51
|
Mittwede PN, Xiang L, Lu S, Clemmer JS, Hester RL. Oxidative stress contributes to orthopedic trauma-induced acute kidney injury in obese rats. Am J Physiol Renal Physiol 2014; 308:F157-63. [PMID: 25428128 DOI: 10.1152/ajprenal.00537.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
After trauma, obese patients have an increased risk of developing acute kidney injury (AKI). We have demonstrated that obese Zucker (OZ) rats, but not lean Zucker (LZ) rats, develop AKI 24 h after orthopedic trauma. ROS have been implicated in the pathophysiology of AKI in models of critical illness. However, the contribution of ROS to trauma-induced AKI in the setting of obesity has not been determined. We hypothesized that AKI in OZ rats after trauma is mediated by increased oxidative stress. Male LZ and OZ rats were divided into control and trauma groups, with a subset receiving treatment after trauma with the antioxidant apocynin (50 mg/kg ip, 2 mM in drinking water). The day after trauma, glomerular filtration rate, plasma creatinine, urine kidney injury molecule-1, and albumin excretion as well as renal oxidant and antioxidant activity were measured. After trauma, compared with LZ rats, OZ rats exhibited a significant decrease in glomerular filtration rate along with significant increases in plasma creatinine and urine kidney injury molecule-1 and albumin excretion. Additionally, oxidative stress was significantly increased in OZ rats, as evidenced by increased renal NADPH oxidase activity and urine lipid peroxidation products (thiobarbituric acid-reactive substances), and OZ rats also had suppressed renal superoxide dismutase activity. Apocynin treatment significantly decreased oxidative stress and AKI in OZ rats but had minimal effects in LZ rats. These results suggest that ROS play an important role in AKI in OZ rats after traumatic injury and that ROS may be a potential future therapeutic target in the obese after trauma.
Collapse
Affiliation(s)
- Peter N Mittwede
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lusha Xiang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Silu Lu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
52
|
Ito Y, Zemans R, Correll K, Yang IV, Ahmad A, Gao B, Mason RJ. Stanniocalcin-1 is induced by hypoxia inducible factor in rat alveolar epithelial cells. Biochem Biophys Res Commun 2014; 452:1091-7. [PMID: 25251473 DOI: 10.1016/j.bbrc.2014.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
Abstract
Alveolar type II (ATII) cells remain differentiated and express surfactant proteins when cultured at an air-liquid (A/L) interface. When cultured under submerged conditions, ATII cells dedifferentiate and change their gene expression profile. We have previously shown that gene expression under submerged conditions is regulated by hypoxia inducible factor (HIF) signaling due to focal hypoxia resulting from ATII cell metabolism. Herein, we sought to further define gene expression changes in ATII cells cultured under submerged conditions. We performed a genome wide microarray on RNA extracted from rat ATII cells cultured under submerged conditions for 24-48h after switching from an A/L interface. We found significant alterations in gene expression, including upregulation of the HIF target genes stanniocalcin-1 (STC1), tyrosine hydroxylase (Th), enolase (Eno) 2, and matrix metalloproteinase (MMP) 13, and we verified upregulation of these genes by RT-PCR. Because STC1, a highly evolutionarily conserved glycoprotein with anti-inflammatory, anti-apoptotic, anti-oxidant, and wound healing properties, is widely expressed in the lung, we further explored the potential functions of STC1 in the alveolar epithelium. We found that STC1 was induced by hypoxia and HIF in rat ATII cells, and this induction occurred rapidly and reversibly. We also showed that recombinant human STC1 (rhSTC1) enhanced cell motility with extended lamellipodia formation in alveolar epithelial cell (AEC) monolayers but did not inhibit the oxidative damage induced by LPS. We also confirmed that STC1 was upregulated by hypoxia and HIF in human lung epithelial cells. In this study, we have found that several HIF target genes including STC1 are upregulated in AECs by a submerged condition, that STC1 is regulated by hypoxia and HIF, that this regulation is rapidly and reversibly, and that STC1 enhances wound healing moderately in AEC monolayers. However, STC1 did not inhibit oxidative damage in rat AECs stimulated by LPS in vitro. Therefore, alterations in gene expression by ATII cells under submerged conditions including STC1 were largely induced by hypoxia and HIF, which may be relevant to our understanding of the pathogenesis of various lung diseases in which the alveolar epithelium is exposed to relative hypoxia.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| | - Rachel Zemans
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Aftab Ahmad
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Bifeng Gao
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
53
|
Pan JSC, Huang L, Belousova T, Lu L, Yang Y, Reddel R, Chang A, Ju H, DiMattia G, Tong Q, Sheikh-Hamad D. Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol 2014; 26:364-78. [PMID: 25012175 DOI: 10.1681/asn.2013070703] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AKI is associated with increased morbidity, mortality, and cost of care, and therapeutic options remain limited. Reactive oxygen species are critical for the genesis of ischemic AKI. Stanniocalcin-1 (STC1) suppresses superoxide generation through induction of uncoupling proteins (UCPs), and transgenic overexpression of STC1 inhibits reactive oxygen species and protects from ischemia/reperfusion (I/R) kidney injury. Our observations revealed high AMP-activated protein kinase (AMPK) activity in STC1 transgenic kidneys relative to wild-type (WT) kidneys; thus, we hypothesized that STC1 protects from I/R kidney injury through activation of AMPK. Baseline activity of AMPK in the kidney correlated with the expression of STCs, such that the highest activity was observed in STC1 transgenic mice followed (in decreasing order) by WT, STC1 knockout, and STC1/STC2 double-knockout mice. I/R in WT kidneys increased AMPK activity and the expression of STC1, UCP2, and sirtuin 3. Inhibition of AMPK by administration of compound C before I/R abolished the activation of AMPK, diminished the expression of UCP2 and sirtuin 3, and aggravated kidney injury but did not affect STC1 expression. Treatment of cultured HEK cells with recombinant STC1 activated AMPK and increased the expression of UCP2 and sirtuin 3, and concomitant treatment with compound C abolished these responses. STC1 knockout mice displayed high susceptibility to I/R, whereas pretreatment of STC1 transgenic mice with compound C restored the susceptibility to I/R kidney injury. These data suggest that STC1 is important for activation of AMPK in the kidney, which mediates STC1-induced expression of UCP2 and sirtuin 3 and protection from I/R.
Collapse
Affiliation(s)
| | - Luping Huang
- Division of Nephrology, Department of Medicine and
| | | | - Lianghao Lu
- Division of Nephrology, Department of Medicine and
| | - Yongjie Yang
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Roger Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia; and
| | - Andy Chang
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia; and
| | - Huiming Ju
- Division of Nephrology, Department of Medicine and
| | - Gabriel DiMattia
- University of Western Ontario, Departments of Oncology and Biochemistry, London Regional Cancer Center, London, Ontario, Canada
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
54
|
Wu LM, Guo R, Hui L, Ye YG, Xiang JM, Wan CY, Zou M, Ma R, Sun XZ, Yang SJ, Guo DZ. Stanniocalcin-1 protects bovine intestinal epithelial cells from oxidative stress-induced damage. J Vet Sci 2014; 15:475-83. [PMID: 24962416 PMCID: PMC4269589 DOI: 10.4142/jvs.2014.15.4.475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022] Open
Abstract
Chronic enteritis can produce an excess of reactive oxygen species resulting in cellular damage. Stanniocalcin-1(STC-1) reportedly possesses anti-oxidative activity, the aim of this study was to define more clearly the direct contribution of STC-1 to anti-oxidative stress in cattle. In this study, primary intestinal epithelial cells (IECs) were exposed to hydrogen peroxide (H2O2) for different time intervals to mimic chronic enteritis-induced cellular damage. Prior to treatment with 200 µM H2O2, the cells were transfected with a recombinant plasmid for 48 h to over-express STC-1. Acridine orange/ethidium bromide (AO/EB) double staining and trypan blue exclusion assays were then performed to measure cell viability and apoptosis of the cells, respectively. The expression of STC-1 and apoptosis-related proteins in the cells was monitored by real-time PCR and Western blotting. The results indicated that both STC-1 mRNA and protein expression levels positively correlated with the duration of H2O2 treatment. H2O2 damaged the bovine IECs in a time-dependent manner, and this effect was attenuated by STC-1 over-expression. Furthermore, over-expression of STC-1 up-regulated Bcl-2 protein expression and slightly down-regulated caspase-3 production in the damaged cells. Findings from this study suggested that STC-1 plays a protective role in intestinal cells through an antioxidant mechanism.
Collapse
Affiliation(s)
- Li-ming Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Tang SE, Wu CP, Wu SY, Peng CK, Perng WC, Kang BH, Chu SJ, Huang KL. Stanniocalcin-1 ameliorates lipopolysaccharide-induced pulmonary oxidative stress, inflammation, and apoptosis in mice. Free Radic Biol Med 2014; 71:321-331. [PMID: 24685991 DOI: 10.1016/j.freeradbiomed.2014.03.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/20/2022]
Abstract
Stanniocalcin-1 (STC1) is an endogenous glycoprotein whose anti-inflammatory effects occur through induction of uncoupling proteins to reduce oxidative stress. In this study, we tested the hypothesis that exogenous recombinant human STC1 (rhSTC1) protects against lipopolysaccharide (LPS)-induced acute lung injury in mice. Anesthetized C57BL/6 mice underwent intratracheal spraying of LPS (20 µg/10 g body wt), and lung injury was assessed 24h later by analyzing pulmonary edema, bronchoalveolar lavage fluid, and lung histopathology. Lung inflammation, oxidative stress, and expression of STC1 and its downstream uncoupling protein 2 (UCP2) were analyzed at specific time points. Expression of UCP2 was suppressed initially but was subsequently upregulated after STC1 elevation in response to intratracheal administration of LPS. Intratracheal rhSTC1 treatment 1h before or after LPS spraying significantly attenuated pulmonary inflammation, oxidative stress, cell apoptosis, and acute lung injury. Pretreatment with STC1 short interfering RNA 48 h before LPS spraying inhibited the expression of STC1 and UCP2 and significantly increased the extent of lung injury. These findings suggest that STC1 is an endogenous stress protein that may counteract LPS-induced lung injury by inhibiting the inflammatory cascade and inducing antioxidant and antiapoptotic mechanisms. However, the potential clinical application of STC1 and the direct linkage between UCP2 and LPS-induced lung injury remain to be further investigated.
Collapse
Affiliation(s)
- Shih-En Tang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wann-Cherng Perng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Bor-Hwang Kang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology, and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
56
|
Huang L, Belousova T, Pan JSC, Du J, Ju H, Lu L, Zhang P, Truong LD, Nuotio-Antar A, Sheikh-Hamad D. AKI after conditional and kidney-specific knockdown of stanniocalcin-1. J Am Soc Nephrol 2014; 25:2303-15. [PMID: 24700878 DOI: 10.1681/asn.2013070690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stanniocalcin-1 is an intracrine protein; it binds to the cell surface, is internalized to the mitochondria, and diminishes superoxide generation through induction of uncoupling proteins. In vitro, stanniocalcin-1 inhibits macrophages and preserves endothelial barrier function, and transgenic overexpression of stanniocalcin-1 in mice protects against ischemia-reperfusion kidney injury. We sought to determine the kidney phenotype after kidney endothelium-specific expression of stanniocalcin-1 small hairpin RNA (shRNA). We generated transgenic mice that express stanniocalcin-1 shRNA or scrambled shRNA upon removal of a floxed reporter (phosphoglycerate kinase-driven enhanced green fluorescent protein) and used ultrasound microbubbles to deliver tyrosine kinase receptor-2 promoter-driven Cre to the kidney to permit kidney endothelium-specific shRNA expression. Stanniocalcin-1 mRNA and protein were expressed throughout the kidney in wild-type mice. Delivery of tyrosine kinase receptor-2 promoter-driven Cre to stanniocalcin-1 shRNA transgenic kidneys diminished the expression of stanniocalcin-1 mRNA and protein throughout the kidneys. Stanniocalcin-1 mRNA and protein expression did not change in similarly treated scrambled shRNA transgenic kidneys, and we observed no Cre protein expression in cultured and tyrosine kinase receptor-2 promoter-driven Cre-transfected proximal tubule cells, suggesting that knockdown of stanniocalcin-1 in epithelial cells in vivo may result from stanniocalcin-1 shRNA transfer from endothelial cells to epithelial cells. Kidney-specific knockdown of stanniocalcin-1 led to severe proximal tubule injury characterized by vacuolization, decreased uncoupling of protein-2 expression, greater generation of superoxide, activation of the unfolded protein response, initiation of autophagy, cell apoptosis, and kidney failure. Our observations suggest that stanniocalcin-1 is critical for tubular epithelial survival under physiologic conditions.
Collapse
Affiliation(s)
| | | | | | - Jie Du
- Department of Medicine/Division of Nephrology
| | - Huiming Ju
- Department of Medicine/Division of Nephrology
| | - Lianghao Lu
- Department of Medicine/Division of Nephrology
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, and
| | - Luan D Truong
- Kidney Pathology Laboratory, The Methodist Hospital/Weill Cornell University, Houston, Texas
| | - Alli Nuotio-Antar
- Department of Pediatrics/Nutrition, Baylor College of Medicine, Houston, Texas; and
| | | |
Collapse
|
57
|
Law AY, Hébert RL, Nasrallah R, Langenbach R, Wong CKC, Wagner GF. Cyclooxygenase-2 mediates induction of the renal stanniocalcin-1 gene by arginine vasopressin. Mol Cell Endocrinol 2013; 381:210-9. [PMID: 23877023 DOI: 10.1016/j.mce.2013.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022]
Abstract
In rats and mice, the renal stanniocalcin-1 (STC-1) gene is expressed in most nephron segments, but is differentially induced in response to dehydration. In cortical segments STC-1 mRNA levels are upregulated by the hypertonicity of dehydration, while hypovolemia causes gene induction in the inner medulla (papilla). In both cases induction is mediated by arginine vasopressin (AVP) acting via the V2 receptor (V2R). The intent of STC-1 gene upregulation during dehydration has yet to be established. Therefore, to narrow down the range of possible actions, we mapped out the pathway by which V2R occupancy upregulates the gene. V2R occupancy activates two different renal pathways in response to dehydration. The first is antidiuretic in nature and is mediated by direct V2R occupancy. The second pathway is indirect and counter-regulates AVP-mediated antidiuresis. It involves COX-2 (cyclooxygenase-2) and the prostanoids, and is activated by the V2R-mediated rise in medullary interstitial osmolality. The resulting prostanoids counter-regulate AVP-mediated antidiuresis. They also upregulate renal cytoprotective mechanisms. The present studies employed models of COX inhibition and COX gene deletion to address the possible involvement of the COX pathway. The results showed that both general and specific inhibitors of COX-2 blocked STC-1 gene induction in response to dehydration. Gene induction in response to dehydration was also abolished in COX-2 null mice (cortex and papilla), but not in COX-1 null mice. STC-1 gene induction in response to V2R occupancy was also uniquely abolished in COX-2 nulls (both regions). These findings therefore collectively suggest that AVP-mediated elevations in STC-1 gene expression are wholly dependent on functional COX-2 activity. As such, a permissive role for STC-1 in AVP-mediated antidiuresis can be ruled out, and its range of possible actions has been narrowed down to AVP counter-regulation and renal cytoprotection.
Collapse
Affiliation(s)
- Alice Y Law
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
58
|
Lee CW, Hwang I, Park CS, Lee H, Park DW, Kang SJ, Lee SW, Kim YH, Park SW, Park SJ. Expression of stanniocalcin-1 in culprit coronary plaques of patients with acute myocardial infarction or stable angina. J Clin Pathol 2013; 66:787-91. [DOI: 10.1136/jclinpath-2013-201563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
59
|
Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 2012; 303:F1487-94. [PMID: 22993069 DOI: 10.1152/ajprenal.00352.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.
Collapse
Affiliation(s)
- Qingqing Wei
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | |
Collapse
|