51
|
Zhong ZP, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, Cooper ZS, Jang HB, Bolduc B, Deming JW, Sullivan MB. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020; 5:e00246-20. [PMID: 32546670 PMCID: PMC7300359 DOI: 10.1128/msystems.00246-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Abstract
Arctic regions, which are changing rapidly as they warm 2 to 3 times faster than the global average, still retain microbial habitats that serve as natural laboratories for understanding mechanisms of microbial adaptation to extreme conditions. Seawater-derived brines within both sea ice (sea-ice brine) and ancient layers of permafrost (cryopeg brine) support diverse microbes adapted to subzero temperatures and high salinities, yet little is known about viruses in these extreme environments, which, if analogous to other systems, could play important evolutionary and ecosystem roles. Here, we characterized viral communities and their functions in samples of cryopeg brine, sea-ice brine, and melted sea ice. Viral abundance was high in cryopeg brine (1.2 × 108 ml-1) and much lower in sea-ice brine (1.3 × 105 to 2.1 × 105 ml-1), which roughly paralleled the differences in cell concentrations in these samples. Five low-input, quantitative viral metagenomes were sequenced to yield 476 viral populations (i.e., species level; ≥10 kb), only 12% of which could be assigned taxonomy by traditional database approaches, indicating a high degree of novelty. Additional analyses revealed that these viruses: (i) formed communities that differed between sample type and vertically with sea-ice depth; (ii) infected hosts that dominated these extreme ecosystems, including Marinobacter, Glaciecola, and Colwellia; and (iii) encoded fatty acid desaturase (FAD) genes that likely helped their hosts overcome cold and salt stress during infection, as well as mediated horizontal gene transfer of FAD genes between microbes. Together, these findings contribute to understanding viral abundances and communities and how viruses impact their microbial hosts in subzero brines and sea ice.IMPORTANCE This study explores viral community structure and function in remote and extreme Arctic environments, including subzero brines within marine layers of permafrost and sea ice, using a modern viral ecogenomics toolkit for the first time. In addition to providing foundational data sets for these climate-threatened habitats, we found evidence that the viruses had habitat specificity, infected dominant microbial hosts, encoded host-derived metabolic genes, and mediated horizontal gene transfer among hosts. These results advance our understanding of the virosphere and how viruses influence extreme ecosystems. More broadly, the evidence that virally mediated gene transfers may be limited by host range in these extreme habitats contributes to a mechanistic understanding of genetic exchange among microbes under stressful conditions in other systems.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Shelly D Carpenter
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Zachary S Cooper
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
52
|
Band-Schmidt CJ, Zumaya-Higuera MG, López-Cortés DJ, Leyva-Valencia I, Quijano-Scheggia SI, Hernández-Guerrero CJ. Allelopathic effects of Margalefidinium polykrikoides and Gymnodinium impudicum in the growth of Gymnodinium catenatum. HARMFUL ALGAE 2020; 96:101846. [PMID: 32560831 DOI: 10.1016/j.hal.2020.101846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Harmful algae blooms (HABs) are characterized for the coexistence of phytoplankton species with dynamic and complex biotic interactions (e.g., competition, symbiosis, predation, parasitism, allelopathy), that occur at fine temporal and spatial scales, and are relevant to understand the role that different species of phytoplankton play in the regulation of HABs. In this work the allelopathic effects of Margalefidinium polykrikoides (=Cochlodinium polykrikoides) and Gymnodinium impudicum on Gymnodinium catenatum were evaluated. The allelopathic abilities of M. polykrikoides and G. impudicum were investigated in bi-algal culture experiments and in trials in which target species were co-cultured, separated by a 10 μm membrane to prevent a direct cell-to-cell contact; and also by the addition of different volumes of culture media without cells. For all trials, cells of each species were harvested during exponential phase and cultured together by triplicate at three relative abundances: 1:1 (200 Cells mL-1 of each species, G. catenatum and M. polykrikoides or G. impudicum), 2:1 (400 Cells mL-1 of G. catenatum and 200 Cells mL-1 of M. polykrikoides or G. impudicum), and 1:2 (200 cells mL-1 of G. catenatum and 400 Cells mL-1 of M. polykrikoides or G. impudicum). All bioassays were carried out by triplicate in 250 mL Erlenmeyer flasks with 150 mL of modified GSe medium with an initial inoculum of 200 or 400 Cells mL-1. During experiments G. catenatum abundances were enumerated daily. In bi-algal culture experiments mortalities of G. catenatum were from 50% to 100% after 48 h of cell contact with M. polykrikoides or G. impudicum. In the case of culture media without cells, only M. polykrikoides caused a decrease in the cell abundance and growth rate of G. catenatum. Morphological changes occurred in G. catenatum when in contact with M. polykrikoides and G. impudicum, such as membrane shedding, prominent nucleus, loss of flagella, cell lysis, as well as the separation of long chains into individual cells. These results suggest that in the natural environment M. polykrikoides and G. impudicum have allelopathic interactions in G. catenatum, which could negatively affect its growth and survival, indicating that these species could displace blooms of G. catenatum.
Collapse
Affiliation(s)
- Christine J Band-Schmidt
- Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR), Apartado Postal 592, La Paz, B.C.S. 23000, Mexico.
| | - Miriam G Zumaya-Higuera
- Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR), Apartado Postal 592, La Paz, B.C.S. 23000, Mexico
| | - David J López-Cortés
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN #195, La Paz, B.C.S. 23096, Mexico
| | - Ignacio Leyva-Valencia
- CONACyT-Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Apartado Postal 592, CP 23000, La Paz, Baja California Sur, Mexico
| | - Sonia I Quijano-Scheggia
- Universidad de Colima, Centro Universitario de Investigaciones Oceanológicas, Km 20 Carretera Manzanillo-Barra de Navidad, Colonia El Naranjo, CP 28860. Manzanillo, Colima, Mexico
| | - Claudia J Hernández-Guerrero
- Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR), Apartado Postal 592, La Paz, B.C.S. 23000, Mexico
| |
Collapse
|
53
|
Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat Commun 2020; 11:1942. [PMID: 32327645 PMCID: PMC7181598 DOI: 10.1038/s41467-020-15693-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is a pivotal compound in marine biogeochemical cycles and a key chemical currency in microbial interactions. Marine bacteria transform DMSP via two competing pathways with considerably different biogeochemical implications: demethylation channels sulfur into the microbial food web, whereas cleavage releases sulfur into the atmosphere. Here, we present single-cell measurements of the expression of these two pathways using engineered fluorescent reporter strains of Ruegeria pomeroyi DSS-3, and find that external DMSP concentration dictates the relative expression of the two pathways. DMSP induces an upregulation of both pathways, but only at high concentrations (>1 μM for demethylation; >35 nM for cleavage), characteristic of microscale hotspots such as the vicinity of phytoplankton cells. Co-incubations between DMSP-producing microalgae and bacteria revealed an increase in cleavage pathway expression close to the microalgae’s surface. These results indicate that bacterial utilization of microscale DMSP hotspots is an important determinant of the fate of sulfur in the ocean. DMSP is a ubiquitous organosulfur compound in the ocean that, once degraded by bacteria, plays key roles in global biogeochemical cycles and climate regulation. Here, the authors use single-cell measurements of transcription to investigate the intricate dynamics of bacterial DMSP degradation.
Collapse
|
54
|
Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci U S A 2020; 117:3656-3662. [PMID: 32015111 PMCID: PMC7035482 DOI: 10.1073/pnas.1917265117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the nutrient-rich region surrounding marine phytoplankton cells, heterotrophic bacterioplankton transform a major fraction of recently fixed carbon through the uptake and catabolism of phytoplankton metabolites. We sought to understand the rules by which marine bacterial communities assemble in these nutrient-enhanced phycospheres, specifically addressing the role of host resources in driving community coalescence. Synthetic systems with varying combinations of known exometabolites of marine phytoplankton were inoculated with seawater bacterial assemblages, and communities were transferred daily to mimic the average duration of natural phycospheres. We found that bacterial community assembly was predictable from linear combinations of the taxa maintained on each individual metabolite in the mixture, weighted for the growth each supported. Deviations from this simple additive resource model were observed but also attributed to resource-based factors via enhanced bacterial growth when host metabolites were available concurrently. The ability of photosynthetic hosts to shape bacterial associates through excreted metabolites represents a mechanism by which microbiomes with beneficial effects on host growth could be recruited. In the surface ocean, resource-based assembly of host-associated communities may underpin the evolution and maintenance of microbial interactions and determine the fate of a substantial portion of Earth's primary production.
Collapse
Affiliation(s)
- He Fu
- Department of Marine Sciences, University of Georgia, Athens, GA 30602
| | - Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Jeff Gore
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30602;
| |
Collapse
|
55
|
Fenizia S, Thume K, Wirgenings M, Pohnert G. Ectoine from Bacterial and Algal Origin Is a Compatible Solute in Microalgae. Mar Drugs 2020; 18:E42. [PMID: 31935955 PMCID: PMC7024275 DOI: 10.3390/md18010042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023] Open
Abstract
Osmoregulation in phytoplankton is attributed to several highly polar low-molecular-weight metabolites. A widely accepted model considers dimethylsulfoniopropionate (DMSP) as the most important and abundant osmotically active metabolite. Using an optimized procedure for the extraction and detection of highly polar metabolites, we expand the group of phytoplankton osmolytes by identifying ectoine in several microalgae. Ectoine is known as a bacterial compatible solute, but, to the best of our knowledge, was never considered as a phytoplankton-derived product. Given the ability of microalgae to take up zwitterions, such as DMSP, we tested the hypothesis that the algal ectoine is derived from associated bacteria. We therefore analyzed methanol extracts of xenic and axenic cultures of two different species of microalgae and could detect elevated concentrations of ectoine in those that harbor associated bacteria. However, also microalgae without an associated microbiome contain ectoine in smaller amounts, pointing towards a dual origin of this metabolite in the algae from their own biosynthesis as well as from uptake. We also tested the role of ectoine in the osmoadaptation of microalgae. In the model diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, elevated amounts of ectoine were found when cultivated in seawater with salinities of 50 PSU compared to the standard culture conditions of 35 PSU. Therefore, we add ectoine to the family of osmoadaptive metabolites in phytoplankton and prove a new, potentially synergistic metabolic interplay of bacteria and algae.
Collapse
Affiliation(s)
- Simona Fenizia
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Kathleen Thume
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
| | - Marino Wirgenings
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany; (S.F.); (K.T.); (M.W.)
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
56
|
Moore ER, Davie‐Martin CL, Giovannoni SJ, Halsey KH. Pelagibacter
metabolism of diatom‐derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation. Environ Microbiol 2019; 22:1720-1733. [DOI: 10.1111/1462-2920.14861] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Eric R. Moore
- Department of Microbiology Oregon State University Corvallis, 354 Nash Hall Corvallis Oregon 97331
| | - Cleo L. Davie‐Martin
- Department of Microbiology Oregon State University Corvallis, 354 Nash Hall Corvallis Oregon 97331
| | - Stephen J. Giovannoni
- Department of Microbiology Oregon State University Corvallis, 354 Nash Hall Corvallis Oregon 97331
| | - Kimberly H. Halsey
- Department of Microbiology Oregon State University Corvallis, 354 Nash Hall Corvallis Oregon 97331
| |
Collapse
|
57
|
Feng J, Hu Z, Wang H. Complete genome sequence of Hahella sp. KA22, a prodigiosin-producing algicidal bacterium. Mar Genomics 2019. [DOI: 10.1016/j.margen.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
58
|
Abstract
Marine microorganisms play crucial roles in Earth's element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a crucial player in climate processes. With sulfur already being well studied in the ocean in its inorganic forms, organic sulfur compounds are emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can readily be reduced by phytoplankton, provides a freely available source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly assimilated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, cofactors, signalling compounds and antibiotics. In this Review, we examine the current knowledge of sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microorganisms, and the ecological links facilitated by their diversity in structures, oxidation states and chemistry.
Collapse
|
59
|
Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol 2019; 4:1706-1715. [PMID: 31332382 DOI: 10.1038/s41564-019-0507-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/06/2019] [Indexed: 01/29/2023]
Abstract
In the surface ocean, phytoplankton transform inorganic substrates into organic matter that fuels the activity of heterotrophic microorganisms, creating intricate metabolic networks that determine the extent of carbon recycling and storage in the ocean. Yet, the diversity of organic molecules and interacting organisms has hindered detection of specific relationships that mediate this large flux of energy and matter. Here, we show that a tightly coupled microbial network based on organic sulfur compounds (sulfonates) exists among key lineages of eukaryotic phytoplankton producers and heterotrophic bacterial consumers in the North Pacific Subtropical Gyre. We find that cultured eukaryotic phytoplankton taxa produce sulfonates, often at millimolar internal concentrations. These same phytoplankton-derived sulfonates support growth requirements of an open-ocean isolate of the SAR11 clade, the most abundant group of marine heterotrophic bacteria. Expression of putative sulfonate biosynthesis genes and sulfonate abundances in natural plankton communities over the diel cycle link sulfonate production to light availability. Contemporaneous expression of sulfonate catabolism genes in heterotrophic bacteria highlights active cycling of sulfonates in situ. Our study provides evidence that sulfonates serve as an ecologically important currency for nutrient and energy exchange between microbial autotrophs and heterotrophs, highlighting the importance of organic sulfur compounds in regulating ecosystem function.
Collapse
|
60
|
Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME JOURNAL 2019; 13:2536-2550. [PMID: 31227817 DOI: 10.1038/s41396-019-0455-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle.
Collapse
|
61
|
A synthetic ecosystem for the multi-level modelling of heterotroph-phototroph metabolic interactions. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Nowinski B, Motard-Côté J, Landa M, Preston CM, Scholin CA, Birch JM, Kiene RP, Moran MA. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol 2019; 21:1687-1701. [PMID: 30761723 DOI: 10.1111/1462-2920.14560] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/09/2019] [Indexed: 11/30/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur metabolite produced by many phytoplankton species and degraded by bacteria via two distinct pathways with climate-relevant implications. We assessed the diversity and abundance of bacteria possessing these pathways in the context of phytoplankton community composition over a 3-week time period spanning September-October, 2014 in Monterey Bay, CA. The dmdA gene from the DMSP demethylation pathway dominated the DMSP gene pool and was harboured mostly by members of the alphaproteobacterial SAR11 clade and secondarily by the Roseobacter group, particularly during the second half of the study. Novel members of the DMSP-degrading community emerged from dmdA sequences recovered from metagenome assemblies and single-cell sequencing, including largely uncharacterized gammaproteobacteria and alphaproteobacteria taxa. In the DMSP cleavage pathway, the SAR11 gene dddK was the most abundant early in the study, but was supplanted by dddP over time. SAR11 members, especially those harbouring genes for both DMSP degradation pathways, had a strong positive relationship with the abundance of dinoflagellates, and DMSP-degrading gammaproteobacteria co-occurred with haptophytes. This in situ study of the drivers of DMSP fate in a coastal ecosystem demonstrates for the first time correlations between specific groups of bacterial DMSP degraders and phytoplankton taxa.
Collapse
Affiliation(s)
- Brent Nowinski
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jessie Motard-Côté
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.,Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | | | - James M Birch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.,Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
63
|
Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2019; 36:1093-1116. [DOI: 10.1039/c8np00085a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A review of chemically mediated interactions in planktonic marine environments covering new studies from January 2015 to December 2017.
Collapse
Affiliation(s)
- Emily R. Brown
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Marisa R. Cepeda
- School of Chemistry and Biochemistry
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Samantha J. Mascuch
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | | | - Julia Kubanek
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| |
Collapse
|
64
|
Burrichter A, Denger K, Franchini P, Huhn T, Müller N, Spiteller D, Schleheck D. Anaerobic Degradation of the Plant Sugar Sulfoquinovose Concomitant With H 2S Production: Escherichia coli K-12 and Desulfovibrio sp. Strain DF1 as Co-culture Model. Front Microbiol 2018; 9:2792. [PMID: 30546350 PMCID: PMC6278857 DOI: 10.3389/fmicb.2018.02792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is produced by plants and other phototrophs and its biodegradation is a relevant component of the biogeochemical carbon and sulfur cycles. SQ is known to be degraded by aerobic bacterial consortia in two tiers via C3-organosulfonates as transient intermediates to CO2, water and sulfate. In this study, we present a first laboratory model for anaerobic degradation of SQ by bacterial consortia in two tiers to acetate and hydrogen sulfide (H2S). For the first tier, SQ-degrading Escherichia coli K-12 was used. It catalyzes the fermentation of SQ to 2,3-dihydroxypropane-1-sulfonate (DHPS), succinate, acetate and formate, thus, a novel type of mixed-acid fermentation. It employs the characterized SQ Embden-Meyerhof-Parnas pathway, as confirmed by mutational and proteomic analyses. For the second tier, a DHPS-degrading Desulfovibrio sp. isolate from anaerobic sewage sludge was used, strain DF1. It catalyzes another novel fermentation, of the DHPS to acetate and H2S. Its DHPS desulfonation pathway was identified by differential proteomics and demonstrated by heterologously produced enzymes: DHPS is oxidized via 3-sulfolactaldehyde to 3-sulfolactate (SL) by two NAD+-dependent dehydrogenases (DhpA, SlaB); the SL is cleaved by an SL sulfite-lyase known from aerobic bacteria (SuyAB) to pyruvate and sulfite. The pyruvate is oxidized to acetate, while the sulfite is used as electron acceptor in respiration and reduced to H2S. In conclusion, anaerobic sulfidogenic SQ degradation was demonstrated as a novel link in the biogeochemical sulfur cycle. SQ is also a constituent of the green-vegetable diet of herbivores and omnivores and H2S production in the intestinal microbiome has many recognized and potential contributions to human health and disease. Hence, it is important to examine bacterial SQ degradation also in the human intestinal microbiome, in relation to H2S production, dietary conditions and human health.
Collapse
Affiliation(s)
- Anna Burrichter
- Department of Biology, University of Konstanz, Konstanz, Germany.,The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Karin Denger
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Huhn
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, Konstanz, Germany.,The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany.,The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
65
|
Robidart JC, Magasin JD, Shilova IN, Turk-Kubo KA, Wilson ST, Karl DM, Scholin CA, Zehr JP. Effects of nutrient enrichment on surface microbial community gene expression in the oligotrophic North Pacific Subtropical Gyre. ISME JOURNAL 2018; 13:374-387. [PMID: 30254320 DOI: 10.1038/s41396-018-0280-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/26/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Abstract
Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which are supplied, in part, by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities. We combined in situ sampling using the Environmental Sample Processor and a small-scale mixing experiment with lower euphotic zone water to determine how individual populations respond to mixing. Transcriptional responses were measured using the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) microarray, which targets all three domains of life and viruses. The experiment showed that mixing substantially affects photosynthetic taxa as expected, but surprisingly also showed that populations respond differently to unfiltered deep water which contains particles (organisms and detritus) compared to filtered deep water that only contains nutrients and viruses, pointing to the impact of biological interactions associated with these events. Comparison between experimental and in situ population transcription patterns indicated that manipulated populations can serve as analogs for natural populations, and that natural populations may be frequently or continuously responding to nutrients from deeper waters. Finally, this study also shows that the microarray approach, which is complementary to metatranscriptomic sequencing, is useful for determining the physiological status of in situ microbial communities.
Collapse
Affiliation(s)
- J C Robidart
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.,National Oceanography Centre, Southampton, UK
| | - J D Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - I N Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.,Second Genome, South San Francisco, CA, USA
| | - K A Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - S T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - D M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - C A Scholin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - J P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
66
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
67
|
Abstract
The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the “salt-in” strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the “salt-out” strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress–responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.
Collapse
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
68
|
Schulz A, Hermann L, Freibert SA, Bönig T, Hoffmann T, Riclea R, Dickschat JS, Heider J, Bremer E. Transcriptional regulation of ectoine catabolism in response to multiple metabolic and environmental cues. Environ Microbiol 2017; 19:4599-4619. [PMID: 28892254 DOI: 10.1111/1462-2920.13924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/04/2023]
Abstract
Ectoine and hydroxyectoine are effective microbial osmostress protectants, but can also serve as versatile nutrients for bacteria. We have studied the genetic regulation of ectoine and hydroxyectoine import and catabolism in the marine Roseobacter species Ruegeria pomeroyi and identified three transcriptional regulators involved in these processes: the GabR/MocR-type repressor EnuR, the feast and famine-type regulator AsnC and the two-component system NtrYX. The corresponding genes are widely associated with ectoine and hydroxyectoine uptake and catabolic gene clusters (enuR, asnC), and with microorganisms predicted to consume ectoines (ntrYX). EnuR contains a covalently bound pyridoxal-5'-phosphate as a co-factor and the chemistry underlying the functioning of MocR/GabR-type regulators typically requires a system-specific low molecular mass effector molecule. Through ligand binding studies with purified EnuR, we identified N-(alpha)-L-acetyl-2,4-diaminobutyric acid and L-2,4-diaminobutyric acid as inducers for EnuR that are generated through ectoine catabolism. AsnC/Lrp-type proteins can wrap DNA into nucleosome-like structures, and we found that the asnC gene was essential for use of ectoines as nutrients. Furthermore, we discovered through transposon mutagenesis that the NtrYX two-component system is required for their catabolism. Database searches suggest that our findings have important ramifications for an understanding of the molecular biology of most microbial consumers of ectoines.
Collapse
Affiliation(s)
- Annina Schulz
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Robert-Koch Str. 6, D-35032 Marburg, Germany
| | - Tobias Bönig
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Ramona Riclea
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|