was evaluated in the breast adenocarcinoma cells (MCF-7) and normal Chinese hamster ovary cells (CHO) lacking voltage-dependent channels in vitro. Photofrin was used at a concentration of 5 and 25 μM. The uptake of Photofrin was assessed using flow cytometry and fluorescence microscopy methods. Cells viability was evaluated with crystal violet assay. Our results indicated that electropermeabilization of cells, in the presence of Photofrin, increased the uptake of the photosensitizer. Even at the lowest electric field intensity (700 V/cm) Photofrin transport was enhanced. Flow cytometry results for MCF-7 cells revealed ~1.7 times stronger fluorescence emission intensity for cells exposed to Photofrin and electric field of 700 V/cm than cells treated with Photofrin alone. Photofrin was effective only when irradiated with blue light. Our studies on combination of photodynamic reaction with electroporation suggested improved effectiveness of the treatment and showed intracellular distribution of Photofrin. This approach may be attractive for cancer treatment as enhanced cellular uptake of Photofrin in MCF-7 cells can help to reduce effective dose of the photosensitizer and exposure time in this type of cancer, diminishing side effects of the therapy.
Collapse
Affiliation(s)
- Joanna Wezgowiec
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Maria B. Derylo
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Justin Teissie
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Julie Orio
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Marie-Pierre Rols
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wrocław Medical University, Chalubinskiego 10, 50-368 Wrocław, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wrocław Medical University, Chalubinskiego 10, 50-368 Wrocław, Poland
| | - Malgorzata Kotulska
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
53
|
Marker-free plasmids for biotechnological applications – implications and perspectives. Trends Biotechnol 2013; 31:539-47. [DOI: 10.1016/j.tibtech.2013.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
|
54
|
Nonviral methods for inducing pluripotency to cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:705902. [PMID: 23841088 PMCID: PMC3693118 DOI: 10.1155/2013/705902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022]
Abstract
The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs.
Collapse
|
55
|
Madeira C, Rodrigues CAV, Reis MSC, Ferreira FFCG, Correia RESM, Diogo MM, Cabral JMS. Nonviral Gene Delivery to Neural Stem Cells with Minicircles by Microporation. Biomacromolecules 2013; 14:1379-87. [DOI: 10.1021/bm400015b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Catarina Madeira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Mónica S. C. Reis
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Filipa F. C. G. Ferreira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Raquel E. S. M. Correia
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Maria M. Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
56
|
Wooddell CI, Rozema DB, Hossbach M, John M, Hamilton HL, Chu Q, Hegge JO, Klein JJ, Wakefield DH, Oropeza CE, Deckert J, Roehl I, Jahn-Hofmann K, Hadwiger P, Vornlocher HP, McLachlan A, Lewis DL. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther 2013; 21:973-85. [PMID: 23439496 PMCID: PMC3666629 DOI: 10.1038/mt.2013.31] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi)-based therapeutics have the potential to treat chronic hepatitis B virus (HBV) infection in a fundamentally different manner than current therapies. Using RNAi, it is possible to knock down expression of viral RNAs including the pregenomic RNA from which the replicative intermediates are derived, thus reducing viral load, and the viral proteins that result in disease and impact the immune system's ability to eliminate the virus. We previously described the use of polymer-based Dynamic PolyConjugate (DPC) for the targeted delivery of siRNAs to hepatocytes. Here, we first show in proof-of-concept studies that simple coinjection of a hepatocyte-targeted, N-acetylgalactosamine-conjugated melittin-like peptide (NAG-MLP) with a liver-tropic cholesterol-conjugated siRNA (chol-siRNA) targeting coagulation factor VII (F7) results in efficient F7 knockdown in mice and nonhuman primates without changes in clinical chemistry or induction of cytokines. Using transient and transgenic mouse models of HBV infection, we show that a single coinjection of NAG-MLP with potent chol-siRNAs targeting conserved HBV sequences resulted in multilog repression of viral RNA, proteins, and viral DNA with long duration of effect. These results suggest that coinjection of NAG-MLP and chol-siHBVs holds great promise as a new therapeutic for patients chronically infected with HBV.
Collapse
Affiliation(s)
- Christine I Wooddell
- Arrowhead Research Corporation, Arrowhead Madison, Madison, Wisconsin 53711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Gaspar VM, Cruz C, Queiroz JA, Pichon C, Correia IJ, Sousa F. Sensitive Detection of Peptide–Minicircle DNA Interactions by Surface Plasmon Resonance. Anal Chem 2013; 85:2304-11. [DOI: 10.1021/ac303288x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vítor M. Gaspar
- CICS-UBI - Centro de Investigação
em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação
em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - João A. Queiroz
- CICS-UBI - Centro de Investigação
em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Chantal Pichon
- Centre de Biophysique Moléculaire
CNRS UPR4301, INSERM and University of Orléans, F-45071 Orléans cedex 2, France
| | - Ilídio J. Correia
- CICS-UBI - Centro de Investigação
em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação
em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|