51
|
Kanani F, Fazelnia F, Mojarradfard M, Nematbakhsh M, Moslemi F, Eshraghi-Jazi F, Talebi A. Role of S-methylisothiourea (SMT) in renal ischemia/reperfusion injury in rats. J Renal Inj Prev 2016. [PMID: 27069965 PMCID: PMC4827383 DOI: 10.15171/jrip.2016.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction: Excessive production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) is associated in renal ischemia reperfusion injury (IRI).
Objectives: This study was designed to investigate the role of S-methylisothiourea (SMT) as selective inhibitor iNOS in renal IRI.
Materials and Methods: Male Wistar rats were subjected to 45 minutes of bilateral renal ischemia by occlusion of renal vessels of both kidney followed by 24 hours of reperfusion. Prior to renal IRI, the rats received either vehicle (saline, group 2) or SMT (50 mg/kg, group 3), and were compared with the sham-operated animals (group 1). At the end of reperfusion period, the rats were sacrificed for kidney tissue pathology investigation.
Results: Serum creatinine (Cr), blood urea nitrogen (BUN), nitrite levels, and kidney weight significantly increased in groups 2 and 3 (P < 0.05). Kidney tissue damage scores in groups 2 and 3 were also higher than that in the sham-operated group (P < 0.05).
Conclusion: SMT not only prevent the kidney during IRI, but also promotes kidney function disturbance and severity of renal injury.
Collapse
Affiliation(s)
- Fatemeh Kanani
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Fazelnia
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mehdi Nematbakhsh
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan MN Institute of Basic & Applied Sciences Research, Isfahan, Iran
| | - Fatemeh Moslemi
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Eshraghi-Jazi
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
52
|
Kılıç E, Türkoğlu A, Keleş A, Ekinci A, Kesgin S, Gümüş M. The antioxidant effects of pomegranate extract on local and remote organs in a mesenteric ischemia and reperfusion model. Redox Rep 2016; 21:6-13. [PMID: 26010809 DOI: 10.1179/1351000215y.0000000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES We investigated whether pomegranate extract plays a protective antioxidant role against mesenteric ischemia-reperfusion injury (IR), which can lead to a systemic response and damage distant organs, such as the lung, liver, and kidney. METHODS Forty female Wistar-Albino rats were separated into four groups: laparotomy, laparotomy + PG, mesenteric IR, and mesenteric IR and pomegranate (IR + PG). In the laparotomy + PG and IR + PG groups, pomegranate (225 mg/kg) was given by oral gavage at the beginning of the study. Ischemia was induced for 30 minutes, and reperfusion was subsequently allowed for 60 minutes in the IR and IR + PG groups. The malondialdehyde (MDA) and total antioxidant activity (AOA) levels were evaluated in blood samples. Additionally, all tissues were removed for the measurement of AOA and total oxidant status as well as for subsequent histopathological evaluation. The oxidative stress index was calculated. RESULTS Histopathological changes in all organs were significantly higher in the IR group and significantly lower in the IR + PG group vs. the other groups. Serum MDA levels were significantly lower in the IR + PG group than in the IR group. No significant difference was found in AOA levels of the groups. DISCUSSION These data may explain the positive protective effects of pomegranate based on the histopathologic findings in ischemic conditions in an intestinal IR injury model.
Collapse
Affiliation(s)
- Elif Kılıç
- a Department of Clinical Biochemistry , Istanbul Bezmialem Vakif University Medicine Faculty , Turkey.,b Department of Biochemistry , Istanbul Bezmialem Vakif University Medicine Faculty , Fatih , Turkey
| | - Ahmet Türkoğlu
- c Department of General Surgery , Dicle University , Diyarbakır , Turkey
| | - Ayşenur Keleş
- d Department of Pathology , Dicle University , Diyarbakır , Turkey
| | - Aysun Ekinci
- e Department of Clinical Biochemistry , Research and Educational Hospital , Diyarbakır , Turkey
| | - Sıddıka Kesgin
- a Department of Clinical Biochemistry , Istanbul Bezmialem Vakif University Medicine Faculty , Turkey
| | - Metehan Gümüş
- c Department of General Surgery , Dicle University , Diyarbakır , Turkey
| |
Collapse
|
53
|
Momtaz HE, Dehghan A, Karimian M. Correlation of cystatin C and creatinine based estimates of renal function in children with hydronephrosis. J Renal Inj Prev 2016; 5:25-8. [PMID: 27069964 PMCID: PMC4827382 DOI: 10.15171/jrip.2016.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/21/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The use of a simple and accurate glomerular filtration rate (GFR) estimating method aiming minute assessment of renal function can be of great clinical importance. OBJECTIVES This study aimed to determine the association of a GFR estimating by equation that includes only cystatin C (Gentian equation) to equation that include only creatinine (Schwartz equation) among children. PATIENTS AND METHODS A total of 31 children aged from 1 day to 5 years with the final diagnosis of unilateral or bilateral hydronephrosis referred to Besat hospital in Hamadan, between March 2010 and February 2011 were consecutively enrolled. Schwartz and Gentian equations were employed to determine GFR based on plasma creatinine and cystatin C levels, respectively. RESULTS The proportion of GFR based on Schwartz equation was 70.19± 24.86 ml/min/1.73 m(2), while the level of this parameter based on Gentian method and using cystatin C was 86.97 ± 21.57 ml/min/1.73 m(2). The Pearson correlation coefficient analysis showed a strong direct association between the two levels of GFR measured by Schwartz equation based on serum creatinine level and Gentian method and using cystatin C (r = 0.594, P < 0.001). The linear association between GFR values measured with the two methods included cystatin C based GFR = 50.8+ 0.515 × Schwartz GFR. The correlation between GFR values measured by using serum creatinine and serum cystatin C measurements remained meaningful even after adjustment for patients' gender and age (r = 0.724, P < 0.001). CONCLUSION The equation developed based on cystatin C level is comparable with another equation, based on serum creatinine (Schwartz formula) to estimate GFR in children.
Collapse
Affiliation(s)
- Hossein-Emad Momtaz
- Division of pediatric nephrology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Dehghan
- Department of Pathology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Karimian
- Department of Pathology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
54
|
Bedford M, Stevens P, Coulton S, Billings J, Farr M, Wheeler T, Kalli M, Mottishaw T, Farmer C. Development of risk models for the prediction of new or worsening acute kidney injury on or during hospital admission: a cohort and nested study. HEALTH SERVICES AND DELIVERY RESEARCH 2016. [DOI: 10.3310/hsdr04060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BackgroundAcute kidney injury (AKI) is a common clinical problem with significant morbidity and mortality. All hospitalised patients are at risk. AKI is often preventable and reversible; however, the 2009 National Confidential Enquiry into Patient Outcome and Death highlighted systematic failings of identification and management, and recommended risk assessment of all emergency admissions.ObjectivesTo develop three predictive models to stratify the risk of (1) AKI on arrival in hospital; (2) developing AKI during admission; and (3) worsening AKI if already present; and also to (4) develop a clinical algorithm for patients admitted to hospital and explore effective methods of delivery of this information at the point of care.Study designQuantitative methodology (1) to formulate predictive risk models and (2) to validate the models in both our population and a second population. Qualitative methodology to plan clinical decision support system (CDSS) development and effective integration into clinical care.Settings and participantsQuantitative analysis – the study population comprised hospital admissions to three acute hospitals of East Kent Hospitals University NHS Foundation Trust in 2011, excluding maternity and elective admissions. For validation in a second population the study included hospital admissions to Medway NHS Foundation Trust. Qualitative analysis – the sample consisted of six renal consultants (interviews) and six outreach nurses (focus group), with representation from all sites.Data collectionData (comprising age, sex, comorbidities, hospital admission and outpatient history, relevant pathology tests, drug history, baseline creatinine and chronic kidney disease stage, proteinuria, operative procedures and microbiology) were collected from the hospital data warehouse and the pathology and surgical procedure databases.Data analysisQuantitative – both traditional and Bayesian regression methods were used. Traditional methods were performed using ordinal logistic regression with univariable analyses to inform the development of multivariable analyses. Backwards selection was used to retain only statistically significant variables in the final models. The models were validated using actual and predicted probabilities, an area under the receiver operating characteristic (AUROC) curve analysis and the Hosmer–Lemeshow test. Qualitative – content analysis was employed.Main outcome measures(1) A clinical pratice algorithm to guide clinical alerting and risk modeling for AKI in emergency hospital admissions; (2) identification of the key variables that are associated with the risk of AKI; (3) validated risk models for AKI in acute hospital admissions; and (4) a qualitative analysis providing guidance as to the best approach to the implementation of clinical alerting to highlight patients at risk of AKI in hospitals.FindingsQuantitative – we have defined a clinical practice algorithm for risk assessment within the first 24 hours of hospital admission. Bayesian methodology enabled prediction of low risk but could not reliably identify high-risk patients. Traditional methods identified key variables, which predict AKI both on admission and at 72 hours post admission. Validation demonstrated an AUROC curve of 0.75 and 0.68, respectively. Predicting worsening AKI during admission was unsuccessful. Qualitative – analysis of AKI alerting gave valuable insights in terms of user friendliness, information availability, clinical communication and clinical responsibility, and has informed CDSS development.ConclusionsThis study provides valuable evidence of relationships between key variables and AKI. We have developed a clinical algorithm and risk models for risk assessment within the first 24 hours of hospital admission. However, the study has its limitations, and further analysis and testing, including continuous modelling, non-linear modelling and interaction exploration, may further refine the models. The qualitative study has highlighted the complexity regarding the implementation and delivery of alerting systems in clinical practice.FundingThe National Institute for Health Research Health Services and Delivery Research programme.
Collapse
Affiliation(s)
- Michael Bedford
- Kent Kidney Research Group, Kent and Canterbury Hospital, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| | - Paul Stevens
- Kent Kidney Research Group, Kent and Canterbury Hospital, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| | - Simon Coulton
- Centre for Health Services Studies, University of Kent, Canterbury, UK
| | - Jenny Billings
- Centre for Health Services Studies, University of Kent, Canterbury, UK
| | - Marc Farr
- Department of Information, Kent and Canterbury Hospital, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| | - Toby Wheeler
- Kent Kidney Research Group, Kent and Canterbury Hospital, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| | - Maria Kalli
- Canterbury Christ Church University Business School, Canterbury Christ Church University, Canterbury, UK
| | - Tim Mottishaw
- Strategic Development, Royal Victoria Hospital, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| | - Chris Farmer
- Kent Kidney Research Group, Kent and Canterbury Hospital, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| |
Collapse
|
55
|
Clinical usefulness of urinary liver-type fatty-acid-binding protein as a perioperative marker of acute kidney injury in patients undergoing endovascular or open-abdominal aortic aneurysm repair. J Anesth 2015; 30:89-99. [PMID: 26585768 PMCID: PMC4750552 DOI: 10.1007/s00540-015-2095-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022]
Abstract
Purpose Acute kidney injury (AKI) is common after cardiovascular surgery and
is usually diagnosed on the basis of the serum creatinine (SCr) level and urinary
output. However, SCr is of low sensitivity in patients with poor renal function.
Because urinary liver-type fatty-acid-binding protein (L-FABP) reflects renal
tubular injury, we evaluated whether perioperative changes in urinary L-FABP
predict AKI in the context of abdominal aortic repair. Methods Study participants were 95 patients who underwent endovascular
abdominal aortic aneurysm repair (EVAR) and 42 who underwent open repair. We
obtained urine samples before surgery, after anesthesia induction, upon stent
placement, before aortic cross-clamping (AXC), 1 and 2 h after AXC, at the end of
surgery, 4 h after surgery, and on postoperative days (PODs) 1, 2, and 3, for
measurement of L-FABP. We obtained serum samples before surgery, immediately after
surgery, and on PODs 1, 2, and 3, for measurement of SCr. We also plotted
receiver-operating characteristic (ROC) curves to identify cutoff laboratory
values for predicting the onset of AKI. Results With EVAR, urinary L-FABP was significantly increased 4 h after the
procedure (P = 0.014). With open repair,
urinary L-FABP increased significantly to its maximum by 2 h after AXC (P = 0.007). With AKI, SCr significantly increased
(P < 0.001, P = 0.001) by POD 2. ROC analysis showed urinary L-FABP to be more
sensitive than SCr for early detection of AKI. Conclusion Urinary L-FABP appears to be a sensitive biomarker of AKI in
patients undergoing abdominal aortic repair.
Collapse
|
56
|
Impellizzeri D, Bruschetta G, Ahmad A, Crupi R, Siracusa R, Di Paola R, Paterniti I, Prosdocimi M, Esposito E, Cuzzocrea S. Effects of palmitoylethanolamide and silymarin combination treatment in an animal model of kidney ischemia and reperfusion. Eur J Pharmacol 2015; 762:136-49. [DOI: 10.1016/j.ejphar.2015.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/21/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
|
57
|
Youssef MI, Mahmoud AA, Abdelghany RH. A new combination of sitagliptin and furosemide protects against remote myocardial injury induced by renal ischemia/reperfusion in rats. Biochem Pharmacol 2015; 96:20-9. [DOI: 10.1016/j.bcp.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/16/2015] [Indexed: 01/12/2023]
|
58
|
Ranganathan P, Jayakumar C, Tang Y, Park KM, Teoh JP, Su H, Li J, Kim IM, Ramesh G. MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury. Am J Physiol Renal Physiol 2015; 309:F551-8. [PMID: 26109086 DOI: 10.1152/ajprenal.00076.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
Despite greater understanding of acute kidney injury (AKI) in animal models, many of the preclinical studies are not translatable. Most of the data were derived from a bilateral renal pedicle clamping model with warm ischemia. However, ischemic injury of the kidney in humans is distinctly different and does not involve clamping of renal vessel. Permanent ligation of the left anterior descending coronary artery model was used to test the role of microRNA (miR)-150 in AKI. Myocardial infarction in this model causes AKI which is similar to human cardiac bypass surgery. Moreover, the time course of serum creatinine and biomarker elevation were also similar to human ischemic injury. Deletion of miR-150 suppressed AKI which was associated with suppression of inflammation and interstitial cell apoptosis. Immunofluorescence staining with endothelial marker and marker of apoptosis suggested that dying cells are mostly endothelial cells with minimal epithelial cell apoptosis in this model. Interestingly, deletion of miR-150 also suppressed interstitial fibrosis. Consistent with protection, miR-150 deletion causes induction of its target gene insulin-like growth factor-1 receptor (IGF-1R) and overexpression of miR-150 in endothelial cells downregulated IGF-1R, suggesting miR-150 may mediate its detrimental effects through suppression of IGF-1R pathways.
Collapse
Affiliation(s)
- Punithavathi Ranganathan
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Calpurnia Jayakumar
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Yaoping Tang
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Kyoung-mi Park
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Jian-peng Teoh
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Huabo Su
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Jie Li
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Il-man Kim
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Ganesan Ramesh
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
59
|
Mahfoudh-Boussaid A, Hadj Ayed Tka K, Zaouali MA, Roselló-Catafau J, Ben Abdennebi H. Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion. Ren Fail 2015; 36:1436-42. [PMID: 25246344 DOI: 10.3109/0886022x.2014.949765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Renal ischemia reperfusion (I/R) injury, which occurs during renal surgery or transplantation, is the major cause of acute renal failure. Trimetazidine (TMZ), an anti-ischemic drug, protects kidney against the deleterious effects of I/R. However its protective mechanism remains unclear. The aim of this study is to examine the relevance of Akt, endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor-1α (HIF-1α) on TMZ induced protection of kidneys against I/R injury. Wistar rats were subjected to 60 min of warm renal ischemia followed by 120 min of reperfusion, or to intraperitoneal injection of TMZ (3 mg/kg) 30 min before ischemia. In sham operated group renal pedicles were only dissected. Compared to I/R, TMZ treatment decreased lactate dehydrogenase (845 ± 13 vs. 1028 ± 30 U/L). In addition, creatinine clearance and sodium reabsorption rates reached 105 ± 12 versus 31 ± 11 μL/min/g kidney weight and 95 ± 1 versus 68 ± 5%, respectively. Besides, we noted a decrease in malondialdehyde concentration (0.33 ± 0.01 vs. 0.59 ± 0.03 nmol/mg of protein) and an increase in glutathione concentration (2.6 ± 0.2 vs. 0.93 ± 0.16 µg GSH/mg of protein), glutathione peroxidase (95 ± 4 vs. 61 ± 3 µg GSH/min/mg of protein), and superoxide dismutase (25 ± 3 vs. 11 ± 2 U/mg of protein) and catalase (91 ± 12 vs. 38 ± 9 μmol/min/mg of protein) activities. Parallely, we noted a significant increase in p-Akt, eNOS, nitrite and nitrate (18 ± 2 vs. 8 ± 0.1 pomL/mg of protein), HIF-1α (333 ± 48 vs. 177 ± 14 µg/mg of protein) and heme oxygenase-1 (HO-1) levels regarding I/R. TMZ treatment improves renal tolerance to warm I/R. Such protection implicates an activation of Akt/eNOS signaling pathway, HIF-1α stabilization and HO-1 activation.
Collapse
Affiliation(s)
- Asma Mahfoudh-Boussaid
- Research Unit "Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé" (UR12ES11), Faculty of Pharmacy, University of Monastir, Rue Avicenne , Monastir , Tunisia and
| | | | | | | | | |
Collapse
|
60
|
Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 2015; 4:20-7. [PMID: 26060833 PMCID: PMC4459724 DOI: 10.12861/jrip.2015.06] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is caused by a sudden temporary impairment of the blood flow to the particular organ. IRI usually is associated with a robust inflammatory and oxidative stress response to hypoxia and reperfusion which disturbs the organ function. Renal IR induced acute kidney injury (AKI) contributes to high morbidity and mortality rate in a wide range of injuries. Although the pathophysiology of IRI is not completely understood, several important mechanisms resulting in kidney failure have been mentioned. In ischemic kidney and subsequent of re-oxygenation, generation of reactive oxygen species (ROS) at reperfusion phase initiates a cascade of deleterious cellular responses leading to inflammation, cell death, and acute kidney failure. Better understanding of the cellular pathophysiological mechanisms underlying kidney injury will hopefully result in the design of more targeted therapies to prevent and treatment the injury. In this review, we summarize some important potential mechanisms and therapeutic approaches in renal IRI.
Collapse
Affiliation(s)
- Maryam Malek
- Water and Electrolytes Research Center/Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center/Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan , Iran
| |
Collapse
|
61
|
Effects of valproic acid and dexamethasone administration on early bio-markers and gene expression profile in acute kidney ischemia-reperfusion injury in the rat. PLoS One 2015; 10:e0126622. [PMID: 25970334 PMCID: PMC4430309 DOI: 10.1371/journal.pone.0126622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/05/2015] [Indexed: 12/11/2022] Open
Abstract
Renal ischemia-reperfusion (IR) causes acute kidney injury (AKI) with high mortality and morbidity. The objective of this investigation was to ameliorate kidney IR injury and identify novel biomarkers for kidney injury and repair. Under general anesthesia, left renal ischemia was induced in Wister rats by occluding renal artery for 45 minutes, followed by reperfusion and right nephrectomy. Thirty minutes prior to ischemia, rats (n = 8/group) received Valproic Acid (150 mg/kg; VPA), Dexamethasone (3 mg/kg; Dex) or Vehicle (saline) intraperitoneally. Animals were sacrificed at 3, 24 or 120 h post-IR. Plasma creatinine (mg/dL) at 24 h was reduced (P<0.05) in VPA (2.7±1.8) and Dex (2.3±1.2) compared to Vehicle (3.8±0.5) group. At 3 h, urine albumin (mg/mL) was higher in Vehicle (1.47±0.10), VPA (0.84±0.62) and Dex (1.04±0.73) compared to naïve (uninjured/untreated control) (0.14±0.26) group. At 24 h post-IR urine lipocalin-2 (μg/mL) was higher (P<0.05) in VPA, Dex and Vehicle groups (9.61–11.36) compared to naïve group (0.67±0.29); also, kidney injury molecule-1 (KIM-1; ng/mL) was higher (P<0.05) in VPA, Dex and Vehicle groups (13.7–18.7) compared to naïve group (1.7±1.9). Histopathology demonstrated reduced (P<0.05) ischemic injury in the renal cortex in VPA (Grade 1.6±1.5) compared to Vehicle (Grade 2.9±1.1). Inflammatory cytokines IL1β and IL6 were downregulated and anti-apoptotic molecule BCL2 was upregulated in VPA group. Furthermore, kidney DNA microarray demonstrated reduced injury, stress, and apoptosis related gene expression in the VPA administered rats. VPA appears to ameliorate kidney IR injury via reduced inflammatory cytokine, apoptosis/stress related gene expression, and improved regeneration. KIM-1, lipocalin-2 and albumin appear to be promising early urine biomarkers for the diagnosis of AKI.
Collapse
|
62
|
The effect of acute kidney injury after revascularization on the development of chronic kidney disease and mortality in patients with chronic limb ischemia. J Vasc Surg 2015; 61:720-7. [DOI: 10.1016/j.jvs.2014.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 10/14/2014] [Indexed: 11/23/2022]
|
63
|
Kim J, Devalaraja-Narashimha K, Padanilam BJ. TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am J Physiol Renal Physiol 2014; 308:F298-308. [PMID: 25503731 DOI: 10.1152/ajprenal.00459.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tp53-induced glycolysis and apoptosis regulator (TIGAR) activation blocks glycolytic ATP synthesis by inhibiting phosphofructokinase-1 activity. Our data indicate that TIGAR is selectively induced and activated in renal outermedullary proximal straight tubules (PSTs) after ischemia-reperfusion injury in a p53-dependent manner. Under severe ischemic conditions, TIGAR expression persisted through 48 h postinjury and induced loss of renal function and histological damage. Furthermore, TIGAR upregulation inhibited phosphofructokinase-1 activity, glucose 6-phosphate dehydrogenase (G6PD) activity, and induced ATP depletion, oxidative stress, autophagy, and apoptosis. Small interfering RNA-mediated TIGAR inhibition prevented the aforementioned malevolent effects and protected the kidneys from functional and histological damage. After mild ischemia, but not severe ischemia, G6PD activity and NADPH levels were restored, suggesting that TIGAR activation may redirect the glycolytic pathway into gluconeogenesis or the pentose phosphate pathway to produce NADPH. The increased level of NADPH maintained the level of GSH to scavenge ROS, resulting in a lower sensitivity of PST cells to injury. Under severe ischemia, G6PD activity and NADPH levels were reduced during reperfusion; however, blockade of TIGAR enhanced their levels and reduced oxidative stress and apoptosis. Collectively, these results demonstrate that inhibition of TIGAR may protect PST cells from energy depletion and apoptotic cell death in the setting of severe ischemia-reperfusion injury. However, under low ischemic burden, TIGAR activation induces the pentose phosphate pathway and autophagy as a protective mechanism.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea; and
| | | | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Section of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
64
|
(RS)-glucoraphanin purified from Tuscan black kale and bioactivated with myrosinase enzyme protects against cerebral ischemia/reperfusion injury in rats. Fitoterapia 2014; 99:166-77. [PMID: 25281776 DOI: 10.1016/j.fitote.2014.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/13/2023]
Abstract
Ischemic stroke is the result of a transient or permanent reduction in cerebral blood flow caused by the occlusion of a cerebral artery via an embolus or local thrombosis. Restoration of blood supply to ischemic tissues can cause additional damage known as reperfusion injury that can be more damaging than the initial ischemia. This study was aimed to examine the possible neuroprotective role of (RS)-glucoraphanin, bioactivated with myrosinase enzyme (bioactive RS-GRA), in an experimental rat model of brain ischemia/reperfusion injury (I/R). RS-GRA is a thiosaccharidic compound found in Brassicaceae, notably in Tuscan black kale (Brassica oleracea L. var. acephala sabellica). The mechanism underlying the inhibitory effects of bioactive RS-GRA on inflammatory and apoptotic responses, induced by carotid artery occlusion in rats, was carefully examined. Cerebral I/R was induced by the clamping of carotid artery for 1h, followed by 40 min of reperfusion through the release of clamp. Our results have clearly shown that administration of bioactive RS-GRA (10 mg/kg, i.p.) 15 min after ischemia, significantly reduces proinflammatory parameters, such as inducible nitric oxide synthase expression (iNOS), intercellular adhesion molecule 1 (ICAM-1), nuclear factor (NF)-kB traslocation as well as the triggering of the apoptotic pathway (TUNEL and Caspase 3 expression). Taken together our data have shown that bioactive RS-GRA possesses beneficial neuroprotective effects in counteracting the brain damage associated to I/R. Therefore, bioactive RS-GRA, could be a useful treatment in the cerebral ischemic stroke.
Collapse
|
65
|
Jochmans I, Monbaliu D, Pirenne J. Neutrophil gelatinase-associated lipocalin, a new biomarker candidate in perfusate of machine-perfused kidneys: a porcine pilot experiment. Transplant Proc 2014; 43:3486-9. [PMID: 22099824 DOI: 10.1016/j.transproceed.2011.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enduring kidney graft shortage has led to the increasing use of expanded-criteria donors as well as kidneys donated after cardiac death, triggering the revival of machine perfusion preservation. Indeed, machine perfusion not only preserves these kidneys better than static cold storage, but also has the potential to evaluate them. The presence of certain biomarkers, among them aspartate aminotransferase (AST) and heart-type fatty acid binding protein (H-FABP), has been demonstrated in the perfusate of human kidneys, making them potentially useful as biomarkers of graft quality. Neutrophil gelatinase-associated lipocalin (NGAL) which is believed to be released upon renal tubular cell injury is another biomarker candidate. However, because it is also released from neutrophils, it is currently unclear whether NGAL is a direct or indirect, inflammatory-mediated marker of kidney injury. To resolve this issue we established a pilot experiment to study the concentrations of AST, H-FABP, and NGAL in the perfusates of 6 porcine kidneys that were exposed to incremental periods of warm ischemia before machine perfusion for 22 hours. An ex vivo porcine model was chosen because preclinical large animal work remains necessary to refine machine perfusion technology and because the presence of these markers in perfusates of porcine kidneys had not been shown previously. All 3 biomarkers were detectable in the cold acellular perfusate; their release seemed to be proportionate to the degree of warm injury, albeit that this must be confirmed in a larger sample. In conclusion, NGAL is directly released by ischemically damaged kidneys, independent of neutrophil activation. In addition to NGAL, the determination of AST and H-FABP in perfusates of machine-perfused porcine kidneys is also feasible. Determination of these markers may be added to the arsenal of research tools for preclinical preservation research.
Collapse
Affiliation(s)
- I Jochmans
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, KU Leuven, Belgium.
| | | | | |
Collapse
|
66
|
Abstract
Acute kidney injury (AKI) is a serious clinical condition with no effective treatment. Tubular cells are key targets in AKI. Tubular cells and, specifically, proximal tubular cells are extremely rich in mitochondria and mitochondrial changes had long been known to be a feature of AKI. However, only recent advances in understanding the molecules involved in mitochondria biogenesis and dynamics and the availability of mitochondria-targeted drugs has allowed the exploration of the specific role of mitochondria in AKI. We now review the morphological and functional mitochondrial changes during AKI, as well as changes in the expression of mitochondrial genes and proteins. Finally, we summarise the current status of novel therapeutic strategies specifically targeting mitochondria such as mitochondrial permeability transition pore (MPTP) opening inhibitors (cyclosporine A (CsA)), quinone analogues (MitoQ, SkQ1 and SkQR1), superoxide dismutase (SOD) mimetics (Mito-CP), Szeto-Schiller (SS) peptides (Bendavia) and mitochondrial division inhibitors (mdivi-1). MitoQ, SkQ1, SkQR1, Mito-CP, Bendavia and mdivi-1 have improved the course of diverse experimental models of AKI. Evidence for a beneficial effect of CsA on human cardiac ischaemia-reperfusion injury derives from a clinical trial; however, CsA is nephrotoxic. MitoQ and Bendavia have been shown to be safe for humans. Ongoing clinical trials are testing the efficacy of Bendavia in AKI prevention following renal artery percutaneous transluminal angioplasty.
Collapse
|
67
|
Ramesh G, Ranganathan P. Mouse models and methods for studying human disease, acute kidney injury (AKI). Methods Mol Biol 2014; 1194:421-36. [PMID: 25064118 DOI: 10.1007/978-1-4939-1215-5_24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is serious complication in hospitalized patients with high level of mortality. There is not much progress made for the past 50 years in reducing the mortality rate despite advances in understanding disease pathology. Using variety of animal models of acute kidney injury, scientist studies the pathogenic mechanism of AKI and to test therapeutic drugs, which may reduce renal injury. Among them, renal pedicle clamping and cisplatin induced nephrotoxicity in mice are most prominently used, mainly due to the availability of gene knockouts to study specific gene functions, inexpensive and availability of the inbred strain with less genetic variability. However, ischemic mouse model is highly variable and require excellent surgical skills to reduce variation in the observation. In this chapter, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion and cisplatin induced nephrotoxicity. We also discuss the protocol for the isolation and analysis of infiltrated inflammatory cell into the kidney by flow cytometry. Information provided in this chapter will help scientist who wants to start research on AKI and want to establish the mouse model for ischemic and toxic kidney injury.
Collapse
Affiliation(s)
- Ganesan Ramesh
- Department of Medicine and Vascular Biology Center, CB-3330, Georgia Health Sciences University, 1459 Laney-Walker Blvd, Augusta, GA, 30912, USA,
| | | |
Collapse
|
68
|
Nitrotyrosine level was associated with mortality in patients with acute kidney injury. PLoS One 2013; 8:e79962. [PMID: 24278225 PMCID: PMC3835782 DOI: 10.1371/journal.pone.0079962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/29/2013] [Indexed: 11/30/2022] Open
Abstract
Background To examine the characteristics of oxidative stress in patients with acute kidney injury (AKI) and investigate the association between plasma nitrotyrosine levels and 90-day mortality in patients with AKI. Methodology/Principal Findings 158 patients with hospital-acquired AKI were recruited to this prospective cohort study according to RIFLE (Risk, Injury, Failure, Lost or End Stage Kidney) criteria. Twelve critically ill patients without AKI and 15 age and gender-matched healthy subjects served as control. Plasma 3-nitrotyrosine was analyzed in relation to 90-day all cause mortality of patients with AKI. The patients with AKI were followed up for 90 days and grouped according to median plasma 3-nitrotyrosine concentrations. Highest 3-NT/Tyr was detected in patients with AKI compared with healthy subjects, and critically ill patients without AKI (ANOVA p<0.001). The 90-day survival curves of patients with high 3-NT/Tyr showed significant differences compared with the curves of individuals with low 3-NT/Tyr (p = 0.001 by log rank test). Multivariate analysis (Cox regression) revealed that 3-NT/Tyr (p = 0.025) was independently associated with mortality after adjustment for age, gender, sepsis and Acute Physiology and Chronic Health Evaluation (APACHE) II score. Conclusions/Significance There is excess plasma protein oxidation in patients with AKI, as evidenced by increased nitrotyrosine content. 3-NT/Tyr level was associated with mortality of AKI patients independent of the severity of illness.
Collapse
|
69
|
Brede C, Labhasetwar V. Applications of nanoparticles in the detection and treatment of kidney diseases. Adv Chronic Kidney Dis 2013; 20:454-65. [PMID: 24206598 DOI: 10.1053/j.ackd.2013.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/13/2013] [Accepted: 07/29/2013] [Indexed: 12/17/2022]
Abstract
Nanoparticles have emerged in the medical field as a technology well suited for the diagnosis and treatment of various disease states. They have been heralded as efficacious in terms of improved therapeutic efficacy and reduction of treatment side effects in some cases. Various nanomaterials have been developed that can be tagged with targeting moieties as well as with drug delivery and imaging capability or a combination of both as a theranostic agent. These nanomaterials have been investigated for treatment and detection of various pathological conditions. The emphasis of this review is to demonstrate current research and clinical applications for nanoparticles in the diagnosis and treatment of kidney diseases.
Collapse
|
70
|
Brar R, Singh JP, Kaur T, Arora S, Singh AP. Role of GABAergic activity of sodium valproate against ischemia–reperfusion-induced acute kidney injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:143-51. [DOI: 10.1007/s00210-013-0928-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022]
|
71
|
Mason S, Hader C, Marlier A, Moeckel G, Cantley LG. Met activation is required for early cytoprotection after ischemic kidney injury. J Am Soc Nephrol 2013; 25:329-37. [PMID: 24136921 DOI: 10.1681/asn.2013050473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal proximal tubule epithelial cells express high levels of the hepatocyte growth factor receptor Met, and both the receptor and ligand are upregulated after ischemic injury. Activation of the Met receptor after hepatocyte growth factor stimulation in vitro promotes activities involved in kidney repair, including cell survival, migration, and proliferation. However, characterizing the in vivo role of these signaling events in proximal tubule responses to kidney injury has been difficult because global Met knockout results in embryonic lethality due to placental and liver abnormalities. Here, we used γGT-Cre to knockout Met receptor expression selectively in the proximal tubules of mice (γGT-Cre;Met(fl/fl)). The kidneys of these mice developed normally, but exhibited increased initial tubular injury, tubular cell apoptosis, and serum creatinine after ischemia/reperfusion compared with γGT-Cre;Met(+/+) kidneys. These changes in γGT-Cre;Met(fl/fl) mice correlated with a selective reduction in PI3K/Akt activation in response to injury and subsequent decreases in inhibitory phosphorylation of the proapoptotic factor Bad and activating phosphorylation of the ribosomal regulatory protein p70-S6 kinase. Moreover, tubular cell proliferation after ischemia/reperfusion was delayed in γGT-Cre;Met(fl/fl) mice. In conclusion, this study identifies Met-dependent phosphoinositide 3-kinase activation in proximal tubules as a critical determinant of initial tubular cell survival and reparative proliferation after ischemic injury.
Collapse
|
72
|
Chen J, Chen JK, Conway EM, Harris RC. Survivin mediates renal proximal tubule recovery from AKI. J Am Soc Nephrol 2013; 24:2023-33. [PMID: 23949800 DOI: 10.1681/asn.2013010076] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AKI induces the renoprotective upregulation of survivin expression in kidney epithelial cells, but the underlying mechanisms have not been identified. To determine the role of survivin in renal recovery from AKI, we generated mice with renal proximal tubule-specific deletion of survivin (survivin(ptKO)). Renal survivin expression increased substantially in response to ischemia-reperfusion (I/R) injury in control littermates but remained minimal in survivin(ptKO) mice. Functional and histologic data indicated similar degrees of renal injury in survivin(ptKO) and control mice 24 hours after reperfusion, but recovery was markedly delayed in survivin(ptKO) mice. In MCT cells, a mouse renal proximal tubule cell line, ATP depletion by antimycin A treatment upregulated survivin expression through a phospho-STAT3-dependent pathway. In wild-type mice, inhibition of STAT3 kinase diminished I/R-induced upregulation of STAT3 phosphorylation and survivin expression and delayed recovery. Furthermore, I/R injury activated Notch-2 signaling, and a γ-secretase inhibitor suppressed I/R-induced Notch-2 signaling, STAT3 phosphorylation, and survivin expression and delayed recovery. In MCT cells, inhibition of γ-secretase similarly attenuated antimycin A-induced Notch-2 activation, upregulation of survivin, and phosphorylation of STAT3, but STAT3 kinase inhibition did not prevent Notch-2 activation. Therefore, these data suggest that STAT3 phosphorylation and subsequent upregulation of survivin expression mediated by Notch-2 signaling in renal proximal tubule epithelial cells aid in the functional and structural recovery of the kidney from AKI.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | |
Collapse
|
73
|
Han X, Zhao L, Lu G, Ge J, Zhao Y, Zu S, Yuan M, Liu Y, Kong F, Xiao Z, Zhao S. Improving outcomes of acute kidney injury using mouse renal progenitor cells alone or in combination with erythropoietin or suramin. Stem Cell Res Ther 2013; 4:74. [PMID: 23777889 PMCID: PMC3706945 DOI: 10.1186/scrt225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/10/2013] [Indexed: 01/06/2023] Open
Abstract
Introduction So far, no effective therapy is available for acute kidney injury (AKI), a common and serious complication with high morbidity and mortality. Interest has recently been focused on the potential therapeutic effect of mouse adult renal progenitor cells (MRPC), erythropoietin (EPO) and suramin in the recovery of ischemia-induced AKI. The aim of the present study is to compare MRPC with MRPC/EPO or MRPC/suramin concomitantly in the treatment of a mouse model of ischemia/reperfusion (I/R) AKI. Methods MRPC were isolated from adult C57BL/6-gfp mice. Male C57BL/6 mice (eight-weeks old, n = 72) were used for the I/R AKI model. Serum creatinine (Cr), blood urea nitrogen (BUN) and renal histology were detected in MRPC-, MRPC/EPO-, MRPC/suramin- and PBS-treated I/R AKI mice. E-cadherin, CD34 and GFP protein expression was assessed by immunohistochemical assay. Results MRPC exhibited characteristics consistent with renal stem cells. The features of MRPC were manifested by Pax-2, Oct-4, vimentin, α-smooth muscle actin positive, and E-cadherin negative, distinguished from mesenchymal stem cells (MSC) by expression of CD34 and Sca-1. The plasticity of MRPC was shown by the ability to differentiate into osteoblasts and lipocytes in vitro. Injection of MRPC, especially MRPC/EPO and MRPC/suramin in I/R AKI mice attenuated renal damage with a decrease of the necrotic injury, peak plasma Cr and BUN. Furthermore, seven days after the injury, MRPC/EPO or MRPC/suramin formed more CD34+ and E-cadherin+ cells than MRPC alone. Conclusions These results suggest that MRPC, in particular MRPC/EPO or MRPC/suramin, promote renal repair after injury and may be a promising therapeutic strategy.
Collapse
|
74
|
Kim JI, Choi SH, Jung KJ, Lee E, Kim HY, Park KM. Protective role of methionine sulfoxide reductase A against ischemia/reperfusion injury in mouse kidney and its involvement in the regulation of trans-sulfuration pathway. Antioxid Redox Signal 2013; 18:2241-50. [PMID: 22657153 PMCID: PMC3638512 DOI: 10.1089/ars.2012.4598] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Methionine sulfoxide reductase A (MsrA) and methionine metabolism are associated with oxidative stress, a principal cause of ischemia/reperfusion (I/R) injury. Herein, we investigated the protective role of MsrA against kidney I/R injury and the involvement of MsrA in methionine metabolism and the trans-sulfuration pathway during I/R. RESULTS We found that MsrA gene-deleted mice (MsrA(-/-)) were more susceptible to kidney I/R injury than wild-type mice (MsrA(+/+)). Deletion of MsrA enhanced renal functional and morphological impairments, congestion, inflammatory responses, and oxidative stress under I/R conditions. Concentrations of homocysteine and H(2)S in the plasma of control MsrA(-/-) mice were significantly lower than those in control MsrA(+/+) mice. I/R reduced the levels of homocysteine and H(2)S in both MsrA(+/+) and MsrA(-/-) mice, and these reductions were significantly more profound in MsrA(-/-) than in MsrA(+/+) mice. I/R reduced the expression and activities of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), both of which are H(2)S-producing enzymes, in the kidneys. These reductions were more profound in the MsrA(-/-) mice than in the MsrA(+/+)mice. INNOVATION The data provided herein constitute the first in vivo evidence for the involvement of MsrA in regulating methionine metabolism and the trans-sulfuration pathway under normal and I/R conditions. CONCLUSION Our data demonstrate that MsrA protects the kidney against I/R injury, and that this protection is associated with reduced oxidative stress and inflammatory responses. The data indicate that MsrA regulates H(2)S production during I/R by modulating the expression and activity of the CBS and CSE enzymes.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
75
|
Kim JI, Kim J, Jang HS, Noh MR, Lipschutz JH, Park KM. Reduction of oxidative stress during recovery accelerates normalization of primary cilia length that is altered after ischemic injury in murine kidneys. Am J Physiol Renal Physiol 2013; 304:F1283-94. [DOI: 10.1152/ajprenal.00427.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary cilium is a microtubule-based nonmotile organelle that extends from the surface of cells, including renal tubular cells. Here, we investigated the alteration of primary cilium length during epithelial cell injury and repair, following ischemia/reperfusion (I/R) insult, and the role of reactive oxygen species in this alteration. Thirty minutes of bilateral renal ischemia induced severe renal tubular cell damage and an increase of plasma creatinine (PCr) concentration. Between 8 and 16 days following the ischemia, the increased PCr returned to normal range, although without complete histological restoration. Compared with the primary cilium length in normal kidney tubule cells, the length was shortened 4 h and 1 day following ischemia, increased over normal 8 days after ischemia, and then returned to near normal 16 days following ischemia. In the urine of I/R-subjected mice, acetylated tubulin was detected. The cilium length of proliferating cells was shorter than that in nonproliferating cells. Mature cells had shorter cilia than differentiating cells. Treatment with Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, during the recovery of damaged kidneys accelerated normalization of cilia length concomitant with a decrease of oxidative stress and morphological recovery in the kidney. In the Madin-Darby canine kidney (MDCK) cells, H2O2 treatment caused released ciliary fragment into medium, and MnTMPyP inhibited the deciliation. The ERK inhibitor U0126 inhibited elongation of cilia in normal and MDCK cells recovering from H2O2 stress. Taken together, our results suggest that primary cilia length reflects cell proliferation and the length of primary cilium is regulated, at least, in part, by reactive oxygen species through ERK.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea; and
| | - Jinu Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea; and
| | - Mi Ra Noh
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Joshua H. Lipschutz
- Department of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Kwon Moo Park
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea; and
| |
Collapse
|
76
|
Sugita S, Okabe T, Sakamoto A. Continuous Infusion of Dexmedetomidine Improves Renal Ischemia-reperfusion Injury in Rat Kidney. J NIPPON MED SCH 2013; 80:131-9. [DOI: 10.1272/jnms.80.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School
| | - Tadashi Okabe
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
77
|
Farrar CA, Asgari E, Schwaeble WJ, Sacks SH. Which pathways trigger the role of complement in ischaemia/reperfusion injury? Front Immunol 2012; 3:341. [PMID: 23181062 PMCID: PMC3500775 DOI: 10.3389/fimmu.2012.00341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/25/2012] [Indexed: 01/04/2023] Open
Abstract
Investigations into the role of complement in ischemia/reperfusion (I/R) injury have identified common effector mechanisms that depend on the production of C5a and C5b-9 through the cleavage of C3. These studies have also defined an important role for C3 synthesized within ischemic kidney. Less clear however is the mechanism of complement activation that leads to the cleavage of C3 in ischemic tissues and to what extent the potential trigger mechanisms are organ dependent - an important question which informs the development of therapies that are more selective in their ability to limit the injury, yet preserve the other functions of complement where possible. Here we consider recent evidence for each of the three major pathways of complement activation (classical, lectin, and alternative) as mediators of I/R injury, and in particular highlight the role of lectin molecules that increasingly seem to underpin the injury in different organ models and in addition reveal unusual routes of complement activation that contribute to organ damage.
Collapse
Affiliation(s)
- Conrad A. Farrar
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| | - Elham Asgari
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| | - Wilhelm J. Schwaeble
- Department of Infection, Immunity, and Inflammation, Leicester UniversityLeicester, UK
| | - Steven H. Sacks
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| |
Collapse
|
78
|
Matsui F, Meldrum KK. The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. J Surg Res 2012; 178:339-45. [PMID: 22883438 DOI: 10.1016/j.jss.2012.06.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/01/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022]
Abstract
Over the past several years, a number of cytokines and growth factors including transforming growth factor β1, tumor necrosis factor α, and angiotensin II have been shown to play a crucial role in renal fibrosis. The Janus kinase family (JAK) and signal transducers and activators of transcription (STATs) constitute one of the primary signaling pathways that regulate cytokine expression, and the JAK/STAT signaling pathway has increasingly been implicated in the pathophysiology of renal disease. This review examines the role of the JAK/STAT signaling pathway in fibrotic renal disease. The JAK/STAT signaling pathway is activated in a variety of renal diseases and has been implicated in the pathophysiology of renal fibrosis. Experimental evidence suggests that inhibition of the JAK/STAT signaling pathway, in particular JAK2 and STAT3, may suppress renal fibrosis and protect renal function. However, it is incompletely understood which cells activate the JAK/STAT signaling pathway and which JAK/STAT signaling pathway is activated in each renal disease. Research regarding JAK/STAT signaling and its contribution to renal disease is still ongoing in humans. Future studies are required to elucidate the potential role of JAK/STAT signaling inhibition as a therapeutic strategy in the attenuation of renal fibrosis.
Collapse
Affiliation(s)
- Futoshi Matsui
- Department of Urology, University of Florida School of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
79
|
Chen J, Chen JK, Harris RC. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int 2012; 82:45-52. [PMID: 22418982 PMCID: PMC3376190 DOI: 10.1038/ki.2012.43] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/27/2011] [Accepted: 12/20/2011] [Indexed: 12/13/2022]
Abstract
To determine the role of epidermal growth factor receptor (EGFR) activation in renal functional and structural recovery from acute kidney injury (AKI), we generated mice with a specific EGFR deletion in the renal proximal tubule (EGFR(ptKO)). Ischemia-reperfusion injury markedly activated EGFR in control littermate mice; however, this was inhibited in either the knockout or wild-type mice given erlotinib, a specific EGFR tyrosine kinase inhibitor. Blood urea nitrogen and serum creatinine increased to a comparable level in EGFR(ptKO) and control mice 24 h after reperfusion, but the subsequent rate of renal function recovery was markedly slowed in the knockout mice. Twenty-four hours after reperfusion, both the knockout and the inhibitor-treated mice had a similar degree of histologic renal injury as control mice, but at day 6 there was minimal evidence of injury in the control mice while both EGFR(ptKO) and erlotinib-treated mice still had persistent proximal tubule dilation, epithelial simplification, and cast formation. Additionally, renal cell proliferation was delayed due to decreased ERK and Akt signaling. Thus, our studies provide both genetic and pharmacologic evidence that proximal tubule EGFR activation plays an important role in the recovery phase after acute kidney injury.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
80
|
Idrovo JP, Yang WL, Nicastro J, Coppa GF, Wang P. Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J Surg Res 2012; 177:157-64. [PMID: 22698429 DOI: 10.1016/j.jss.2012.05.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal injury as a result of ischemia/reperfusion (I/R) is a major clinical problem with a high mortality rate and a lack of therapeutic treatment. During I/R, cellular homeostasis is disrupted owing to energy depletion, leading to cell death. Fatty acid β-oxidation is the major metabolic pathway for generating adenosine triphosphate (ATP) in the kidneys, which is governed by carnitine palmitoyltransferase 1 (CPT1). C75 is a synthetic compound that up-regulates CPT1 activity. Thus, we hypothesized that C75 treatment could increase energy production and alleviate renal I/R injury. METHODS We subjected male adult rats to renal I/R by bilateral renal pedicle clamping with microvascular clips for 60 min, followed by administration of 8% dimethyl sulfoxide (vehicle) or C75 (3 mg/kg body weight), with 5 animals/group. We collected blood and renal tissues 24 h after reperfusion and subjected them to various measurements and histological examination. RESULTS C75 treatment restored the loss of CPT1 activity and intracellular ATP levels in the kidneys after I/R. Administration of C75 significantly lowered serum creatinine, blood urea nitrogen, aspartate aminotransferase, and lactate dehydrogenase levels elevated by I/R. C75 treatment preserved morphological features of the kidneys with a significant improvement in the damage score. In addition, C75 treatment inhibited the increase of TNF-α levels in serum and kidneys, and lowered myeloperoxidase activity in the kidneys after I/R. CONCLUSIONS Stimulation of CPT1 activity by C75 recovered ATP depletion, improved renal function, attenuated tissue injury, and inhibited proinflammatory cytokine production and neutrophil infiltration after renal I/R injury. Therefore, enhancing the metabolism pathways for energy production may provide a novel modality to treat renal I/R injury.
Collapse
Affiliation(s)
- Juan-Pablo Idrovo
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York 11030, USA
| | | | | | | | | |
Collapse
|
81
|
Baek HS, Lim SH, Ahn KS, Lee J. Methanol Extract of Goat's-beard (Aruncus dioicus) Reduces Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia-Reperfusion. Prev Nutr Food Sci 2012; 17:101-8. [PMID: 24471070 PMCID: PMC3866754 DOI: 10.3746/pnf.2012.17.2.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/18/2012] [Indexed: 11/09/2022] Open
Abstract
Interruption or prolonged reduction and subsequent restoration of blood flow into the kidney triggers the generation of a burst of reactive oxygen species (ROS), leading to injury in the tubular epithelial cells. In this study, we determined whether methanol extract of goat's-beard (Aruncus dioicus) (extract) could prevent this ischemia/re-perfusion injury. When in vitro radical scavenging activity of the extract was measured using a DPPH radical quenching assay, the extract displayed slightly lower activity than ascorbic acid. One hour after administration of the extract (400 mg/kg) by intraperitoneal injection in rats, renal ischemia/reperfusion injury was generated by clamping the left renal artery for forty minutes, followed by 24 hr restoration of blood circulation. Prior to clamping the left renal artery, the right renal artery was removed. Compared with the vehicle-treated group, pre-treatment with the extract significantly reduced the tubular epithelial cell injury by 37% in the outer medulla region, and consequently reduced serum creatinine concentration by 39%. Reduction in the cell injury was mediated by attenuation of Bax/Bcl-2 ratio, inhibition of caspase-3 activation from procaspase-3, and subsequent reduction in the number of apoptotic cells. Thus, goat's-beard (Aruncus dioicus) might be developed as a prophylactic agent to prevent acute kidney injury.
Collapse
Affiliation(s)
- Hae Sook Baek
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea
| | - Sun Ha Lim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea
| | - Ki Sung Ahn
- Department of Internal Medicine, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea
| | - Jongwon Lee
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea
| |
Collapse
|
82
|
Grossini E, Molinari C, Pollesello P, Bellomo G, Valente G, Mary D, Vacca G, Caimmi P. Levosimendan Protection against Kidney Ischemia/Reperfusion Injuries in Anesthetized Pigs. J Pharmacol Exp Ther 2012; 342:376-88. [DOI: 10.1124/jpet.112.193961] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
83
|
Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC. Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant 2012; 21:2569-85. [PMID: 22507855 DOI: 10.3727/096368912x636902] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have potential for multilineage differentiation and provide a resource for stem cell-based treatment. However, the therapeutic effect of iPS cells on acute kidney injury (AKI) remains uncertain. Given that the oncogene c-Myc may contribute to tumorigenesis by causing genomic instability, herein we evaluated the therapeutic effect of iPS cells without exogenously introduced c-Myc on ischemia-reperfusion (I/R)-induced AKI. As compared with phosphate-buffered saline (PBS)-treated group, administration of iPS cells via intrarenal arterial route into kidneys improved the renal function and attenuated tubular injury score at 48 h after ischemia particularly at the dose of 5 × 10(5) iPS cells. However, a larger number of iPS cells (5 × 10(7) per rat) diminished the therapeutic effects for AKI and profoundly reduced renal perfusion detected by laser Doppler imaging in the reperfusion phase. In addition, the green fluorescence protein-positive iPS cells mobilized to the peritubular area at 48 h following ischemia, accompanied by a significant reduction in infiltration of macrophages and apoptosis of tubular cells, and a remarkable enhancement in endogenous tubular cell proliferation. Importantly, transplantation of iPS cells reduced the expression of oxidative substances, proinflammatory cytokines, and apoptotic factors in I/R kidney tissues and eventually improved survival in rats of ischemic AKI. Six months after transplantation in I/R rats, engrafted iPS cells did not result in tumor formation in kidney and other organs. In summary, considering the antioxidant, anti-inflammatory, and antiapoptotic properties of iPS cells without c-Myc, transplantation of such cells may be a treatment option for ischemic AKI.
Collapse
Affiliation(s)
- Pei-Ying Lee
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
84
|
Hiroyoshi T, Tsuchida M, Uchiyama K, Fujikawa K, Komatsu T, Kanaoka Y, Matsuyama H. Splenectomy protects the kidneys against ischemic reperfusion injury in the rat. Transpl Immunol 2012; 27:8-11. [PMID: 22484617 DOI: 10.1016/j.trim.2012.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ischemic reperfusion (I/R) injury of the kidney is closely associated with delayed graft function, increased acute rejection, and late allograft dysfunction. Splenectomy reduced hepatic I/R injury by inhibiting leukocyte infiltration in the liver, release of TNF-α, cell apoptosis, and expression of caspase-3. Thus, we investigated the effects of splenectomy on renal I/R injury in the rat. METHODS Male Wistar rats were assigned to four groups: sham operation (sham group), sham operation+splenectomy (sham+SPLN group), right nephrectomy followed by clamping the left renal pedicle for 30min (I/R 30 group), and I/R 30+splenectomy (I/R 30+SPLN group). Renal function was determined by measuring the concentration of blood urea nitrogen (BUN) and serum creatinine (S-Cr). The serum level of tumor necrosis factor-α (TNF-α) was measured as the marker for inflammation. Left kidneys were obtained 24h after reperfusion. TUNEL assay was assessed for cell apoptosis. Spleens were obtained immediately (0-h group) and 3h after reperfusion (3-h group). The removed spleens were histologically evaluated. RESULTS The BUN and S-Cr levels were significantly lower in the I/R 30+SPLN group than in the I/R 30 group (p<0.05 for both). Apoptotic cells were significantly lower in the I/R 30+SPLN group than in the I/R 30 group. The serum level of TNF-α, which was increased after I/R, was significantly lower in the I/R 30+SPLN group than in the I/R 30 group (p<0.05). Spleen weights were significantly lower in the 3-h group than in the 0-h group (p<0.05). CONCLUSION These results suggest that splenectomy reduces renal I/R injury, and this effect may occur by an anti-inflammatory pathway and inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Toshiya Hiroyoshi
- Department of Urology, Graduate School of Medicine, Yamaguchi University,Yamaguchi, Japan.
| | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
86
|
Bedford M, Farmer C, Levin A, Ali T, Stevens P. Acute Kidney Injury and CKD: Chicken or Egg? Am J Kidney Dis 2012; 59:485-91. [DOI: 10.1053/j.ajkd.2011.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/19/2011] [Indexed: 11/11/2022]
|
87
|
Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol 2011; 302:F853-64. [PMID: 22160772 DOI: 10.1152/ajprenal.00035.2011] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
While mitochondrial dysfunction is a pathological process that occurs after acute kidney injury (AKI), the state of mitochondrial homeostasis during the injury and recovery phases of AKI remains unclear. We examined markers of mitochondrial homeostasis in two nonlethal rodent AKI models. Myoglobinuric AKI was induced by glycerol injection into rats, and mice were subjected to ischemic AKI. Animals in both models had elevated serum creatinine, indicative of renal dysfunction, 24 h after injury which partially recovered over 144 h postinjury. Markers of proximal tubule function/injury, including neutrophil gelatinase-associated lipocalin and urine glucose, did not recover during this same period. The persistent pathological state was confirmed by sustained caspase 3 cleavage and evidence of tubule dilation and brush-border damage. Respiratory proteins NDUFB8, ATP synthase β, cytochrome c oxidase subunit I (COX I), and COX IV were decreased in both injury models and did not recover by 144 h. Immunohistochemical analysis confirmed that COX IV protein was progressively lost in proximal tubules of the kidney cortex after ischemia-reperfusion (I/R). Expression of mitochondrial fission protein Drp1 was elevated after injury in both models, whereas the fusion protein Mfn2 was elevated after glycerol injury but decreased after I/R AKI. LC3-I/II expression revealed that autophagy increased in both injury models at the later time points. Markers of mitochondrial biogenesis, such as PGC-1α and PRC, were elevated in both models. These findings reveal that there is persistent disruption of mitochondrial homeostasis and sustained tubular damage after AKI, even in the presence of mitochondrial recovery signals and improved glomerular filtration.
Collapse
Affiliation(s)
- Jason A Funk
- Dept. of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St., Charleston, SC 29425, USA
| | | |
Collapse
|
88
|
Canacankatan N, Sucu N, Aytacoglu B, Gul OE, Gorur A, Korkmaz B, Sahan-Firat S, Antmen ES, Tamer L, Ayaz L, Vezir O, Kanik A, Tunctan B. Affirmative effects of iloprost on apoptosis during ischemia-reperfusion injury in kidney as a distant organ. Ren Fail 2011; 34:111-8. [PMID: 22126436 DOI: 10.3109/0886022x.2011.633446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Apoptosis and its regulatory mechanisms take part in renal ischemia-reperfusion (I/R) injury which can result in acute renal failure and the inhibition of the caspase is considered as a new therapeutic strategy. In this context, we investigated the antiapoptotic and cytoprotective effects of iloprost, a prostacyclin analog, in kidney as a distant organ. METHODS Wistar albino rats were randomized into five groups (n = 12 in each) as sham, ischemia, I/R, iloprost (10 μg kg(-1)), and I/R + iloprost (10 μg kg(-1)). A 4 h reperfusion procedure was carried out after 4 h of ischemia. Caspase-8 was evaluated for death receptor-induced pathways, whereas caspase-9 was evaluated for mitochondria-dependent pathways and caspase-3 was investigated for overall apoptosis. Superoxide dismutase (SOD) enzyme activity and nitrite content as an indicator of nitric oxide (NO) production were also analyzed in kidney tissues. RESULTS Caspases-3, -8, and -9 were all significantly elevated in both ischemia and I/R groups compared to the sham group; however, treatment with iloprost reduced caspases-3, -8, and -9. SOD enzyme activity was attenuated by iloprost when compared to ischemic rats. The different effects of NO were found which change according to the present situation in ischemia, I/R, and treatment with iloprost. CONCLUSIONS These findings suggested that iloprost prevents apoptosis in both receptor-induced and mitochondria-dependent pathways in renal I/R injury and it may be considered as a cytoprotective agent for apoptosis. Understanding the efficiency of iloprost on the pathways for cell death may lead to an opportunity in the therapeutic approach for renal I/R injury.
Collapse
Affiliation(s)
- Necmiye Canacankatan
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Farrar CA, Keogh B, McCormack W, O'Shaughnessy A, Parker A, Reilly M, Sacks SH. Inhibition of TLR2 promotes graft function in a murine model of renal transplant ischemia-reperfusion injury. FASEB J 2011; 26:799-807. [PMID: 22042224 DOI: 10.1096/fj.11-195396] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are important molecules involved in the activation of innate and subsequent development of adaptive immunity. TLRs are ligated by exogenous ligands from pathogens and by endogenous ligands released in inflammatory diseases. Activation of TLR leads to activation of NF-κB and release of proinflammatory cytokines, such as IL-6 and TNF-α. TLRs play an important role in the pathogenesis of renal diseases. Increased expression of TLRs have been associated with ischemic kidney damage, acute kidney injury, end-stage renal failure, acute renal transplant rejection, and delayed allograft function. OPN301 is a mouse anti-human TLR2 antibody that cross-reacts with mouse TLR2. We show that inhibition of TLR2 promotes graft function in an isograft model of renal transplantation. Recipient mice were treated intravenously with OPN301 before reperfusion of the transplanted kidney that had been subjected to 30 min of cold ischemia. After 5 d, the residual native kidney was removed, and renal transplant function was assessed 24 h later by measurement of blood urea nitrogen. Renal function in both saline- and isotype-treated mice was similar, with significant improvement in OPN301-treated mice (isotype-treated vs. OPN301-treated: 33.9±3.2 vs. 19.8±1.9 μM; P<0.01). The histopathological appearance corresponded with renal functional results. In OPN301-treated recipients, renal structure was well preserved, whereas in the saline-treated group, tubular injury was severe, with marked tubular thinning, epithelial shedding, cast formation and necrosis. Inhibition of TLR2 also leads to a decrease in C3d deposition, although it is unclear whether this is due directly to TLR2 inhibition or a decrease in renal inflammation. This study shows that inhibition of TLR2 with a therapeutic agent (OPN301) provides significant protection from ischemia/reperfusion injury in a model of kidney transplantation.
Collapse
Affiliation(s)
- Conrad A Farrar
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at Guy's, King's College, and St. Thomas' Hospitals, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
90
|
Qin Y, Alderliesten MC, Stokman G, Pennekamp P, Bonventre JV, de Heer E, Ichimura T, de Graauw M, Price LS, van de Water B. Focal adhesion kinase signaling mediates acute renal injury induced by ischemia/reperfusion. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2766-78. [PMID: 21982831 DOI: 10.1016/j.ajpath.2011.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/21/2011] [Accepted: 08/24/2011] [Indexed: 11/16/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is associated with cell matrix and focal adhesion remodeling. Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase that localizes at focal adhesions and regulates their turnover. Here, we investigated the role of FAK in renal I/R injury, using a novel conditional proximal tubule-specific fak-deletion mouse model. Tamoxifen treatment of FAK(loxP/loxP)//γGT-Cre-ER(T2) mice caused renal-specific fak recombination (FAK(ΔloxP/ΔloxP)) and reduction of FAK expression in proximal tubules. In FAK(ΔloxP/ΔloxP) mice compared with FAK(loxP/loxP) controls, unilateral renal ischemia followed by reperfusion resulted in less tubular damage with reduced tubular cell proliferation and lower expression of kidney injury molecule-1, which was independent from the postischemic inflammatory response. Oxidative stress is involved in the pathophysiology of I/R injury. Primary cultured mouse renal cells were used to study the role of FAK deficiency for oxidative stress in vitro. The conditional fak deletion did not affect cell survival after hydrogen peroxide-induced cellular stress, whereas it impaired the recovery of focal adhesions that were disrupted by hydrogen peroxide. This was associated with reduced c-Jun N-terminal kinase-dependent phosphorylation of paxillin at serine 178 in FAK-deficient cells, which is required for focal adhesion turnover. Our findings support a role for FAK as a novel factor in the initiation of c-Jun N-terminal kinase-mediated cellular stress response during renal I/R injury and suggest FAK as a target in renal injury protection.
Collapse
Affiliation(s)
- Yu Qin
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hosohata K, Ando H, Fujiwara Y, Fujimura A. Vanin-1: a potential biomarker for nephrotoxicant-induced renal injury. Toxicology 2011; 290:82-8. [PMID: 21907259 DOI: 10.1016/j.tox.2011.08.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022]
Abstract
Because traditional markers for detecting renal injury are generally insensitive and nonspecific, we tried to identify some useful biomarkers. Microarray analyses and quantitative real-time PCR using human renal tubular cells showed that the mRNA expression of VNN-1 which encodes vanin-1, increased after the exposure of these cells to organic solvents (allyl alcohol, ethylene glycol, formaldehyde, chloroform, and phenol) for 24h. The mRNA levels of other inflammation-related molecules such as monocyte chemoattractant protein 1 (MCP-1) and kidney injury molecule-1 (KIM-1) also increased after the exposure to organic solvents, although their elevations were slower than that of vanin-1. In rats treated with ethylene glycol for 3 weeks, tubular injury was detected by histological examination, but not by traditional biomarkers including serum creatinine and urinary N-acetyl-β-glucosaminidase. The mRNA levels of vanin-1 and Kim-1, but not MCP-1, significantly elevated in the renal cortices of ethylene glycol-exposed rats. On immunofluorescence analyses, vanin-1 signal was detected specifically in the renal tubules with a remarkable expression in the ethylene glycol-treated rats. As a result, compared with control group, higher urinary and serum concentrations of vanin-1 were observed in the ethylene glycol-treated group. These results suggest that vanin-1 is a useful and rapid biomarker for renal tubular injury induced by organic solvents.
Collapse
Affiliation(s)
- Keiko Hosohata
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | | | | | | |
Collapse
|
92
|
Awad AS, Kamel R, Sherief MAE. Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N-1-acetyl-transferase gene expression induced by renal ischaemia-reperfusion in rats. ACTA ACUST UNITED AC 2011; 63:1037-42. [PMID: 21718287 DOI: 10.1111/j.2042-7158.2011.01303.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Renal ischaemia-reperfusion (I/R) is a well-characterised model of acute renal failure that causes both local and remote organ injury. The aim of this work was to investigate the effect of thymoquinone, the main constituent of the volatile oil extracted from Nigella sativa seeds, on renal and hepatic changes after renal ischaemia-reperfusion. METHODS Male Sprague-Dawley rats were divided into sham I/R vehicle-treated groups, and I/R thymoquinone-treated groups. Thymoquinone (10 mg/kg, p.o.) was administered for ten consecutive days to the I/R thymoquinone group before injury. I/R and I/R thymoquinone groups were subjected to 30-min ischaemia followed by 4-h reperfusion. KEY FINDINGS I/R resulted in a significant increase in malondialdehyde (MDA) level and decreases in glutathione-S-transferase (GST) and superoxide dismutase (SOD) activity in liver and kidney tissues. Thymoquinone treatment caused the reversal of I/R-induced changes in MDA as well as GST and SOD activity. Moreover, I/R caused a significant rise in creatinine and alanine aminotransferase serum levels. CYP3A1 mRNA expression was induced significantly by I/R in both liver and kidney tissues compared with sham group. Thymoquinone reduced significantly this increase. I/R caused induction of mRNA expression of spermidine/spermine N-1-acetyl-transferase (SSAT), a catabolic enzyme that participates in polyamine metabolism, in liver and kidney tissues. Thymoquinone reduced SSAT mRNA expression significantly in liver and markedly in kidney. CONCLUSIONS These findings suggested that thymoquinone protected against renal I/R-induced damage through an antioxidant mechanism as well as the decrease of CYP3A1 and SSAT gene expression.
Collapse
Affiliation(s)
- Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Nasr City, Egypt.
| | | | | |
Collapse
|
93
|
Zahedi K, Soleimani M. Spermidine/spermine-N¹-acetyltransferase in kidney ischemia reperfusion injury. Methods Mol Biol 2011; 720:379-94. [PMID: 21318887 DOI: 10.1007/978-1-61779-034-8_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ischemic reperfusion injuries such as acute renal failure, acute liver failure, stroke, and myocardial infarction are prevalent causes of morbidity and mortality. Kidney ischemic reperfusion injury is the leading cause of acute renal failure and dysfunction of transplanted kidneys. Although significant progress has been made in deciphering the factors that contribute to ischemic reperfusion injury, treatment options for these injuries remain scant. Identifying the molecules that contribute to ischemic reperfusion injury and can be therapeutically targeted will lead to development of new approaches for the treatment of such injuries. The expression of spermidine/spermine-N¹-acetyltransferase increases in the kidneys subjected to ischemic reperfusion injury. Furthermore, inactivation of the spermidine/spermine-N¹-acetyltransferase gene reduces the severity of kidney damage after ischemic reperfusion injury. Enhanced expression of spermidine/spermine-N¹-acetyltransferase in cultured cells leads to DNA damage, cell cycle arrest, and disruption of cell matrix interactions. The aforementioned observations strongly suggest that enhanced polyamine back conversion plays an important role in the mediation of tissue damage in renal Ischemic reperfusion injury.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Department of Surgery, Division of Nephrology and Hypertension, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
94
|
Prókai A, Fekete A, Bánki NF, Müller V, Vér A, Degrell P, Rusai K, Wagner L, Vannay A, Rosta M, Heemann U, Langer RM, Tulassay T, Reusz G, Szabó AJ. Renoprotective effect of erythropoietin in rats subjected to ischemia/reperfusion injury: gender differences. Surgery 2011; 150:39-47. [PMID: 21596414 DOI: 10.1016/j.surg.2011.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Renal ischemia reperfusion injury induces gender-dependent heat-shock protein 72 expression, which maintains membrane localization of renal Na(+)/K(+)ATPase-α1. The erythropoietin has a protecting effect against ischemia reperfusion injury in various organs. In this study, we investigated whether erythropoietin exerts a beneficial effect against post-ischemic renal injury. Furthermore, we studied the erythropoietin signaling on heat-shock protein 72 and Na(+)/K(+)ATPase-α1 expression and localization. METHODS In male and female Wistar rats, rHuEPO (1000 IU/bwkg intraperitoneal) or vehicle was administered 24 hours prior to unilateral left renal ischemia reperfusion (50 minutes). Kidneys were subsequently removed at hours 2 or 24 of the reperfusion; sham-operated rats served as controls (C) (n = 8/group). We measured serum erythropoietin, renal function, evaluated histological injury, and observed heat-shock protein 72 as well as Na(+)/K(+)ATPase-α1 protein level and localization. Additional groups were followed for 7-day survival. RESULTS Erythropoietin treatment was associated with better post-ischemic survival and less impaired renal function in males while diminishing the renal structural damage in both sexes. Endogenous erythropoietin was higher in males and increased in both genders after erythropoietin treatment. The erythropoietin treatment elevated protein levels of heat-shock protein 72 and Na(+)/K(+)ATPase-α1 in 24 hours in males, whereas in females, the already higher expression of heat-shock protein 72 and Na(+)/K(+)ATPase-α1 was not increased. Moreover, erythropoietin prevented ischemia reperfusion induced Na(+)/K(+)ATPase-α1 translocation from the basolaterale membrane in males. CONCLUSION Erythropoietin diminishes gender difference in the susceptibility to renal post-ischemic injury and reduces post-ischemic structural damage while preserving kidney function, particularly in males. This additional protection may be associated with a heat-shock protein 72-mediated effect on Na(+)/K(+)ATPase-α1 expression and translocation.
Collapse
Affiliation(s)
- Agnes Prókai
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Shimizu S, Saito M, Kinoshita Y, Ohmasa F, Dimitriadis F, Shomori K, Hayashi A, Satoh K. Nicorandil ameliorates ischaemia-reperfusion injury in the rat kidney. Br J Pharmacol 2011; 163:272-82. [PMID: 21250976 PMCID: PMC3087131 DOI: 10.1111/j.1476-5381.2011.01231.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/21/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicorandil, an ATP-sensitive potassium (K(ATP) ) channel opener and nitric oxide donor, is used in the treatment of angina and acute heart failure. Here we investigated the effects of two K(ATP) channel openers, nicorandil and cromakalim on ischaemia reperfusion (I-R) injury in the kidney. EXPERIMENTAL APPROACH Right nephrectomy was performed in 8-week-old male Sprague-Dawley rats and they were then divided into six groups: control group; I-R, including 30 min of left renal ischaemia followed by 24 h of reperfusion; I-R groups plus nicorandil 3 or 10 mg·kg⁻¹ i.p.; and I-R groups plus cromakalim 100 or 300 µg·kg⁻¹ i.p. After reperfusion, renal function was estimated by serum creatinine (SCr), urinary albumin:creatinine ratio (ACR) and urinary β2-microglobulin (β2-MG). Levels of K(ATP) channel subtypes were investigated by Western blot. Kidney sections were stained for 4-hydroxy-2-nonenal and 8-hydroxy-2'-deoxyguanosine. KEY RESULTS Renal I-R induced significant increases in SCr, ACR and β2-MG levels compared with the control animals. Treatment with K(ATP) channel openers reduced urinary β2-MG levels, raised by I-R. Both K(IR) 6.1 and K(IR) 6.2 channels were expressed. Expression of K(IR) 6.2 channels in the I-R group was lower than in the control group, which was restored to normal by treatment with K(ATP) channel openers. Histologically, severe acute tubular damage was observed in the I-R kidney and this damage was ameliorated by K(ATP) channel openers, dose-dependently. CONCLUSIONS AND IMPLICATIONS ATP-sensitive potassium channel openers protected against proximal tubule damage after I-R injury. Nicorandil could represent a powerful additional component in the treatment of patients undergoing partial nephrectomy or renal transplantation.
Collapse
Affiliation(s)
- Shogo Shimizu
- Division of Molecular Pharmacology, Tottori University School of MedicineYonago, Japan
| | - Motoaki Saito
- Division of Molecular Pharmacology, Tottori University School of MedicineYonago, Japan
| | - Yukako Kinoshita
- Division of Molecular Pharmacology, Tottori University School of MedicineYonago, Japan
| | - Fumiya Ohmasa
- Division of Molecular Pharmacology, Tottori University School of MedicineYonago, Japan
| | - Fotios Dimitriadis
- Division of Molecular Pharmacology, Tottori University School of MedicineYonago, Japan
| | - Kohei Shomori
- Division of Organ Pathology, Tottori University School of MedicineYonago, Japan
| | - Atsushi Hayashi
- Department of Pediatrics, Yonago Medical CenterYonago, Japan
| | - Keisuke Satoh
- Division of Molecular Pharmacology, Tottori University School of MedicineYonago, Japan
| |
Collapse
|
96
|
Alan C, Kocoglu H, AltIntas R, AlIcI B, Resit Ersay A. Protective effect of decorin on acute ischaemia-reperfusion injury in the rat kidney. Arch Med Sci 2011; 7:211-6. [PMID: 22291758 PMCID: PMC3258707 DOI: 10.5114/aoms.2011.22069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/15/2010] [Accepted: 02/22/2011] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Transforming growth factor-β1 (TGF-β1) has a crucial role in collagen synthesis and fibrosis. TGF-β1 can be antagonized and/or reduced by the action of certain agents. We propose to identify the role of decorin in treatment of tubular and interstitial fibrosis and in the inhibition of TGF-β1 in an acute ischaemic kidney. MATERIAL AND METHODS We grouped 34 female Sprague Dawley type rats into 3 groups as 9 sham, 9 ischaemia-reperfusion (I/R) and 16 I/R + decorin respectively. The rats in the I/R + decorin group had decorin administered intraperitoneally at the dose of 0.1 mg/kg for 9 days after reperfusion. After 9 days, all the rats in the 3 groups were unilaterally nephrectomized. The TGF-β1 level was measured immunohistochemically in the nephrectomized material. RESULTS The TGF-β1 level was lower in the I/R + decorin group. Evaluation of apoptotic activity level by caspase staining showed a statistically significant difference between the 3 groups. The number of caspase stained cells was lower in the I/R + decorin group. The amount of collagen in interstitial tissue was higher in the I/R group than in the I/R + decorin group, but this difference was not statistically significant. CONCLUSIONS We found that the TGF-β1 level - the so-called initiator of fibrotic activity - and apoptotic activity were low in the I/R + decorin group. Additional studies must be performed to understand the role of decorin in inhibition of TGF-β1 and to assess decorin's routine use in acute renal ischaemia.
Collapse
Affiliation(s)
- Cabir Alan
- Department of Urology, Faculty of Medicine, Canakkale Onsekiz Mart University, Turkey
| | - Hasan Kocoglu
- Department of Urology, Canakkale Military Hospital, Turkey
| | - Ramazan AltIntas
- Department of Urology, Cerrahpasa Faculty of Medicine, Istanbul University, Turkey
| | - Bülent AlIcI
- Department of Urology, Cerrahpasa Faculty of Medicine, Istanbul University, Turkey
| | - Ahmet Resit Ersay
- Department of Urology, Faculty of Medicine, Canakkale Onsekiz Mart University, Turkey
| |
Collapse
|
97
|
Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury. Kidney Int 2010; 78:1252-62. [DOI: 10.1038/ki.2010.322] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
98
|
Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 2010; 107:14339-44. [PMID: 20651252 DOI: 10.1073/pnas.0912701107] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is associated with significant morbidity and mortality. Given the importance of microRNAs (miRNAs) in regulating gene expression, we examined expression profiles of miRNAs following renal IRI. Global miRNA expression profiling on samples prepared from the kidneys of C57BL/6 mice that underwent unilateral warm ischemia revealed nine miRNAs (miR-21, miR-20a, miR-146a, miR-199a-3p, miR-214, miR-192, miR-187, miR-805, and miR-194) that are differentially expressed following IRI when compared with sham controls. These miRNAs were also differently expressed following IRI in immunodeficient RAG-2/common gamma-chain double-knockout mice, suggesting that the changes in expression observed are not significantly influenced by lymphocyte infiltration and therefore define a lymphocyte-independent signature of renal IRI. In vitro studies revealed that miR-21 is expressed in proliferating tubular epithelial cells (TEC) and up-regulated by both cell-intrinsic and -extrinsic mechanisms resulting from ischemia and TGF-beta signaling, respectively. In vitro, knockdown of miR-21 in TEC resulted in increased cell death, whereas overexpression prevented cell death. However, overexpression of miR-21 alone was not sufficient to prevent TEC death following ischemia. Our findings therefore define a molecular fingerprint of renal injury and suggest miR-21 may play a role in protecting TEC from death.
Collapse
|
99
|
Chujo K, Ueno M, Asaga T, Sakamoto H, Shirakami G, Ueki M. Atrial natriuretic peptide enhances recovery from ischemia/reperfusion-induced renal injury in rats. J Biosci Bioeng 2010; 109:526-30. [DOI: 10.1016/j.jbiosc.2009.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 11/17/2009] [Accepted: 11/30/2009] [Indexed: 12/14/2022]
|
100
|
Kim J, Jung KJ, Park KM. Reactive oxygen species differently regulate renal tubular epithelial and interstitial cell proliferation after ischemia and reperfusion injury. Am J Physiol Renal Physiol 2010; 298:F1118-29. [DOI: 10.1152/ajprenal.00701.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS) function as an inducer of cell death and survival or proliferative factor, in a cell-type-specific and concentration-dependent manner. All of these roles are critical to ischemia-induced renal functional impairment and progressive fibrotic changes in the kidney. In an effort to define the role of ROS in the proliferation of tubular epithelial cells and of interstitial cells in kidneys recovering after ischemia and reperfusion (I/R) injury, experimental mice were subjected to 30 min of bilateral kidney ischemia and administered with manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP), a superoxide dismutase mimetic, from 2 to 15 days after I/R for 14 days daily (earlier and longer) and from 8 to 15 days after I/R for 8 days daily (later and shorter). Cell proliferation was assessed via 5′-bromo-2′-deoxyuridine (BrdU) incorporation assays for 20 h before the harvest of kidneys. After I/R, the numbers of BrdU-incorporating cells increased both in the tubules and interstitium. MnTMPyP administration was shown to accelerate the proliferation of tubular epithelial cells, presenting tubule-specific marker proteins along tubular segments, whereas it attenuated the proliferation of interstitial cells, evidencing α-smooth muscle actin, fibroblast-specific protein-1, F4/80, and NADPH oxidase-2 proteins; these results indicated that ROS attenuates tubular cell regeneration, but accelerates interstitial cell proliferation. Earlier and longer MnTMPyP treatment more effectively inhibited tissue superoxide formation, the increment of interstitial cells, and the decrement of epithelial cells compared with later and shorter treatment. After I/R, apoptotic cells appeared principally in the tubular epithelial cells, but not in the interstitial cells, thereby indicating that ROS is harmful in tubule cells, but is not in interstitial cells. In conclusion, ROS generated after I/R injury in cell proliferation and death performs a cell-type-specific and concentration-dependent role, even within the same tissues, and timely intervention of ROS is crucial for effective therapies.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Anatomy and BK 21 Project, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyong-Jin Jung
- Department of Anatomy and BK 21 Project, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy and BK 21 Project, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|