51
|
Teng Y, Xu Y, Wang X, Christie P. Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Front Microbiol 2019; 10:106. [PMID: 30837956 PMCID: PMC6383490 DOI: 10.3389/fmicb.2019.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
52
|
Inhibition Studies with 2-Bromoethanesulfonate Reveal a Novel Syntrophic Relationship in Anaerobic Oleate Degradation. Appl Environ Microbiol 2019; 85:AEM.01733-18. [PMID: 30366998 PMCID: PMC6328780 DOI: 10.1128/aem.01733-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In anaerobic treatment of complex wastewater containing fat, oils, and grease, high long-chain fatty acid (LCFA) concentrations may inhibit microbial communities, particularly those of methanogens. Here, we investigated if anaerobic degradation of LCFAs can proceed when methanogens are inhibited and in the absence of typical external electron acceptors, such as nitrate, iron, or sulfate. Inhibition studies were performed with the methanogenic inhibitor 2-bromoethanesulfonate (BrES). We noticed that, after autoclaving, BrES underwent partial hydrolysis and turned out to be a mixture of two sulfonates (BrES and isethionate). We found out that LCFA conversion proceeded faster in the assays where methanogenesis was inhibited, and that it was dependent on the utilization of isethionate. In this study, we report LCFA degradation coupled to desulfonation. Our results also showed that BrES can be utilized by anaerobic bacteria. Degradation of long-chain fatty acids (LCFAs) in methanogenic environments is a syntrophic process involving the activity of LCFA-degrading bacteria and hydrogen-utilizing methanogens. If methanogens are inhibited, other hydrogen scavengers are needed to achieve complete LCFA degradation. In this work, we developed two different oleate (C18:1 LCFA)-degrading anaerobic enrichment cultures, one methanogenic (ME) and another in which methanogenesis was inhibited (IE). Inhibition of methanogens was attained by adding a solution of 2-bromoethanesulfonate (BrES), which turned out to consist of a mixture of BrES and isethionate. Approximately 5 times faster oleate degradation was accomplished by the IE culture compared with the ME culture. A bacterium closely related to Syntrophomonas zehnderi (99% 16S rRNA gene identity) was the main oleate degrader in both enrichments, in syntrophic relationship with hydrogenotrophic methanogens from the genera Methanobacterium and Methanoculleus (in ME culture) or with a bacterium closely related to Desulfovibrio aminophilus (in IE culture). A Desulfovibrio species was isolated, and its ability to utilize hydrogen was confirmed. This bacterium converted isethionate to acetate and sulfide, with or without hydrogen as electron donor. This bacterium also utilized BrES but only after 3 months of incubation. Our study shows that syntrophic oleate degradation can be coupled to desulfonation. IMPORTANCE In anaerobic treatment of complex wastewater containing fat, oils, and grease, high long-chain fatty acid (LCFA) concentrations may inhibit microbial communities, particularly those of methanogens. Here, we investigated if anaerobic degradation of LCFAs can proceed when methanogens are inhibited and in the absence of typical external electron acceptors, such as nitrate, iron, or sulfate. Inhibition studies were performed with the methanogenic inhibitor 2-bromoethanesulfonate (BrES). We noticed that, after autoclaving, BrES underwent partial hydrolysis and turned out to be a mixture of two sulfonates (BrES and isethionate). We found out that LCFA conversion proceeded faster in the assays where methanogenesis was inhibited, and that it was dependent on the utilization of isethionate. In this study, we report LCFA degradation coupled to desulfonation. Our results also showed that BrES can be utilized by anaerobic bacteria.
Collapse
|
53
|
Kurade MB, Saha S, Salama ES, Patil SM, Govindwar SP, Jeon BH. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. BIORESOURCE TECHNOLOGY 2019; 272:351-359. [PMID: 30384210 DOI: 10.1016/j.biortech.2018.10.047] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 05/23/2023]
Abstract
Fats, oil and grease (FOG) are energy-dense wastes that substantially increase biomethane recovery. Shifts in the microbial community during anaerobic co-digestion of FOG was assessed to understand relationships between substrate digestion and microbial adaptations. Excessive addition of FOG inhibited the methanogenic activity during initial phase; however, it enhanced the ultimate methane production by 217% compared to the control. The dominance of Proteobacteria was decreased with a simultaneous increase in Firmicutes, Bacteriodetes, Synergistetes and Euryarchaeota during the co-digestion. A significant increase in Syntrophomonas (0.18-11%), Sporanaerobacter (0.14-6%) and Propionispira (0.02-19%) was observed during co-digestion, which substantiated their importance in acetogenesis. Among methanogenic Archaea, the dominance of Methanosaeta (94%) at the beginning of co-digestion was gradually replaced by Methanosarcina (0.52-95%). The absence/relatively low abundance of syntrophic acetate oxidizers and hydrogenotrophic methanogens, and dominance of acetoclastic methanogens suggested that methane generation during co-digestion of FOG was predominantly conducted through acetoclastic pathway led by Methanosarcina.
Collapse
Affiliation(s)
- Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - El-Sayed Salama
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
54
|
Shakeri Yekta S, Liu T, Axelsson Bjerg M, Šafarič L, Karlsson A, Björn A, Schnürer A. Sulfide level in municipal sludge digesters affects microbial community response to long-chain fatty acid loads. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:259. [PMID: 31700542 PMCID: PMC6825336 DOI: 10.1186/s13068-019-1598-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/22/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Waste lipids are attractive substrates for co-digestion with primary and activated sewage sludge (PASS) to improve biogas production at wastewater treatment plants. However, slow conversion rates of long-chain fatty acids (LCFA), produced during anaerobic digestion (AD), limit the applicability of waste lipids as co-substrates for PASS. Previous observations indicate that the sulfide level in PASS digesters affects the capacity of microbial communities to convert LCFA to biogas. This study assessed the microbial community response to LCFA loads in relation to sulfide level during AD of PASS by investigating process performance and microbial community dynamics upon addition of oleate (C18:1) and stearate (C18:0) to PASS digesters at ambient and elevated sulfide levels. RESULTS Conversion of LCFA to biogas was limited (30% of theoretical biogas potential) during continuous co-digestion with PASS, which resulted in further LCFA accumulation. However, the accumulated LCFA were converted to biogas (up to 66% of theoretical biogas potential) during subsequent batch-mode digestion, performed without additional substrate load. Elevated sulfide level stimulated oleate (but not stearate) conversion to acetate, but oleate and sulfide imposed a synergistic limiting effect on acetoclastic methanogenesis and biogas formation. Next-generation sequencing of 16S rRNA gene amplicons of bacteria and archaea showed that differences in sulfide level and LCFA type resulted in microbial community alterations with distinctly different patterns. Taxonomic profiling of the sequencing data revealed that the phylum Cloacimonetes is likely a key group during LCFA degradation in PASS digesters, where different members take part in degradation of saturated and unsaturated LCFA; genus W5 (family Cloacimonadaceae) and family W27 (order Cloacimonadales), respectively. In addition, LCFA-degrading Syntrophomonas, which is commonly present in lipid-fed digesters, increased in relative abundance after addition of oleate at elevated sulfide level, but not without sulfide or after stearate addition. Stearate conversion to biogas was instead associated with increasing abundance of hydrogen-producing Smithella and hydrogenotrophic Methanobacterium. CONCLUSIONS Long-chain fatty acid chain saturation and sulfide level are selective drivers for establishment of LCFA-degrading microbial communities in municipal sludge digesters.
Collapse
Affiliation(s)
- Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change and Biogas Research Center, Linköping University, 581 83 Linköping, Sweden
| | - Tong Liu
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Mette Axelsson Bjerg
- Department of Thematic Studies-Environmental Change and Biogas Research Center, Linköping University, 581 83 Linköping, Sweden
| | - Luka Šafarič
- Department of Thematic Studies-Environmental Change and Biogas Research Center, Linköping University, 581 83 Linköping, Sweden
| | | | - Annika Björn
- Department of Thematic Studies-Environmental Change and Biogas Research Center, Linköping University, 581 83 Linköping, Sweden
| | - Anna Schnürer
- Department of Thematic Studies-Environmental Change and Biogas Research Center, Linköping University, 581 83 Linköping, Sweden
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
55
|
Li J, Luo C, Zhang G, Zhang D. Coupling magnetic-nanoparticle mediated isolation (MMI) and stable isotope probing (SIP) for identifying and isolating the active microbes involved in phenanthrene degradation in wastewater with higher resolution and accuracy. WATER RESEARCH 2018; 144:226-234. [PMID: 30032019 DOI: 10.1016/j.watres.2018.07.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Stable isotope probing (SIP) is a cultivation-independent approach identifying the functional microbes in their natural habitats, possibly linking their identities to functions. DNA-SIP is well-established but suffers from the shift of 12C-DNA into the heavy DNA (13C-DNA) fraction, which significantly reduces the resolution and accuracy. In this study, we coupled magnetic-nanoparticle mediated isolation (MMI) and DNA-SIP, namely MMI-SIP, to identify the active microbes involved in phenanthrene degradation from PAH-contaminated wastewater. Microbes affiliated to Pseudomonas and Sphingobium were responsible for in situ phenanthrene metabolism from the SIP results, and Pigmentiphaga was only unraveled for phenanthrene degradation in the MMI and MMI-SIP microcosms. MMI-SIP also significantly increased the enrichment of the above microbes and genes encoding the alpha subunit of the PAH-ring hydroxylating dioxygenase (PAH-RHDα) in the heavy DNA fractions. Our findings suggest that MMI-SIP is a powerful tool, with higher resolution and accuracy, to distinguish the active microbes involved in phenanthrene metabolism in the wastewater, provide a more precise map of functional microbial communities, and offer suggestions for effective management for wastewater treatment plants.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
56
|
Guo Y, Zhao Y, Zhu T, Li J, Feng Y, Zhao H, Liu S. A metabolomic view of how low nitrogen strength favors anammox biomass yield and nitrogen removal capability. WATER RESEARCH 2018; 143:387-398. [PMID: 29986248 DOI: 10.1016/j.watres.2018.06.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
The low yield of anaerobic ammonium oxidation (anammox) biomass has attracted great attention because of its difficulty to be abundantly enriched. Patterns of substrate supply greatly influence microbial metabolism and behavior. The present study proposed that low nitrogen strength was beneficial to anammox biomass yield and nitrogen removal when comparing a membrane bioreactor (MBR) operated at low nitrogen strength with short hydraulic retention time (HRT) (R-low; influent: fixed at 100 mg-N L-1) and one operated at high nitrogen strength with long HRT (R-stepwise; influent: 100-700 mg-N L-1). Different nitrite concentrations in the two MBRs would indicate discrepant environments, and inevitably resulted in the discrepant microbial responses for anammox community. In particular, we found that at low nitrogen strength, increased activities of purine and pyrimidine metabolism pathways provided more abundant nucleic acids for bacterial proliferation. More active reaction of lipid and protein synthesis favored the synthesis of cellular structure. Importantly, the metabolism of cheaper amino acids was more active under low nitrogen strength, which was coupled with higher metabolic flux and potentially more active exchange of costly amino acids as public goods. In this way, more energy could be saved and applied to biomass yield. Higher active bacterial diversity and more positive interactions among bacterial species in R-low further favored biomass yield and nitrogen removal. The present study highlighted the significant effect of substrate supply patterns on anammox, which is meaningful to overcome the current bottleneck of deficient anammox biomass for application in wastewater treatment.
Collapse
Affiliation(s)
- Yongzhao Guo
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yunpeng Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Jianqi Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ying Feng
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Huazhang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
57
|
Bonk F, Popp D, Weinrich S, Sträuber H, Kleinsteuber S, Harms H, Centler F. Intermittent fasting for microbes: how discontinuous feeding increases functional stability in anaerobic digestion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:274. [PMID: 30323859 PMCID: PMC6173896 DOI: 10.1186/s13068-018-1279-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/29/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Demand-driven biogas production could play an important role for future sustainable energy supply. However, feeding a biogas reactor according to energy demand may lead to organic overloading and, thus, to process failures. To minimize this risk, digesters need to be actively steered towards containing more robust microbial communities. This study focuses on acetogenesis and methanogenesis as crucial process steps for avoiding acidification. We fed lab-scale anaerobic digesters with volatile fatty acids under various feeding regimes and disturbances. The resulting microbial communities were analyzed on DNA and RNA level by terminal restriction fragment length polymorphism of the mcrA gene, 16S rRNA gene amplicon sequencing, and a [2-13C]-acetate assay. A modified Anaerobic Digestion Model 1 (ADM1) that distinguishes between the acetoclastic methanogens Methanosaeta and Methanosarcina was developed and fitted using experimental abiotic and biotic process parameters. RESULTS Discontinuous feeding led to more functional resilience than continuous feeding, without loss in process efficiency. This was attributed to a different microbial community composition. Methanosaeta dominated the continuously fed reactors, while its competitor Methanosarcina was washed out. With discontinuous feeding, however, the fluctuating acetic acid concentrations provided niches to grow and co-exist for both organisms as shown by transcription analysis of the mcrA gene. Our model confirmed the higher functional resilience due to the higher abundance of Methanosarcina based on its higher substrate uptake rate and higher resistance to low pH values. Finally, we applied our model to maize silage as a more complex and practically relevant substrate and showed that our model is likely transferable to the complete AD process. CONCLUSIONS The composition of the microbial community determined the AD functional resilience against organic overloading in our experiments. In particular, communities with higher share of Methanosarcina showed higher process stability. The share of these microorganisms can be purposefully increased by discontinuous feeding. A model was developed that enables derivation of the necessary feeding regime for a more robust community with higher share of Methanosarcina.
Collapse
Affiliation(s)
- Fabian Bonk
- Department of Environmental Microbiology, UFZ–Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, UFZ–Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Sören Weinrich
- Biochemical Conversion Department, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Str. 116, 04347 Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, UFZ–Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, UFZ–Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, UFZ–Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, UFZ–Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
58
|
Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment. ISME JOURNAL 2018; 13:277-289. [PMID: 30206424 PMCID: PMC6331629 DOI: 10.1038/s41396-018-0269-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment.
Collapse
|
59
|
Substrate-Induced Response in Biogas Process Performance and Microbial Community Relates Back to Inoculum Source. Microorganisms 2018; 6:microorganisms6030080. [PMID: 30081593 PMCID: PMC6163493 DOI: 10.3390/microorganisms6030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
This study investigated whether biogas reactor performance, including microbial community development, in response to a change in substrate composition is influenced by initial inoculum source. For the study, reactors previously operated with the same grass–manure mixture for more than 120 days and started with two different inocula were used. These reactors initially showed great differences depending on inoculum source, but eventually showed similar performance and overall microbial community structure. At the start of the present experiment, the substrate was complemented with milled feed wheat, added all at once or divided into two portions. The starting hypothesis was that process performance depends on initial inoculum source and microbial diversity, and thus that reactor performance is influenced by the feeding regime. In response to the substrate change, all reactors showed increases and decreases in volumetric and specific methane production, respectively. However, specific methane yield and development of the microbial community showed differences related to the initial inoculum source, confirming the hypothesis. However, the different feeding regimes had only minor effects on process performance and overall community structure, but still induced differences in the cellulose-degrading community and in cellulose degradation.
Collapse
|
60
|
Treu L, Campanaro S, Kougias PG, Sartori C, Bassani I, Angelidaki I. Hydrogen-Fueled Microbial Pathways in Biogas Upgrading Systems Revealed by Genome-Centric Metagenomics. Front Microbiol 2018; 9:1079. [PMID: 29892275 PMCID: PMC5985405 DOI: 10.3389/fmicb.2018.01079] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023] Open
Abstract
Biogas upgrading via carbon dioxide hydrogenation is an emerging technology for electrofuel production. The biomethanation efficiency is strongly dependent on a balanced microbial consortium, whose high- resolution characterization along with their functional potential and interactions are pivotal for process optimization. The present work is the first genome-centric metagenomic study on mesophilic and thermophilic biogas upgrading reactors aiming to define the metabolic profile of more than 200 uncultivated microbes involved in hydrogen assisted methanogenesis. The outcomes from predictive functional analyses were correlated with microbial abundance variations to clarify the effect of process parameters on the community. The operational temperature significantly influenced the microbial richness of the reactors, while the H2 addition distinctively alternated the abundance of the taxa. Two different Methanoculleus species (one mesophilic and one thermophilic) were identified as the main responsible ones for methane metabolism. Finally, it was demonstrated that the addition of H2 exerted a selective pressure on the concerted or syntrophic interactions of specific microbes functionally related to carbon fixation, propionate and butanoate metabolisms. Novel bacteria were identified as candidate syntrophic acetate oxidizers (e.g., Tepidanaerobacter sp. DTU063), while the addition of H2 favored the proliferation of potential homoacetogens (e.g., Clostridia sp. DTU183). Population genomes encoding genes of Wood-Ljungdahl pathway were mainly thermophilic, while propionate degraders were mostly identified at mesophilic conditions. Finally, putative syntrophic interactions were identified between microbes that have either versatile metabolic abilities or are obligate/facultative syntrophs.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Panagiotis G. Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Sartori
- Department of Agronomy, Food Natural Resources Animals and Environment, University of Padova, Padova, Italy
| | - Ilaria Bassani
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
61
|
Ziels RM, Svensson BH, Sundberg C, Larsson M, Karlsson A, Yekta SS. Microbial rRNA gene expression and co-occurrence profiles associate with biokinetics and elemental composition in full-scale anaerobic digesters. Microb Biotechnol 2018; 11:694-709. [PMID: 29633555 PMCID: PMC6011980 DOI: 10.1111/1751-7915.13264] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/29/2022] Open
Abstract
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full-scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3 -N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse-transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3 -N, Fe, S, Mo and Ni. A co-occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy-sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Bo H Svensson
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden.,Biogas Research Center, Linköping University, Linköping, Sweden
| | - Carina Sundberg
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden
| | - Madeleine Larsson
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden.,Biogas Research Center, Linköping University, Linköping, Sweden
| | | | - Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden.,Biogas Research Center, Linköping University, Linköping, Sweden
| |
Collapse
|
62
|
Jia Y, Ng SK, Lu H, Cai M, Lee PKH. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:117. [PMID: 29713376 PMCID: PMC5911951 DOI: 10.1186/s13068-018-1121-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/16/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. RESULTS Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum-related and Ruminococcus-related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum-related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. CONCLUSIONS Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters.
Collapse
Affiliation(s)
- Yangyang Jia
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siu-Kin Ng
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Hongyuan Lu
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Mingwei Cai
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick K. H. Lee
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|