51
|
Bar-Sela G, Kaplan-Cohen V, Ilan N, Vlodavsky I, Ben-Izhak O. Heparanase expression in nasopharyngeal carcinoma inversely correlates with patient survival. Histopathology 2006; 49:188-93. [PMID: 16879396 DOI: 10.1111/j.1365-2559.2006.02469.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine the expression and prognostic significance of heparanase in nasopharyngeal carcinoma (NPC). METHODS Immunohistochemistry was performed on formalin-fixed paraffin-embedded sections of 46 patients with NPC. Clinical and immunohistochemical data were correlated with gender, age, histological type, Epstein-Barr virus (EBV) status, stage and survival. RESULTS Heparanase immunoreactivity was found in 35% (16/46) of specimens. The cumulative survival of patients diagnosed as heparanase negative (n = 30) at 10 years was 70%. In contrast, the cumulative survival of patients diagnosed as heparanase positive (n = 16) at 10 years was 25%, differences that are highly statistically significant (P = 0.03). No significant correlations were found between heparanase immunoreactivity and gender, age, EBV status, tumour histology or tumour stage. CONCLUSION Heparanase expression is inversely correlated with survival of NPC patients, clearly indicating that heparanase is a reliable prognostic factor for this malignancy, and further supports the notion that heparanase is a valid target for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- G Bar-Sela
- Department of Oncology, Rambam Medical Centre, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | | | | | |
Collapse
|
52
|
Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38:2018-39. [PMID: 16901744 DOI: 10.1016/j.biocel.2006.06.004] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/04/2006] [Accepted: 06/19/2006] [Indexed: 01/19/2023]
Abstract
Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic response in vivo. Heparanase upregulation correlates with increased tumor vascularity and poor post-operative survival of cancer patients. Heparanase is synthesized as a 65 kDa inactive precursor that undergoes proteolytic cleavage, yielding 8 and 50 kDa protein subunits that heterodimerize to form an active enzyme. Human heparanase is localized primarily within late endosomes and lysosomes and occasionally on the cell surface and within the cell nucleus. Transcriptional activity of the heparanase promoter is stimulated by demethylation, early growth response 1 (EGR1) transcription factor, estrogen, inflammatory cytokines and inactivation of p53. N-acetylated glycol-split species of heparin as well as siRNA heparanase gene silencing inhibit tumor metastasis and angiogenesis in experimental models. These observations and the unexpected identification of a single functional heparanase, suggest that the enzyme is a promising target for anti-cancer and anti-inflammatory drug development. Heparanase exhibits also non-enzymatic activities, independent of its involvement in ECM degradation and changes in the extracellular microenvironment. For example, cell surface expression of heparanase elicits a firm cell adhesion, reflecting an involvement in cell-ECM interaction. Heparanase enhances Akt signaling and stimulates PI3K- and p38-dependent endothelial cell migration and invasion. It also promotes VEGF expression via the Src pathway. The enzyme may thus activate endothelial cells and elicits angiogenic and survival responses. Studies with heparanase over-expressing transgenic mice revealed that the enzyme functions in normal processes involving cell mobilization, HS turnover, tissue vascularization and remodeling. In this review, we summarize the current status of heparanase research, emphasizing molecular and cellular aspects of the enzyme, including its mode of processing and activation, control of heparanase gene expression, enzymatic and non-enzymatic functions, and causal involvement in cancer metastasis and angiogenesis. We also discuss clinical aspects and strategies for the development of heparanase inhibitors.
Collapse
Affiliation(s)
- Neta Ilan
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
53
|
Moretti M, Sinnappah-Kang ND, Toller M, Curcio F, Marchetti D. HPSE-1 expression and functionality in differentiating neural cells. J Neurosci Res 2006; 83:694-701. [PMID: 16429446 DOI: 10.1002/jnr.20753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of cellular differentiation encompasses many vital parts of biology and medicine. Heparan sulfate proteoglycans (HSPG) are essential and ubiquitous macromolecules associated with the cell surface and extracellular matrix (ECM) of a wide range of cells and tissues. Heparan sulfate chains (HS) of HSPG bind and sequester a multitude of extracellular ligands, including growth factors, cytokines, chemokines, enzymes, and lipoproteins. Enzymatic degradation of HS is therefore involved in processes such as cell proliferation, migration, and differentiation. Heparanase (HPSE-1) is an HS degradative enzyme associated with inflammation and lipid metabolism and is a critical molecular determinant in cancer metastasis. The enzyme acts as an endo-beta-D-glucuronidase, which degrades HS at specific intrachain sites, resulting in HS fragments of discrete molecular weights that retain biological function. HPSE-1's relevance as the only example of cloned/purified mammalian HS degradative enzyme led us to investigate its functionality in human olfactory epithelium (HOE) cells as a paradigm for HPSE-1's roles in neural cell differentiation. We provide the first evidence of 1) HPSE-1 presence in HOE cells and 2) a highly significant increase of HPSE-1 mRNA and enzyme activity in differentiating vs. proliferating HOE cells. Our data suggest that an augmented HPSE-1 activity may represent a physiological mechanism involved in neural cellular differentiation.
Collapse
Affiliation(s)
- Massimo Moretti
- Dipartimento di Patologia e Medicina Sperimentale e Clinica (DPMSC), and Centro Interdipartimentale di Medicina Rigenerativa (CIME), University of Udine, Udine, Italy
| | | | | | | | | |
Collapse
|
54
|
Han PP, Nagatsuka H, Siar CH, Tsujigiwa H, Gunduz M, Tamamura R, Katase N, Nakajima M, Naomoto Y, Nagai N. Immunodetection of Heparan Sulphate and Heparanase Molecules in Benign and Malignant Odontogenic Tumors. ACTA ACUST UNITED AC 2006. [DOI: 10.3353/omp.11.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Okawa T, Naomoto Y, Nobuhisa T, Takaoka M, Motoki T, Shirakawa Y, Yamatsuji T, Inoue H, Ouchida M, Gunduz M, Nakajima M, Tanaka N. Heparanase Is Involved in Angiogenesis in Esophageal Cancer through Induction of Cyclooxygenase-2. Clin Cancer Res 2005; 11:7995-8005. [PMID: 16299228 DOI: 10.1158/1078-0432.ccr-05-1103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Both heparanase and cyclooxygenase-2 (COX-2) are thought to play critical roles for tumor malignancy, including angiogenesis, although it is unknown about their relationship with each other in cancer progression. We hypothesized that they may link to each other on tumor angiogenesis. EXPERIMENTAL DESIGN The expressions of heparanase and COX-2 in 77 primary human esophageal cancer tissues were assessed by immunohistochemistry to do statistical analysis for the correlation between their clinicopathologic features, microvessel density, and survival of those clinical cases. Human esophageal cancer cells were transduced with heparanase cDNA and used for reverse transcription-PCR and Western blot to determine the expression of heparanase and COX-2. COX-2 promoter vector and its deletion/mutation constructs were also used along with transduction of heparanase cDNA for luciferase assay. RESULTS Heparanase and COX-2 protein expression exhibited a similar pattern in esophageal tumor tissues, and their expression correlated with tumor malignancy and poor survival. Their expression also revealed a significant correlation with high intratumoral microvessel density. Up-regulation of COX-2 mRNA and protein was observed in esophageal cancer cells transfected with heparanase cDNA. COX-2 promoter was activated after heparanase cDNA was transduced and the deletion/mutation of three transcription factor (cyclic AMP response element, nuclear factor-kappaB, and nuclear factor-interleukin-6) binding elements in COX-2 promoter strongly suppressed its activity. CONCLUSION Our results suggest that heparanase may play a novel role for COX-2-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Takaomi Okawa
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Nobuhisa T, Naomoto Y, Takaoka M, Tabuchi Y, Ookawa K, Kitamoto D, Gunduz E, Gunduz M, Nagatsuka H, Haisa M, Matsuoka J, Nakajima M, Tanaka N. Emergence of nuclear heparanase induces differentiation of human mammary cancer cells. Biochem Biophys Res Commun 2005; 331:175-80. [PMID: 15845375 DOI: 10.1016/j.bbrc.2005.03.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Indexed: 10/25/2022]
Abstract
The study of epithelial differentiation touches upon many modern aspects of biology. The epithelium is in constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. Recently we reported that heparanase is expressed in nucleus as well as in the cytoplasm and that nuclear heparanase seems to be related to cell differentiation. In this study, we investigated the role of nuclear heparanase in differentiation by transducing human mammary epithelial cancer cells with heparanase which was delivered specifically into nucleus. We observed that expression of nuclear heparanase allowed the cells to differentiate with the appearance of lipid droplets. This finding supports the idea that heparanase plays a novel role in epithelial cell differentiation apart from its known enzymatic function.
Collapse
Affiliation(s)
- Tetsuji Nobuhisa
- Department of Gastroenterological Surgery Transplant and Surgical Oncology, Graduate School of Medicine and Dentistry, Okayama University, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Nagatsuka H, Han PP, Tsujigiwa H, Siar CH, Gunduz M, Sugahara T, Sasaki A, Nakajima M, Naomoto Y, Nagai N. Heparanase gene and protein expression in ameloblastoma: possible role in local invasion of tumor cells. Oral Oncol 2005; 41:542-8. [PMID: 15878761 DOI: 10.1016/j.oraloncology.2005.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 01/04/2005] [Indexed: 11/20/2022]
Abstract
Ameloblastoma is the most common odontogenic neoplasm, particularized by its local invasiveness. Heparanase is the endo-glucuronidase enzyme that specifically cleaves heparan sulfate, the important modulator of extracellular matrix, and related to invasion of tumor cells. In this study, we addressed to show the gene expression and localization of heparanase in ameloblastoma. Immunohistochemistry and in situ hybridization of heparanase were carried out in 23 ameloblastomas. Strong expression of heparanase at both mRNA and protein levels was detected in all ameloblastomas studied. Small tumor nests and budding epithelial branches showed stronger staining pattern and the stromal tissues at the immediate vicinity of the tumor nests with strong heparanase expression were loose and edematous. Cystic areas and squamous metaplastic areas of the tumor showed intense staining with heparanase antibody proposing the implication of heparanase in these processes. These results suggest the possible contribution of heparanase in the local invasiveness and secondary morphologic changes of ameloblastoma.
Collapse
Affiliation(s)
- Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Levy-Adam F, Abboud-Jarrous G, Guerrini M, Beccati D, Vlodavsky I, Ilan N. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem 2005; 280:20457-66. [PMID: 15760902 DOI: 10.1074/jbc.m414546200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.
Collapse
Affiliation(s)
- Flonia Levy-Adam
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
59
|
Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N. Heparanase expression correlates with malignant potential in human colon cancer. J Cancer Res Clin Oncol 2004; 131:229-37. [PMID: 15625607 DOI: 10.1007/s00432-004-0644-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Accepted: 10/08/2004] [Indexed: 11/28/2022]
Abstract
PURPOSE Heparanase cleaves carbohydrate chains of heparan sulphate proteoglycans and is an important component of the extracellular matrix. This study was designed to determine the relation between heparanase expression and prognosis of patients with colon cancer. METHODS The study included 54 patients (35 males and 19 females) who underwent colorectal resection for colorectal cancer between January 1992 and December 1994. Expression of heparanase protein and mRNA were determined and correlated with various clinicopathological parameters. In vitro studies were also performed to examine tumor invasion and to test the effects of heparanase inhibition, and in vivo studies were performed to examine tumor metastasis and prognosis. RESULTS Heparanase expression was detected in the invasion front of the tumor in 37 of 54 (69%) colon cancer samples, whereas 17 of 54 (31%) tumors were negative. Expression of heparanase was significantly more frequent in tumors of higher TNM stage (P=0.0481), higher Dukes stage (P=0.0411), higher vascular infiltration (P=0.0146), and higher lymph vessel infiltration (P=0.0010). Heparanase expression in colon cancers correlated significantly with poor survival (P=0.0361). Heparanase-transfected colon cancer cells exhibited significant invasion compared with control-transfected colon cancer cells (P=0.001), and the peritoneal dissemination model also showed the malignant potential of heparanase-transfected cells, as assayed by number of nodules (P=0.017) and survival (P=0.0062). Inhibition of heparanase significantly reduced the invasive capacity of cancer cells (P=0.003). CONCLUSIONS Heparanase is a marker for poor prognosis of patients with colon cancer and could be a suitable target for antitumor therapy in colon cancer.
Collapse
Affiliation(s)
- T Nobuhisa
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|