51
|
Verjans R, van Bilsen M, Schroen B. Reviewing the Limitations of Adult Mammalian Cardiac Regeneration: Noncoding RNAs as Regulators of Cardiomyogenesis. Biomolecules 2020; 10:biom10020262. [PMID: 32050588 PMCID: PMC7072544 DOI: 10.3390/biom10020262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
The adult mammalian heart is incapable of regeneration following cardiac injury, leading to a decline in function and eventually heart failure. One of the most evident barriers limiting cardiac regeneration is the inability of cardiomyocytes to divide. It has recently become clear that the mammalian heart undergoes limited cardiomyocyte self-renewal throughout life and is even capable of modest regeneration early after birth. These exciting findings have awakened the goal to promote cardiomyogenesis of the human heart to repair cardiac injury or treat heart failure. We are still far from understanding why adult mammalian cardiomyocytes possess only a limited capacity to proliferate. Identifying the key regulators may help to progress towards such revolutionary therapy. Specific noncoding RNAs control cardiomyocyte division, including well explored microRNAs and more recently emerged long noncoding RNAs. Elucidating their function and molecular mechanisms during cardiomyogenesis is a prerequisite to advance towards therapeutic options for cardiac regeneration. In this review, we present an overview of the molecular basis of cardiac regeneration and describe current evidence implicating microRNAs and long noncoding RNAs in this process. Current limitations and future opportunities regarding how these regulatory mechanisms can be harnessed to study myocardial regeneration will be addressed.
Collapse
Affiliation(s)
- Robin Verjans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Correspondence: ; Tel.: +31-433882949
| |
Collapse
|
52
|
Ahn J, Wu H, Lee J, Hwang IS, Yu D, Ahn JS, Lee JW, Hwang S, Lee K. Identification of a Novel Imprinted Transcript in the Porcine GNAS Complex Locus Using Methylome and Transcriptome of Parthenogenetic Fetuses. Genes (Basel) 2020; 11:genes11010096. [PMID: 31947640 PMCID: PMC7017182 DOI: 10.3390/genes11010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022] Open
Abstract
Genomic imprinting in domestic animals contributes to the variance of performance traits. However, research remains to be done on large-scale detection of epigenetic landscape of porcine imprinted loci including the GNAS complex locus. The purpose of this study was to generate porcine parthenogenetic fetuses and comprehensively identify imprinting patterns of the GNAS locus in transcript levels. To this end, both normally fertilized and bimaternal (uniparental) parthenogenetic porcine fetuses were generated, and whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) were performed to construct methylome and transcriptome, respectively. Differentially methylated regions (DMRs) between the fetuses were identified through methylome analysis, and parental-origin-specific expression patterns of transcripts were examined with transcriptome. As a result, three major DMRs were identified: paternally methylated Nesp DMR, maternally methylated Nespas-Gnasxl DMR, and maternally methylated Exon1B–Exon1A DMR. Parental-origin-specific expressions of those five DMR-affected transcripts were found, including a novel imprinted transcript, Exon1B, in pigs. In conclusion, using parthenotes, parental-origin-specific imprinting patterns in the porcine GNAS locus was comprehensively identified, and our approach paves the way for the discovery of novel imprinted genes and loci in a genomic context across species.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
| | - Huiguang Wu
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Joonbum Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Korea;
| | - Debing Yu
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
- Department of Animal Breeding & Genetics, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Seop Ahn
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (J.-S.A.)
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (J.-S.A.)
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Korea;
- Correspondence: (S.H.); (K.L.)
| | - Kichoon Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
- Correspondence: (S.H.); (K.L.)
| |
Collapse
|
53
|
Wang X, Pang H, Shah BA, Gu H, Zhang L, Wang H. A Male Case of Kagami-Ogata Syndrome Caused by Paternal Unipaternal Disomy 14 as a Result of a Robertsonian Translocation. Front Pediatr 2020; 8:88. [PMID: 32211354 PMCID: PMC7076151 DOI: 10.3389/fped.2020.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Kagami-Ogata syndrome (KOS) is a rare imprinting disorder characterized by skeletal abnormalities, dysmorphic facial features, growth retardation and developmental delay. The genetic etiology of KOS includes paternal uniparental disomy 14 [upd(14)pat], epimutations and microdeletions affecting the maternally derived imprinted region of chromosome 14q32.2. More than seventy KOS cases have been reported thus far; however, only 10, including two familial, are associated with upd(14)pat harboring Robertsonian translocation (ROB). Here, we reported a male infant with clinical manifestations of facial dysmorphism, bell-shaped small thorax, and omphalocele. Karyotype analyses identify a balanced ROB involving the long arms of chromosomes 13 and 14 both in the patient and his father. We further confirm the pattern of upd(14)pat utilizing DNA polymorphic markers. In conclusion, our case report provides a new male KOS case caused by upd(14)pat with paternally inherited Robertsonian translocation, which represents the second male case officially reported. Notably, a KOS case due to upd(14)pat and ROB is rare. An accurate diagnosis requires not only the identification of the characteristic clinical features but also systemic cytogenetic and molecular studies.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Birju A Shah
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hongcang Gu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
54
|
Igreja da Silva JI, Ribeiro B, Cadilhe A, Nogueira-Silva C. Paternal uniparental disomy for chromosome 14: prenatal management. BMJ Case Rep 2019; 12:12/12/e231705. [PMID: 31892621 DOI: 10.1136/bcr-2019-231705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We present a case of a 34-year-old multiparous woman who had been diagnosed with a 14 weeks' gestation showing an abdominal wall bulge possibly representing an omphalocele, containing liver and intestinal loops, at her first-trimester ultrasound scan. At 16 weeks' gestation, an amniocentesis was performed and karyotype analysis revealed a balanced Robertsonian translocation between chromosomes 13 and 14 in a female fetus (45,XX,der(13;14)(q10;q10)). Given this result and ultrasound findings, karyotype and molecular study of the couple were suggested. The results pointed out the absence of maternal contribution to the analysed regions by paternal uniparental disomy for chromosome 14 (isodisomy), which is associated with a severe phenotype. The correlation between ultrasound findings and the genetic study is primordial to guide the diagnostic assessment and to establish the prognosis of the fetal pathology.
Collapse
Affiliation(s)
| | - Barbara Ribeiro
- Department of Obstetrics and Gynecology, Braga Hospital, Braga, Portugal
| | - Alexandra Cadilhe
- Department of Obstetrics and Gynecology, Braga Hospital, Braga, Portugal
| | - Cristina Nogueira-Silva
- Department of Obstetrics and Gynecology, Braga Hospital, Braga, Portugal.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, ICVS 3B's Associate Laboratory, Braga, Portugal
| |
Collapse
|
55
|
Poaty H, Pelluard F, Diallo MS, Ondima IPL, André G, Silou-Massamba JF. Omphalocele: a review of common genetic etiologies. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0040-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractOmphalocele is one of the most common congenital defects in the anterior abdominal wall. The malformation is associated with various pathologies especially with chromosomal disorders. The developmental defect is observed in Congolese hospitals, but risk factors are not well precised on the published case reports, which are more often focused on management. We aim in this paper to make a review on the condition, insisting on the risk factors of omphaloceles mainly of those of genetic origins.
Collapse
|
56
|
Zhu W, Botticelli EM, Kery RE, Mao Y, Wang X, Yang A, Wang X, Zhou J, Zhang X, Soberman RJ, Klibanski A, Zhou Y. Meg3-DMR, not the Meg3 gene, regulates imprinting of the Dlk1-Dio3 locus. Dev Biol 2019; 455:10-18. [PMID: 31301299 PMCID: PMC6754764 DOI: 10.1016/j.ydbio.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The imprinted delta like 1 homolog (DLK1) - thyroxine deiodinase type III (DIO3) locus regulates development and growth. Its imprinting regulation involves two differentially methylated regions (DMRs), intergenic-DMR (IG-DMR) and maternally expressed gene 3-DMR (Meg3-DMR). In mice, a maternal deletion of the IG-DMR leads to LOI in the locus, proving that the IG-DMR is a cis-acting imprinting control region of the locus. However, the Meg3-DMR overlaps with the promoter, exon 1 and intron 1 of the Meg3 gene. Because deletion of the Meg3-DMR inactivates the Meg3 gene, their roles in imprinting regulation of Meg3-DMR mice is unknown. Therefore, we generated two mouse models: Meg3Δ(1-4) and Meg3Δ(2-4), respectively targeting exons 1-4 and exons 2-4 of the Meg3 gene. A maternal deletion of Meg3Δ(1-4) caused embryonic death and LOI in both embryos and placentas, but did not affect methylation status of the IG-DMR. In contrast, mice carrying a maternal deletion of Meg3Δ(2-4) were born normally and did not have LOI. These data indicate that it is the Meg3-DMR, not the Meg3 gene, which regulates imprinting of the Dlk1-Dio3 locus.
Collapse
Affiliation(s)
- Wende Zhu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Erin M Botticelli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Rachel E Kery
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Yanfei Mao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Xin Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Anli Yang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Xianling Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Jie Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Roy J Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA.
| |
Collapse
|
57
|
Daum H, Meiner V, Hacohen N, Zvi N, Eilat A, Drai-Hasid R, Yagel S, Zenvirt S, Frumkin A. Single-nucleotide polymorphism-based chromosomal microarray analysis provides clues and insights into disease mechanisms. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 54:655-660. [PMID: 30693591 DOI: 10.1002/uog.20230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Chromosomal microarray analysis (CMA) is the modality of choice for prenatal diagnosis in pregnancy with fetal malformation, as it has a high diagnostic yield for microdeletion/duplication syndromes. The aim of this study was to demonstrate the additional utility of single-nucleotide polymorphism (SNP)-based CMA in diagnosing monogenic diseases, imprinting disorders and uniparental disomy (UPD). METHODS CMA was performed using Affymetrix CytoScan array, for all indications in 6995 pregnancies, at a tertiary referral hospital from November 2013 to June 2018. We describe four cases that had a CMA result that provided a more comprehensive understanding of the complex genetic mechanisms underlying the clinical presentation. RESULTS In the first fetus, CMA was performed due to intrauterine growth restriction and revealed a 75 kbp maternally inherited microdeletion encompassing the Bloom syndrome gene (BLM). A diagnosis of Bloom syndrome was made upon identifying a paternally inherited common Ashkenazi founder mutation. In the second case, CMA was performed due to severely abnormal maternal serum analytes and revealed a deletion in 14q32.2q32.31 on the maternally inherited copy, leading to a diagnosis of Kagami-Ogata syndrome, which is an imprinting disorder. In the third case, amniocentesis was performed because of late-onset fetal macrosomia and mild polyhydramnios. CMA detected a deletion encompassing the locus of Prader-Willi/Angelman syndrome. In the fourth case, amniocentesis was performed due to maternal cytomegalovirus seroconversion. Maternal UPD of the entire long arm of chromosome 11 was detected. CONCLUSION Prenatal CMA, based on oligo and SNP platforms, increases the diagnostic yield and enables a wider spectrum of disorders to be detected through the identification of complex genetic etiologies beyond only copy number variants. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- H Daum
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - V Meiner
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Hacohen
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Zvi
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Eilat
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - R Drai-Hasid
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Zenvirt
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Frumkin
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
58
|
Valbuena GN, Apostolidou S, Roberts R, Barnes J, Alderton W, Harper L, Jacobs I, Menon U, Keun HC. The 14q32 maternally imprinted locus is a major source of longitudinally stable circulating microRNAs as measured by small RNA sequencing. Sci Rep 2019; 9:15787. [PMID: 31673048 PMCID: PMC6823392 DOI: 10.1038/s41598-019-51948-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Understanding the normal temporal variation of serum molecules is a critical factor for identifying useful candidate biomarkers for the diagnosis and prognosis of chronic disease. Using small RNA sequencing in a longitudinal study of 66 women with no history of cancer, we determined the distribution and dynamics (via intraclass correlation coefficients, ICCs) of the miRNA profile over 3 time points sampled across 2-5 years in the course of the screening trial, UKCTOCS. We were able to define a subset of longitudinally stable miRNAs (ICC >0.75) that were individually discriminating of women who had no cancer over the study period. These miRNAs were dominated by those originating from the C14MC cluster that is subject to maternal imprinting. This assessment was not significantly affected by common confounders such as age, BMI or time to centrifugation nor alternative methods to data normalisation. Our analysis provides important benchmark data supporting the development of miRNA biomarkers for the impact of life-course exposure as well as diagnosis and prognostication of chronic disease.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, United Kingdom
| | - Sophia Apostolidou
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Rhiannon Roberts
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Julie Barnes
- Abcodia Ltd, PO Box 268, Royston, SG8 1EL, Hertfordshire, UK
| | - Wendy Alderton
- Abcodia Ltd, PO Box 268, Royston, SG8 1EL, Hertfordshire, UK
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Lauren Harper
- Cancer Research UK, Angel Building, 407 St John Street, London, UK
| | - Ian Jacobs
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
- University of New South Wales, Sydney, New South Wales, Australia
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, United Kingdom.
| |
Collapse
|
59
|
Sanli I, Lalevée S, Cammisa M, Perrin A, Rage F, Llères D, Riccio A, Bertrand E, Feil R. Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis. Cell Rep 2019; 23:337-348. [PMID: 29641995 DOI: 10.1016/j.celrep.2018.03.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/01/2017] [Accepted: 03/10/2018] [Indexed: 01/17/2023] Open
Abstract
Although many long non-coding RNAs (lncRNAs) are imprinted, their roles often remain unknown. The Dlk1-Dio3 domain expresses the lncRNA Meg3 and multiple microRNAs and small nucleolar RNAs (snoRNAs) on the maternal chromosome and constitutes an epigenetic model for development. The domain's Dlk1 (Delta-like-1) gene encodes a ligand that inhibits Notch1 signaling and regulates diverse developmental processes. Using a hybrid embryonic stem cell (ESC) system, we find that Dlk1 becomes imprinted during neural differentiation and that this involves transcriptional upregulation on the paternal chromosome. The maternal Dlk1 gene remains poised. Its protection against activation is controlled in cis by Meg3 expression and also requires the H3-Lys-27 methyltransferase Ezh2. Maternal Meg3 expression additionally protects against de novo DNA methylation at its promoter. We find that Meg3 lncRNA is partially retained in cis and overlaps the maternal Dlk1 in embryonic cells. Combined, our data evoke an imprinting model in which allelic lncRNA expression prevents gene activation in cis.
Collapse
Affiliation(s)
- Ildem Sanli
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Sébastien Lalevée
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Marco Cammisa
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), CNR, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università della Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Aurélien Perrin
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Florence Rage
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - David Llères
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Andrea Riccio
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), CNR, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università della Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Edouard Bertrand
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Robert Feil
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|
60
|
Wesseler K, Kraft F, Eggermann T. Molecular and Clinical Opposite Findings in 11p15.5 Associated Imprinting Disorders: Characterization of Basic Mechanisms to Improve Clinical Management. Int J Mol Sci 2019; 20:ijms20174219. [PMID: 31466347 PMCID: PMC6747273 DOI: 10.3390/ijms20174219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell and Beckwith-Wiedemann syndromes (SRS, BWS) are rare congenital human disorders characterized by opposite growth disturbances. With the increasing knowledge on the molecular basis of SRS and BWS, it has become obvious that the disorders mirror opposite alterations at the same genomic loci in 11p15.5. In fact, these changes directly or indirectly affect the expression of IGF2 and CDKN1C and their associated pathways, and thereby, cause growth disturbances as key features of both diseases. The increase of knowledge has become possible with the development and implementation of new and comprehensive assays. Whereas, in the beginning molecular testing was restricted to single chromosomal loci, many tests now address numerous loci in the same run, and the diagnostic implementation of (epi)genome wide assays is only a question of time. These high-throughput approaches will be complemented by the analysis of other omic datasets (e.g., transcriptome, metabolome, proteome), and it can be expected that the integration of these data will massively improve the understanding of the pathobiology of imprinting disorders and their diagnostics. Especially long-read sequencing methods, e.g., nanopore sequencing, allowing direct detection of native DNA modification, will strongly contribute to a better understanding of genomic imprinting in the near future. Thereby, new genomic loci and types of pathogenic variants will be identified, resulting in more precise discrimination into different molecular subgroups. These subgroups serve as the basis for (epi)genotype-phenotype correlations, allowing a more directed prognosis, counseling, and therapy. By deciphering the pathophysiological consequences of SRS and BWS and their molecular disturbances, future therapies will be available targeting the basic cause of the disease and respective pathomechanisms and will complement conventional therapeutic strategies.
Collapse
Affiliation(s)
- Katharina Wesseler
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany.
| |
Collapse
|
61
|
Kagami M, Yanagisawa A, Ota M, Matsuoka K, Nakamura A, Matsubara K, Nakabayashi K, Takada S, Fukami M, Ogata T. Temple syndrome in a patient with variably methylated CpGs at the primary MEG3/DLK1:IG-DMR and severely hypomethylated CpGs at the secondary MEG3:TSS-DMR. Clin Epigenetics 2019; 11:42. [PMID: 30846001 PMCID: PMC6407230 DOI: 10.1186/s13148-019-0640-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background The human chromosome 14q32.2 imprinted region harbors the primary MEG3/DLK1:IG-differentially methylated region (DMR) and secondary MEG3:TSS-DMR. The MEG3:TSS-DMR can remain unmethylated only in the presence of unmethylated MEG3/DLK1:IG-DMR in somatic tissues, but not in the placenta, because of a hierarchical regulation of the methylation pattern between the two DMRs. Methods We performed molecular studies in a 4-year-old Japanese girl with Temple syndrome (TS14). Results Pyrosequencing analysis showed extremely low methylation levels of five CpGs at the MEG3:TSS-DMR and grossly normal methylation levels of four CpGs at the MEG3/DLK1:IG-DMR in leukocytes. HumanMethylation450 BeadChip confirmed marked hypomethylation of the MEG3:TSS-DMR and revealed multilocus imprinting disturbance (MLID) including mild hypomethylation of the H19/IGF2:IG-DMR and mild hypermethylation of the GNAS A/B:TSS-DMR in leukocytes. Bisulfite sequencing showed markedly hypomethylated CpGs at the MEG3:TSS-DMR and irregularly and non-differentially methylated CpGs at the MEG3/DLK1:IG-DMR in leukocytes and apparently normal methylation patterns of the two DMRs in the placenta. Maternal uniparental disomy 14 and a deletion involving this imprinted region were excluded. Conclusions Such a methylation pattern of the MEG3/DLK1:IG-DMR has not been reported in patients with TS14. It may be possible that a certain degree of irregular hypomethylation at the MEG3/DLK1:IG-DMR has prevented methylation of the MEG3:TSS-DMR in somatic tissues and that a hypermethylation type MLID has occurred at the MEG3/DLK1:IG-DMR to yield the apparently normal methylation pattern in the placenta. Electronic supplementary material The online version of this article (10.1186/s13148-019-0640-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Atsuhiro Yanagisawa
- Department of Pediatrics, Yaizu City Hospital, 1000 Doubara, Yaizu, Shizuoka, 425-8505, Japan.,Department of Pediatrics, JR Tokyo General Hospital, 2-1-3 Yoyogi, Shibuya-ku, Tokyo, 151-8528, Japan
| | - Miyuki Ota
- Department of Pediatrics, Yaizu City Hospital, 1000 Doubara, Yaizu, Shizuoka, 425-8505, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Dokkyo Medical University, Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan. .,Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
62
|
|
63
|
Hsu CL, Chou CH, Huang SC, Lin CY, Lin MY, Tung CC, Lin CY, Lai IP, Zou YF, Youngson NA, Lin SP, Yang CH, Chen SK, Gau SSF, Huang HS. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics. Hum Mol Genet 2019; 27:1039-1054. [PMID: 29346572 DOI: 10.1093/hmg/ddy023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.
Collapse
Affiliation(s)
- Chi-Lin Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chih-Hsuan Chou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Chuan Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Meng-Ying Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Che Tung
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Yen Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Pediatrics, Yong-He Cardinal Tien Hospital, Taipei 234, Taiwan
| | - Ivan Pochou Lai
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yan-Fang Zou
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources & Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan.,Neurodevelopment Club in Taiwan, Taipei 10051, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Neurodevelopment Club in Taiwan, Taipei 10051, Taiwan
| |
Collapse
|
64
|
Chen CL, Lee CN, Lin MW, Hsu WW, Tai YY, Lin SY. Prenatal diagnosis of paternal uniparental disomy for chromosome 14 using a single-nucleotide-polymorphism-based microarray analysis: A case report. J Formos Med Assoc 2019; 118:739-742. [PMID: 30616993 DOI: 10.1016/j.jfma.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Paternal uniparental disomy 14 (UDP(14)pat) is a rare imprinting disorder with a set of unique neonatal clinical features documented, including craniofacial abnormalities, thoracic and abdominal wall defects, and polyhydraminos. To date, no studies focus on prenatal diagnosis of uniparental disomy have been published. We report a case of a fetus with abnormal ultrasound features at 18 weeks of gestation and normal karyotype result. Subsequent Single nucleotide polymorphism (SNP)-based Affymetrix 750K Microarray analysis revealed the complete loss of heterozygosity for chromosome 14, identifying a case of uniparental disomy. Postmortem examination of the aborted fetus at 21 weeks, coupled with further Affymetrix 750K microarray analysis on the parents, confirmed the diagnosis of parental uniparental disomy for chromosome 14.
Collapse
Affiliation(s)
- Chih-Ling Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Wei Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
65
|
Yen YP, Hsieh WF, Tsai YY, Lu YL, Liau ES, Hsu HC, Chen YC, Liu TC, Chang M, Li J, Lin SP, Hung JH, Chen JA. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife 2018; 7:38080. [PMID: 30311912 PMCID: PMC6221546 DOI: 10.7554/elife.38080] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes. When a gene is active, its DNA sequence is ‘transcribed’ to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos. Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons. There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.
Collapse
Affiliation(s)
- Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen-Fu Hsieh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ya-Yin Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ya-Lin Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ee Shan Liau
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ting-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Joye Li
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jui-Hung Hung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
66
|
Maternally inherited 133kb deletion of 14q32 causing Kagami–Ogata syndrome. J Hum Genet 2018; 63:1231-1239. [DOI: 10.1038/s10038-018-0506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022]
|
67
|
Beygo J, Mertel C, Kaya S, Gillessen-Kaesbach G, Eggermann T, Horsthemke B, Buiting K. The origin of imprinting defects in Temple syndrome and comparison with other imprinting disorders. Epigenetics 2018; 13:822-828. [PMID: 30227764 DOI: 10.1080/15592294.2018.1514233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Temple syndrome (TS14) is a rare imprinting disorder caused by genetic and epigenetic alterations on chromosome 14q32. A subset of these patients shows an imprinting defect (ID) where the paternal allele harbors a maternal epigenotype thus silencing the paternally expressed genes and leading to an increased expression of the maternally expressed genes. We investigated the grandparental origin of the incorrectly imprinted chromosome 14 in a cohort of 13 TS14 ID patients and their families. In seven families grandmaternal and, in six families, grandpaternal inheritance was observed. These results indicate that the ID occurred after imprint erasure in the paternal germ line. While the complete lack of methylation as observed in the majority of TS14 ID patients may be due to an imprint establishment error in the paternal germ line, cases with methylation mosaicism suggest that in general many IDs (TS14, AS, BWS, and SRS) are in fact of somatic origin in the early or late embryo.
Collapse
Affiliation(s)
- Jasmin Beygo
- a Institut für Humangenetik , Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Claudia Mertel
- a Institut für Humangenetik , Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Sabine Kaya
- a Institut für Humangenetik , Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | | | | | - Bernhard Horsthemke
- a Institut für Humangenetik , Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Karin Buiting
- a Institut für Humangenetik , Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| |
Collapse
|
68
|
Yamagata K, Kawamura A, Kasai S, Akazawa M, Takeda M, Tachibana K. Anesthetic management of a child with Kagami-Ogata syndrome complicated with marked tracheal deviation: a case report. JA Clin Rep 2018; 4:62. [PMID: 32025889 PMCID: PMC6967188 DOI: 10.1186/s40981-018-0199-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Background Kagami-Ogata syndrome (KOS) is a rare congenital imprinting disorder. The problems related to the anesthetic management of patients with KOS are respiratory distress and difficult endotracheal intubation. Case presentation A 2-year-old male was scheduled to undergo orchiopexy for bilateral cryptorchidism. Although he had a history of severe respiratory distress immediately after birth, his preoperative respiratory condition was stable. He also had marked tracheal deviation. General anesthesia was induced with nitrous oxide and sevoflurane in oxygen. A laryngeal mask airway (LMA) was inserted following rocuronium administration. Anesthesia was maintained with sevoflurane and simultaneous caudal anesthesia. His postoperative course was uneventful. Conclusions Patients with KOS should preferably undergo elective surgery only after infancy because their respiratory status is more stable as they grow older. Thorough preoperative evaluation of the respiratory tract is important even in KOS patients with a stable respiratory condition.
Collapse
Affiliation(s)
- Kazuaki Yamagata
- Department of Dental Anesthesiology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Atsushi Kawamura
- Department of Anesthesiology, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi-shi, Osaka, 594-1101, Japan.
| | - Satomi Kasai
- Department of Anesthesiology, Osaka Minami Medical Center, 2-1 Kidohigashi-machi, Kawachinagano-shi, Osaka, 586-8521, Japan
| | - Mai Akazawa
- Department of Anesthesiology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu-shi, Shiga, 520-2134, Japan
| | - Michiru Takeda
- Department of Anesthesiology, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi-shi, Osaka, 594-1101, Japan
| | - Kazuya Tachibana
- Department of Anesthesiology, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi-shi, Osaka, 594-1101, Japan
| |
Collapse
|
69
|
|
70
|
A Hearty Dose of Noncoding RNAs: The Imprinted DLK1-DIO3 Locus in Cardiac Development and Disease. J Cardiovasc Dev Dis 2018; 5:jcdd5030037. [PMID: 29996488 PMCID: PMC6162432 DOI: 10.3390/jcdd5030037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
The imprinted Dlk1-Dio3 genomic region harbors a noncoding RNA cluster encoding over fifty microRNAs (miRNAs), three long noncoding RNAs (lncRNAs), and a small nucleolar RNA (snoRNA) gene array. These distinct noncoding RNAs (ncRNAs) are thought to arise from a single polycistronic transcript that is subsequently processed into individual ncRNAs, each with important roles in diverse cellular contexts. Considering these ncRNAs are derived from a polycistron, it is possible that some coordinately regulate discrete biological processes in the heart. Here, we provide a comprehensive summary of Dlk1-Dio3 miRNAs and lncRNAs, as they are currently understood in the cellular and organ-level context of the cardiovascular system. Highlighted are expression profiles, mechanistic contributions, and functional roles of these ncRNAs in heart development and disease. Notably, a number of these ncRNAs are implicated in processes often perturbed in heart disease, including proliferation, differentiation, cell death, and fibrosis. However, most literature falls short of characterizing precise mechanisms for many of these ncRNAs, warranting further investigation. Taken together, the Dlk1-Dio3 locus represents a largely unexplored noncoding regulator of cardiac homeostasis, harboring numerous ncRNAs that may serve as therapeutic targets for cardiovascular disease.
Collapse
|
71
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Abia R, Muriana FJ. A microRNA expression signature of the postprandial state in response to a high-saturated-fat challenge. J Nutr Biochem 2018; 57:45-55. [DOI: 10.1016/j.jnutbio.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/23/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
|
72
|
Epigenetics of Circadian Rhythms in Imprinted Neurodevelopmental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:67-92. [PMID: 29933957 DOI: 10.1016/bs.pmbts.2017.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA sequence information alone cannot account for the immense variability between chromosomal alleles within diverse cell types in the brain, whether these differences are observed across time, cell type, or parental origin. The complex control and maintenance of gene expression and modulation are regulated by a multitude of molecular and cellular mechanisms that layer on top of the genetic code. The integration of genetic and environmental signals required for regulating brain development and function is achieved in part by a dynamic epigenetic landscape that includes DNA methylation, histone modifications, and noncoding RNAs. These epigenetic mechanisms establish and maintain core biological processes, including genomic imprinting and entrainment of circadian rhythms. This chapter will focus on how the epigenetic layers of DNA methylation and long, noncoding RNAs interact with circadian rhythms at specific imprinted chromosomal loci associated with the human neurodevelopmental disorders Prader-Willi, Angelman, Kagami-Ogata, and Temple syndromes.
Collapse
|
73
|
Capkova P, Santava A, Markova I, Stefekova A, Srovnal J, Staffova K, Durdová V. Haploinsufficiency of BMP4 and OTX2 in the Foetus with an abnormal facial profile detected in the first trimester of pregnancy. Mol Cytogenet 2017; 10:47. [PMID: 29299063 PMCID: PMC5745897 DOI: 10.1186/s13039-017-0351-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
Background Interstitial microdeletion 14q22q23 is a rare chromosomal syndrome associated with variable defects: microphthalmia/anophthalmia, pituitary anomalies, polydactyly/syndactyly of hands and feet, micrognathia/retrognathia. The reports of the microdeletion 14q22q23 detected in the prenatal stages are limited and the range of clinical features reveals a quite high variability. Case presentation We report a detection of the microdeletion 14q22.1q23.1 spanning 7,7 Mb and involving the genes BMP4 and OTX2 in the foetus by multiplex ligation-dependent probe amplification (MLPA) and verified by microarray subsequently. The pregnancy was referred to the genetic counselling for abnormal facial profile observed in the first trimester ultrasound scan and micrognathia (suspicion of Pierre Robin sequence), hypoplasia nasal bone and polydactyly in the second trimester ultrasound scan. The pregnancy was terminated on request of the parents. Conclusion An abnormal facial profile detected on prenatal scan can provide a clue to the presence of rare chromosomal abnormalities in the first trimester of pregnancy despite the normal result of the first trimester screening test. The patients should be provided with genetic counselling. Usage of quick and sensitive methods (MLPA, microarray) is preferable for discovering a causal aberration because some of the CNVs cannot be detected with conventional karyotyping in these cases. To the best of our knowledge, this is the earliest detection of this microdeletion (occurred de novo), the first case detected by MLPA and confirmed by microarray. Literature review of the genotype-phenotype correlation in similar reports leads us to the conclusion that dosage imbalance of the chromosomal segment 14q22q23 (especially haploinsuffiency of the genes BMP4 and OTX2) contributes significantly to orofacial abnormalities. Association of the region with the Pierre Robin sequence appears to be plausible.
Collapse
Affiliation(s)
- Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Alena Santava
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Ivana Markova
- Department of Obstetrics and Gynaecology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Andrea Stefekova
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Veronika Durdová
- Department of Obstetrics and Gynaecology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
74
|
Haug MG, Brendehaug A, Houge G, Kagami M, Ogata T. Mosaic upd(14)pat in a patient with mild features of Kagami-Ogata syndrome. Clin Case Rep 2017; 6:91-95. [PMID: 29375845 PMCID: PMC5771875 DOI: 10.1002/ccr3.1300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/29/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
We report a Norwegian girl with mild clinical features of Kagami-Ogata syndrome (KOS) and mosaic upd(14)pat. To our knowledge, this is the first report describing a mosaic patient with KOS. These results imply that mosaic uniparental disomy should be examined in patients with mild features of imprinted disorders.
Collapse
Affiliation(s)
- Marte G Haug
- Department of Medical Genetics St Olav's Hospital Trondheim Norway
| | - Atle Brendehaug
- Department of Medical Genetics Haukeland University Hospital Bergen Norway
| | - Gunnar Houge
- Department of Medical Genetics Haukeland University Hospital Bergen Norway
| | - Masayo Kagami
- Department of Molecular Endocrinology National Research Institute for Child Health and Development Tokyo Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology National Research Institute for Child Health and Development Tokyo Japan.,Department of Pediatrics Hamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
75
|
Li X, Liu Y, Yue S, Wang L, Zhang T, Guo C, Hu W, Kagan KO, Wu Q. Uniparental disomy and prenatal phenotype: Two case reports and review. Medicine (Baltimore) 2017; 96:e8474. [PMID: 29137034 PMCID: PMC5690727 DOI: 10.1097/md.0000000000008474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. PATIENT CONCERNS We report prenatal phenotypes of 2 rare cases of UPD. DIAGNOSES The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy-Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. INTERVENTIONS Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. OUTCOMES The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. LESSONS UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered.
Collapse
Affiliation(s)
| | - Yan Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | - Karl-Oliver Kagan
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
76
|
Mackay DJ, Temple IK. Human imprinting disorders: Principles, practice, problems and progress. Eur J Med Genet 2017; 60:618-626. [DOI: 10.1016/j.ejmg.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
|
77
|
Enterina JR, Enfield KSS, Anderson C, Marshall EA, Ng KW, Lam WL. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev Respir Med 2017; 11:749-761. [PMID: 28715922 DOI: 10.1080/17476348.2017.1355241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The imprinted DLK1-DIO3 locus at 14q32.1-32.31 holds biological significance in fetal development, whereby imprinting errors are causal to developmental disorders. Emerging evidence has implicated this locus in other diseases including cancer, highlighting the biological parallels between fetal organ and tumour development. Areas covered: Controlled regulation of gene expression from the imprinted DLK1-DIO3 locus at 14q32.1-32.31 is crucial for proper fetal development. Deregulation of locus gene expression due to imprinting errors has been mechanistically linked to the developmental disorders Kagami-Ogata Syndrome and Temple Syndrome. In adult tissues, deregulation of locus genes has been associated with multiple malignancies although the causal genetic mechanisms remain largely uncharacterised. Here, we summarize the genetic mechanisms underlying the developmental disorders that arise as a result of improper locus imprinting and the resulting developmental phenotypes, emphasizing both the coding and noncoding components of the locus. We further highlight biological parallels common to both fetal development and disease, with a specific focus on lung development, respiratory disease, and lung cancer. Expert commentary: Many commonalities between respiratory and developmental defects have emerged with respect to the 14q32 locus, emphasizing the importance of studying the effects of imprinting on gene regulation patterns at this locus in both biological settings.
Collapse
Affiliation(s)
- Jhon R Enterina
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | | | | | - Erin A Marshall
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Kevin W Ng
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Wan L Lam
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| |
Collapse
|
78
|
Beygo J, Küchler A, Gillessen-Kaesbach G, Albrecht B, Eckle J, Eggermann T, Gellhaus A, Kanber D, Kordaß U, Lüdecke HJ, Purmann S, Rossier E, van de Nes J, van der Werf IM, Wenzel M, Wieczorek D, Horsthemke B, Buiting K. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur J Hum Genet 2017. [PMID: 28635951 DOI: 10.1038/ejhg.2017.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Küchler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jonas Eckle
- Sozialpädiatrisches Zentrum, St. Elisabeth-Stiftung, Ravensburg, Germany
| | | | - Alexandra Gellhaus
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrike Kordaß
- MVZ für Humangenetik und Molekularpathologie Rostock, Zweigstelle Greifswald, Greifswald, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sabine Purmann
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und angewandte Genomik, Universiät Tübingen, Tübingen, Germany.,Genetikum Stuttgart, Stuttgart, Germany
| | - Johannes van de Nes
- Institute of Neuropathology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pathology, University of Bochum, Bochum, Germany
| | | | | | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
79
|
Abstract
Purpose Temple syndrome (TS14) is a rare imprinting disorder caused by aberrations at the 14q32.2 imprinted region. Here, we report comprehensive molecular and clinical findings in 32 Japanese patients with TS14. Methods We performed molecular studies for TS14 in 356 patients with variable phenotypes, and clinical studies in all TS14 patients, including 13 previously reported. Results We identified 19 new patients with TS14, and the total of 32 patients was made up of 23 patients with maternal uniparental disomy (UPD(14)mat), six patients with epimutations, and three patients with microdeletions. Clinical studies revealed both Prader-Willi syndrome (PWS)-like marked hypotonia and Silver-Russell syndrome (SRS)-like phenotype in 50% of patients, PWS-like hypotonia alone in 20% of patients, SRS-like phenotype alone in 20% of patients, and nonsyndromic growth failure in the remaining 10% of patients in infancy, and gonadotropin-dependent precocious puberty in 76% of patients who were pubescent or older. Conclusion These results suggest that TS14 is not only a genetically diagnosed entity but also a clinically recognizable disorder. Genetic testing for TS14 should be considered in patients with growth failure plus both PWS-like hypotonia and SRS-like phenotypes in infancy, and/or precocious puberty, as well as a familial history of Kagami-Ogata syndrome due to maternal microdeletion at 14q32.2.
Collapse
|
80
|
Bertini V, Fogli A, Bruno R, Azzarà A, Michelucci A, Mattina T, Bertelloni S, Valetto A. Maternal Uniparental Disomy 14 (Temple Syndrome) as a Result of a Robertsonian Translocation. Mol Syndromol 2017; 8:131-138. [PMID: 28588434 DOI: 10.1159/000456062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Maternal uniparental disomy of chromosome 14 (upd(14)mat) or Temple syndrome is an imprinting disorder associated with a relatively mild phenotype. The absence of specific congenital malformations makes this condition underdiagnosed in clinical practice. A boy with a de novo robertsonian translocation 45,XY,rob(13;14)(q10;q10) is reported; a CGH/SNP array showed a loss of heterozygosity in 14q11.2q13.1. The final diagnosis of upd(14)mat was made by microsatellite analysis, which showed a combination of heterodisomy and isodisomy for different regions of chromosome 14. Obesity after initial failure to thrive developed, while compulsive eating habits were not present, which was helpful for the clinical differential diagnosis of Prader-Willi syndrome. In addition, the boy presented with many phenotypic features associated with upd(14)mat along with hypoesthesia to pain, previously unreported in this disorder, and bilateral cryptorchidism, also rarely described. These features, as well as other clinical manifestations (i.e., truncal obesity, altered pubertal timing), may suggest a hypothalamic-pituitary involvement. A detailed cytogenetic and molecular characterization of the genomic rearrangement is presented. Early genetic diagnosis permits a specific follow-up of children with upd(14)mat in order to optimize the long-term outcome.
Collapse
Affiliation(s)
- Veronica Bertini
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Antonella Fogli
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Rossella Bruno
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy.,Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessia Azzarà
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Angela Michelucci
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Teresa Mattina
- Centro di Riferimento per la Prevenzione Diagnosi e Cura delle Malattie Genetiche Rare, Università di Catania, Catania, Italy
| | - Silvano Bertelloni
- Adolescent Medicine, Pediatric Division, Department of Obstetrics, Gynecology and Pediatrics, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Angelo Valetto
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| |
Collapse
|
81
|
Small RNA Sequencing in Cells and Exosomes Identifies eQTLs and 14q32 as a Region of Active Export. G3-GENES GENOMES GENETICS 2017; 7:31-39. [PMID: 27799337 PMCID: PMC5217120 DOI: 10.1534/g3.116.036137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are small extracellular vesicles that carry heterogeneous cargo, including RNA, between cells. Increasing evidence suggests that exosomes are important mediators of intercellular communication and biomarkers of disease. Despite this, the variability of exosomal RNA between individuals has not been well quantified. To assess this variability, we sequenced the small RNA of cells and exosomes from a 17-member family. Across individuals, we show that selective export of miRNAs occurs not only at the level of specific transcripts, but that a cluster of 74 mature miRNAs on chromosome 14q32 is massively exported in exosomes while mostly absent from cells. We also observe more interindividual variability between exosomal samples than between cellular ones and identify four miRNA expression quantitative trait loci shared between cells and exosomes. Our findings indicate that genomically colocated miRNAs can be exported together and highlight the variability in exosomal miRNA levels between individuals as relevant for exosome use as diagnostics.
Collapse
|
82
|
Affiliation(s)
- Davide Vecchio
- Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mario Giuffrè
- Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy
| |
Collapse
|
83
|
Kagami M, Matsubara K, Nakabayashi K, Nakamura A, Sano S, Okamura K, Hata K, Fukami M, Ogata T. Genome-wide multilocus imprinting disturbance analysis in Temple syndrome and Kagami-Ogata syndrome. Genet Med 2016; 19:476-482. [PMID: 27632690 PMCID: PMC5392596 DOI: 10.1038/gim.2016.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Recent studies have identified multilocus imprinting disturbances (MLIDs) in a subset of patients with imprinting diseases (IDs) caused by epimutations. We examined MLIDs in patients with Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). METHODS We studied four TS14 patients (patients 1-4) and five KOS14 patients (patients 5-9) with epimutations. We performed HumanMethylation450 BeadChip (HM450k) analysis for 43 differentially methylated regions (DMRs) (753 CpG sites) and pyrosequencing for 12 DMRs (62 CpG sites) using leukocyte genomic DNA (Leu-gDNA) of patients 1-9, and performed HM450k analysis for 43 DMRs (a slightly different set of 753 CpG sites) using buccal cell gDNA (Buc-gDNA) of patients 1, 3, and 4. We also performed mutation analysis for six causative and candidate genes for MLIDs and quantitative expression analysis using immortalized lymphocytes in MLID-positive patients. RESULTS Methylation analysis showed hypermethylated ZDBF2-DMR and ZNF597/NAA60-DMR, hypomethylated ZNF597-DMR in both Leu-gDNA and Buc-gDNA, and hypomethylated PPIEL-DMR in Buc-gDNA of patient 1, and hypermethylated GNAS-A/B-DMR in Leu-gDNA of patient 3. No mutations were detected in the six genes for MLIDs. Expression patterns of ZDBF2, ZNF597, and GNAS-A/B were consistent with the identified MLIDs. CONCLUSION This study indicates the presence of MLIDs in TS14 patients but not in KOS14 patients.Genet Med 19 4, 476-482.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
84
|
Chen CP, Lin CJ, Chern SR, Wu PS, Chen YN, Chen SW, Lee CC, Chen LF, Yang CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of a de novo unbalanced reciprocal translocation of der(9)t(9;14)(p24.2;q32.11) associated with 9p terminal deletion and 14q distal duplication. Taiwan J Obstet Gynecol 2016; 55:596-601. [PMID: 27590390 DOI: 10.1016/j.tjog.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE We present molecular cytogenetic characterization of a prenatally detected derivative chromosome 9 [der(9)] of unknown origin. CASE REPORT A 35-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age, which revealed a der(9) chromosome of unknown origin. The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 2.593 Mb deletion of 9p24.3-p24.2 encompassing DOCK8, KANK1, DMRT1, and VLDLR and a 16.65 Mb duplication of 14q32.11-q32.33 encompassing DLK1, RTL1, MEG3, RTL1as, and MEG8. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis using D9S937 (9p24.2) and D14S605 (14q32.2) showed a paternal origin of 9p24.2 deletion and a paternal origin of 14q32.2 duplication consistent with a paternal origin of the de novo aberrant chromosome of der(9)t(9p;14q). The fetal karyotype was 46,XX,der(9)t(9;14) (p24.2;q32.11). Metaphase fluorescence in situ hybridization (FISH) analysis using RP11-57K23 (14q32.33), RP11-31F19 (9p24.3), RP11-30O14 (9p21.1), and RP11-1105I14 (14q11.2) confirmed an unbalanced reciprocal translocation of der(9)t(9p;14q). We discuss 9p deletion syndrome and 14q duplication syndrome in this case. CONCLUSION Molecular cytogenetic techniques such as aCGH, FISH, and QF-PCR are useful in the determination of the origin and nature of a prenatally detected de novo derivative chromosome of unknown origin.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chen-Ju Lin
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ni Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
85
|
Soellner L, Begemann M, Mackay DJG, Grønskov K, Tümer Z, Maher ER, Temple IK, Monk D, Riccio A, Linglart A, Netchine I, Eggermann T. Recent Advances in Imprinting Disorders. Clin Genet 2016; 91:3-13. [PMID: 27363536 DOI: 10.1111/cge.12827] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023]
Abstract
Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different phenotypes. As some ImpDis share clinical features, clinical diagnosis is difficult in some cases. The advances in molecular and clinical diagnosis of ImpDis help to circumvent these issues, and they are accompanied by an increasing understanding of the pathomechanism behind them. As these mechanisms have important roles for the etiology of other common conditions, the results in ImpDis research have a wider effect beyond the borders of ImpDis. For patients and their families, the growing knowledge contributes to a more directed genetic counseling of the families and personalized therapeutic approaches.
Collapse
Affiliation(s)
- L Soellner
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| | - M Begemann
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| | - D J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - K Grønskov
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Z Tümer
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - E R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - I K Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - D Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| | - A Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta, Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - A Linglart
- Endocrinology and Diabetology for Children and Reference Center for Rare Disorders of Calcium and Phosphorus Metabolism, Bicêtre Paris Sud, APHP, INSERM U986, INSERM, Le Kremlin-Bicêtre, France
| | - I Netchine
- INSERM, CDR Saint-Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France.,Pediatric Endocrinology, Armand Trousseau Hospital, Paris, France
| | - T Eggermann
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| |
Collapse
|
86
|
Novel microdeletions on chromosome 14q32.2 suggest a potential role for non-coding RNAs in Kagami-Ogata syndrome. Eur J Hum Genet 2016; 24:1724-1729. [PMID: 27406249 DOI: 10.1038/ejhg.2016.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023] Open
Abstract
In approximately 20% of individuals with Kagami-Ogata syndrome (KOS14, MIM 608149), characterized by a bell-shaped thorax with coat-hanger configuration of the ribs, joint contractures, abdominal wall defects and polyhydramnios during the pregnancy, the syndrome is caused by a maternal deletion of the imprinted gene cluster in chromosome 14q32.2. Most deletions reported so far included one or both of the differentially methylated regions (DMRs) - DLK1/MEG3 IG-DMR and MEG3-DMR. We present two unrelated families with two affected siblings each, presenting with classical KOS14 due to maternally inherited microdeletions. Interestingly, all four patients have lived through to adulthood, even though mortality rates for patients with KOS14 due to a microdeletion are relatively high. In the first family, none of the DMRs is included in the deletion and the methylation status is identical to that of controls. Deletions that do not encompass the DMRs in this region are thus sufficient to elicit the full KOS14 phenotype. In the second family, a partially overlapping deletion including both DMRs and MEG3 was detected. In summary, we show that patients with KOS14 can live into adulthood, that causal deletions do not have to include the DMRs and that consequently a normal methylation pattern does not exclude KOS14.
Collapse
|