51
|
Yang X, Fisher JW. Unraveling bisphenol A pharmacokinetics using physiologically based pharmacokinetic modeling. Front Pharmacol 2015; 5:292. [PMID: 25620931 PMCID: PMC4288327 DOI: 10.3389/fphar.2014.00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) models integrate both chemical- and system-specific information into a mathematical framework, offering a mechanistic approach to predict the internal dose metrics of a chemical and an ability to perform species and dose extrapolations. Bisphenol A (BPA), because of its ubiquitous presence in a variety of consumer products, has received a considerable amount of attention from the public and regulatory bodies. PBPK models using deuterated BPA were developed for immature and adult rats and non-human primates and for adult humans to understand better the dosimetry of BPA. The focus of the present paper is to provide a rationale for interpreting species- and age-related pharmacokinetics of BPA. Gastrointestinal tract metabolism was an important consideration to predict unconjugated BPA serum kinetic profiles in adult and immature rats and monkeys. Biliary excretion and enterohepatic recirculation of BPA conjugates (BPA-c) accounted for the slowed systemic clearance of BPA-c in rats. For monkeys, renal reabsorption was proposed as a mechanism influencing systemic clearance of BPA-c. The quantitative understanding of the processes driving the pharmacokinetics of BPA across different species and life stages using a computational modeling approach provides more confidence in the interpretation of human biomonitoring data and the extrapolation of experimental animal findings to humans.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Jeffrey W Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| |
Collapse
|
52
|
Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol 2014; 5:248. [PMID: 25426075 PMCID: PMC4227492 DOI: 10.3389/fphar.2014.00248] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/24/2014] [Indexed: 12/15/2022] Open
Abstract
Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-containing regimens, and continuous use of tenofovir in HIV therapy is currently under question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes), low body weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors associated with tenofovir-associated tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, therefore drug transporters expressed in renal proximal tubule cells are believed to influence tenofovir plasma concentration and toxicity in the kidney. We review here the current evidence that the actions, pharmacogenetics, and drug interactions of drug transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel biomarkers for kidney damage, and the role that drug transporters play in biomarker disposition, are discussed. The lessons learnt from investigating the role of transporters in tenofovir kidney elimination and toxicity can be utilized for future drug development and clinical management programs.
Collapse
Affiliation(s)
- Darren M Moss
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Megan Neary
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| |
Collapse
|
53
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
54
|
Ma TY, Wu JY, Gao XK, Wang JY, Zhan XL, Li WS. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:448-460. [PMID: 24950416 DOI: 10.1016/j.dci.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/01/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA.
Collapse
Affiliation(s)
- Tai-yang Ma
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-ying Wu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Xiao-ke Gao
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jing-yuan Wang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xu-liang Zhan
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-sheng Li
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
55
|
Yu Z, Zhang C, Wang H, Xing J, Gong H, Yu E, Zhang W, Zhang X, Cao G, Fu C. Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway. Cancer Lett 2014; 353:182-93. [DOI: 10.1016/j.canlet.2014.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/15/2014] [Accepted: 07/13/2014] [Indexed: 01/13/2023]
|
56
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
57
|
Jan KC, Yang BB, Liu TC. Gene expression profiling of sesaminol triglucoside and its tetrahydrofuranoid metabolites in primary rat hepatocytes. Int J Food Sci Nutr 2014; 65:981-8. [PMID: 25156454 DOI: 10.3109/09637486.2014.950204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sesaminol triglucoside is a major lignin in sesame meal and has a methylenedioxyphenyl group and multiple functions in vivo. As a tetrahydrofurofuran type lignan, sesaminol triglucoside is metabolized to mammalian lignans. This investigation studies the effect of sesaminol triglucoside and its tetrahydrofuranoid metabolites (sesaminol, 2-episesaminol, hydroxymethyl sesaminol-tetrahydrofuran, enterolactone, and enterodiol) on gene expression in primary rat hepatocytes using a DNA microarray. Sesame lignans significantly affected the expression of xenobiotic-induced transcripts of cytochrome P450, solute carrier (SLC), and ATP-binding cassette (ABC) transporters. Changes in gene expression were generally greater in response to metabolites with methylenedioxyphenyl moieties (sesaminol triglucoside, sesaminol, and 2-episesaminol) than to the tetrahydrofuranoid metabolites (hydroxymethyl sesaminol-tetrahydrofuran, enterolactone, and enterodiol). Tetrahydrofuran lignans, such as sesaminol triglucoside, sesamin, hydroxymethyl sesaminol-tetrahydrofuran, and sesaminol changed the expression of ABC transporters.
Collapse
Affiliation(s)
- Kuo-Ching Jan
- Food Industry Research & Development Institute , Hsinchu , Taiwan and
| | | | | |
Collapse
|
58
|
Chang E, Park EY, Woo YM, Kang DH, Hwang YH, Ahn C, Park JH. Restoring multidrug resistance-associated protein 3 attenuates cell proliferation in the polycystic kidney. Am J Physiol Renal Physiol 2014; 308:F1004-11. [PMID: 25143454 DOI: 10.1152/ajprenal.00159.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/19/2014] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal proliferation of renal tubular epithelial cells, resulting in the loss of renal function. Despite identification of the genes responsible for ADPKD, few effective drugs are currently available for the disease. Thus finding additional effective drug targets is necessary. The functions of multidrug- resistance-associated protein 3 (MRP3) have been reported only in the field of drug resistance, and the renal functions of MRP3 are mostly unknown. In this study, we found that MRP3 was significantly downregulated in kidneys of human patients with ADPKD and polycystic kidney disease (PKD) mouse models. Our results suggest that downregulated MRP3 stimulated renal epithelial cell proliferation through the B-Raf/MEK/ERK signaling pathway. In contrast, we found that restoring MRP3 reduced cell proliferation and cystogenesis in vitro. These results suggest that the renal function of MRP3 is related to renal cell proliferation and cyst formation and that restoring MRP3 may be an effective therapeutic approach for PKD.
Collapse
Affiliation(s)
- EunSun Chang
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yu mi Woo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Duk-Hee Kang
- Department of Nephrology in Ewha Woman's University, Seoul, Republic of Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Seoul, Republic of Korea; and
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea;
| |
Collapse
|
59
|
In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and PepT1 knockout mice. Pharm Res 2014; 30:2931-9. [PMID: 23959853 DOI: 10.1007/s11095-013-1168-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/28/2013] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine the effect of PepT1 on the absorption and disposition of cefadroxil, including the potential for saturable intestinal uptake, after escalating oral doses of drug. METHODS The absorption and disposition kinetics of [3H]cefadroxil were determined in wild-type and PepT1 knockout mice after 44.5, 89.1, 178, and 356 nmol/g oral doses of drug. The pharmacokinetics of [3H]cefadroxil were also determined in both genotypes after 44.5 nmol/g intravenous bolus doses. RESULTS PepT1 deletion reduced the area under the plasma concentration-time profile (AUC0-120) of cefadroxil by 10-fold, the maximum plasma concentration (Cmax) by 17.5-fold, and increased the time to reach a maximum plasma concentration (Tmax) by 3-fold. There was no evidence of nonlinear intestinal absorption since AUC0-120 and Cmax values changed in a dose-proportional manner. Moreover, the pharmacokinetics of cefadroxil were not different between genotypes after intravenous bolus doses, indicating that PepT1 did not affect drug disposition. Finally, no differences were observed in the peripheral tissue distribution of cefadroxil (i.e., outside gastrointestinal tract) once these tissues were corrected for differences in perfusing blood concentrations. CONCLUSIONS The findings demonstrate convincingly the critical role of intestinal PepT1 in both the rate and extent of oral administration for cefadroxil and potentially other aminocephalosporin drugs.
Collapse
|
60
|
Wlcek K, Stieger B. ATP-binding cassette transporters in liver. Biofactors 2014; 40:188-98. [PMID: 24105869 DOI: 10.1002/biof.1136] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/13/2023]
Abstract
The human ATP-binding cassette (ABC) superfamily consists of 48 members with 14 of them identified in normal human liver at the protein level. Most of the ABC members act as ATP dependent efflux transport systems. In the liver, ABC transporters are involved in diverse physiological processes including export of cholesterol, bile salts, and metabolic endproducts. Consequently, impaired ABC transporter function is involved in inherited diseases like sitosterolemia, hyperbilirubinemia, or cholestasis. Furthermore, altered expression of some of the hepatic ABCs have been associated with primary liver tumors. This review gives a short overview about the function of hepatic ABCs. Special focus is addressed on the localization and ontogenesis of ABC transporters in the human liver. In addition, their expression pattern in primary liver tumors is discussed.
Collapse
Affiliation(s)
- Katrin Wlcek
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
61
|
Integrated systems toxicology approaches identified the possible involvement of ABC transporters pathway in erythromycin estolate-induced liver injury in rat. Food Chem Toxicol 2014; 65:343-55. [DOI: 10.1016/j.fct.2013.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 02/08/2023]
|
62
|
Keppler D, Basseri B, Papadakis KA. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos 2014; 42:561-5. [PMID: 24459177 DOI: 10.1124/dmd.113.055772] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increased concentrations of bilirubin glucuronides in blood plasma indicate hepatocellular dysfunction. Elucidation of the transport processes of bilirubin conjugates across the basolateral (sinusoidal) and the canalicular plasma membrane domains of hepatocytes has decisively contributed to our current understanding of the molecular basis of conjugated hyperbilirubinemia in human liver diseases. Under normal conditions, unconjugated bilirubin is taken up into hepatocytes by transporters of the organic anion-transporting polypeptide (OATP) family, followed by conjugation with glucuronic acid, and ATP-dependent transport into bile. This efflux across the canalicular membrane is mediated by multidrug resistance protein 2 (MRP2 or ABCC2), which is a 190-kDa glycoprotein transporting with high affinity and efficiency monoglucuronosyl bilirubin and bisglucuronosyl bilirubin into bile. MRP2 is hereditarily deficient in human Dubin-Johnson syndrome. Under pathophysiological conditions such as cholestatic liver injury and MRP2 inhibition, the basolateral efflux pump multidrug resistance protein 3 (MRP3 or ABCC3) is responsible for the occurrence of conjugated hyperbilirubinemia. MRP3 is a glycoprotein with a similar molecular mass as MRP2, with 48% amino acid identity, and with overlapping substrate specificity. Human MRP3 is the only basolateral efflux pump shown to transport bilirubin glucuronides. In human and rat hepatocytes, MRP3/Mrp3 is strongly upregulated under conditions of cholestasis and MRP2 deficiency. This is in line with the concept that basolateral efflux pumps of the hepatocyte compensate for impaired canalicular efflux of compounds into bile and contribute to balance the rate of uptake or synthesis of compounds in hepatocytes with the capacity for efflux into bile.
Collapse
|
63
|
Templeton I, Eichenbaum G, Sane R, Zhou J. Case study 5. Deconvoluting hyperbilirubinemia: differentiating between hepatotoxicity and reversible inhibition of UGT1A1, MRP2, or OATP1B1 in drug development. Methods Mol Biol 2014; 1113:471-483. [PMID: 24523126 DOI: 10.1007/978-1-62703-758-7_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing (ICH Expert Working Group. The international conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH); Multidisciplinary guidelines; Nonclinical safety studies (M3). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf , 2009). The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits (Sedlak and Snyder. Pediatrics 113(6):1776-1782, 2004), bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport (Keogh. Adv Pharmacol 63:1-42, 2012). Alternatively, hepatocellular necrosis, hypoalbuminuria, or cholestasis may also lead to elevation of bilirubin; in some cases, these effects may be irreversible (FDA/CDER. Guidance for industry drug-induced liver injury: premarketing clinical evaluation. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM174090.pdf , 2012).This chapter aims to demonstrate application of enzyme kinetic principles in understanding the risk of bilirubin elevation through inhibition of multiple processes-involving both enzymes and transporters. In the sections that follow, we first provide a brief summary of bilirubin formation and disposition. Two case examples are then provided to illustrate the enzyme kinetic studies needed for risk assessment and for identifying the mechanisms of bilirubin elevation. Caveats of methods and data interpretation are discussed in these case studies. The data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in enzyme kinetics to the reader.
Collapse
Affiliation(s)
- Ian Templeton
- Drug Safety Sciences, Janssen Research and Development, Spring House, PA, USA
| | | | | | | |
Collapse
|
64
|
Wang LH, Ni CW, Lin YZ, Yin L, Jiang CB, Lv CT, Le Y, Lang Y, Zhao CY, Yang K, Jiao BH, Yin J. Targeted induction of apoptosis in glioblastoma multiforme cells by an MRP3-specific TRAIL fusion protein in vitro. Tumour Biol 2013; 35:1157-68. [PMID: 24272336 DOI: 10.1007/s13277-013-1155-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022] Open
Abstract
Single-chain Fv fragments (scFvs) consist of the variable heavy-chain (VH) and variable light-chain (VL) domains, which are the smallest immunoglobulin fragments containing the whole antigen-binding site. Human soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) proves to acquire a potent pro-apoptotic activity only after selective binding to a predefined tumor cell surface antigen and has no off-target effects towards normal cells. Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor and overexpresses human multidrug resistance protein 3 (MRP3). In this study, we designed a novel fusion protein, termed scFvM58-sTRAIL, in which the MRP3-specific scFv antibody M58 was genetically fused to the N-terminus of human soluble TRAIL (sTRAIL). The recombinant scFvM58-sTRAIL fusion protein, expressed in Escherichia coli, was purified by chromatography and tested for cytotoxicity. scFvM58-sTRAIL showed a significant apoptosis-inducing activity towards MRP3-positive GBM cells in vitro. The pro-apoptotic activity of scFvM58-sTRAIL towards GBM cells was strongly inhibited in the presence of the parental scFvM58 antibody, suggesting that cytotoxic activity is MRP3-restricted. In a control experiment with MRP3-negative Jurkat cells, scFvM58-sTRAIL did not induce apparent apoptosis. In addition, through target antigen-restricted binding, scFvM58-sTRAIL was capable of activating not only TRAIL-R1 but also TRAIL-R2. In conclusion, our results suggest that fusion protein scFvM58-sTRAIL with specificity for MRP3 is a highly selective therapeutic agent and may provide an alternative therapy for human GBM.
Collapse
Affiliation(s)
- Liang-Hua Wang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Xiangyin Road No. 800, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, Stewart PW, Brouwer KLR. Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos 2013; 42:665-74. [PMID: 24154606 DOI: 10.1124/dmd.113.054304] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Impaired hepatic bile acid export may contribute to development of cholestatic drug-induced liver injury (DILI). The multidrug resistance-associated proteins (MRP) 3 and 4 are postulated to be compensatory hepatic basolateral bile acid efflux transporters when biliary excretion by the bile salt export pump (BSEP) is impaired. BSEP inhibition is a risk factor for cholestatic DILI. This study aimed to characterize the relationship between MRP3, MRP4, and BSEP inhibition and cholestatic potential of drugs. The inhibitory effect of 88 drugs (100 μM) on MRP3- and MRP4-mediated substrate transport was measured in membrane vesicles. Drugs selected for investigation included 50 BSEP non-inhibitors (24 non-cholestatic; 26 cholestatic) and 38 BSEP inhibitors (16 non-cholestatic; 22 cholestatic). MRP4 inhibition was associated with an increased risk of cholestatic potential among BSEP non-inhibitors. In this group, for each 1% increase in MRP4 inhibition, the odds of the drug being cholestatic increased by 3.1%. Using an inhibition cutoff of 21%, which predicted a 50% chance of cholestasis, 62% of cholestatic drugs inhibited MRP4 (P < 0.05); in contrast, only 17% of non-cholestatic drugs were MRP4 inhibitors. Among BSEP inhibitors, MRP4 inhibition did not provide additional predictive value of cholestatic potential; almost all BSEP inhibitors were also MRP4 inhibitors. Inclusion of pharmacokinetic predictor variables (e.g., maximal unbound concentration in plasma) in addition to percent MRP4 inhibition in logistic regression models did not improve cholestasis prediction. Association of cholestasis with percent MRP3 inhibition was not statistically significant, regardless of BSEP-inhibition status. Inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI.
Collapse
Affiliation(s)
- Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (K.K., B.C.F., I.N., K.Y., K.L.R.B.), and Biostatistics Department, School of Public Health (P.W.St.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacy, Uppsala University, Uppsala, Sweden (I.N.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.Sw.)
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Pfeifer ND, Bridges AS, Ferslew BC, Hardwick RN, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition II: characterization of hepatic elimination by basolateral, biliary, and metabolic clearance pathways in rat isolated perfused liver. J Pharmacol Exp Ther 2013; 347:737-45. [PMID: 24080682 DOI: 10.1124/jpet.113.208314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basolateral efflux clearance (CLBL) contributes significantly to rosuvastatin (RSV) elimination in sandwich-cultured hepatocytes (SCH). The contribution of CLBL to RSV hepatic elimination was determined in single-pass isolated perfused livers (IPLs) from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor, elacridar (GF120918); clearance values were compared with SCH. RSV biliary clearance (CLBile) was ablated almost completely by GF120918 in TR(-) IPLs, confirming that Mrp2 and Bcrp primarily are responsible for RSV CLBile. RSV appearance in outflow perfusate was attributed primarily to CLBL, which was impaired in TR(-) IPLs. CLBL was ≈ 6-fold greater than CLBile in the linear range in WT IPLs in the absence of GF120918. Recovery of unchanged RSV in liver tissue increased in TR(-) compared with WT (≈ 25 versus 6% of the administered dose) due to impaired CLBL and CLBile. RSV pentanoic acid, identified by high-resolution liquid chromatography-tandem mass spectroscopy, comprised ≈ 40% of total liver content and ≈ 16% of the administered dose in TR(-) livers at the end of perfusion, compared with ≈ 30 and 3% in WT livers, consistent with impaired RSV excretion and "shunting" to the metabolic pathway. In vitro-ex vivo extrapolation between WT SCH and IPLs (without GF120918) revealed that uptake clearance and CLBL were 4.2- and 6.4-fold lower, respectively, in rat SCH compared with IPLs; CLBile translated almost directly (1.1-fold). The present IPL data confirmed the significant role of CLBL in RSV hepatic elimination, and demonstrated that both CLBL and CLBile influence RSV hepatic and systemic exposure.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina (N.D.P., B.C.F., K.L.R.B.); and Department of Pathology (A.S.B.) and Curriculum in Toxicology (R.N.H., K.L.R.B.), School of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | |
Collapse
|
67
|
Pfeifer ND, Yang K, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther 2013; 347:727-36. [PMID: 24023367 DOI: 10.1124/jpet.113.207472] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transporters responsible for hepatic uptake and biliary clearance (CLBile) of rosuvastatin (RSV) have been well characterized. However, the contribution of basolateral efflux clearance (CLBL) to hepatic and systemic exposure of RSV is unknown. Additionally, the appropriate design of in vitro hepatocyte efflux experiments to estimate CLBile versus CLBL remains to be established. A novel uptake and efflux protocol was developed in sandwich-cultured hepatocytes (SCH) to achieve desired tight junction modulation while maintaining cell viability. Subsequently, studies were conducted to determine the role of CLBL in the hepatic disposition of RSV using SCH from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor elacridar (GF120918). RSV CLBile was nearly ablated by GF120918 in TR(-) SCH, confirming that Mrp2 and Bcrp are responsible for the majority of RSV CLBile. Pharmacokinetic modeling revealed that CLBL and CLBile represent alternative elimination routes with quantitatively similar contributions to the overall hepatocellular excretion of RSV in rat SCH under baseline conditions (WT SCH in the absence of GF120918) and also in human SCH. Membrane vesicle experiments revealed that RSV is a substrate of MRP4 (Km = 21 ± 7 µM, Vmax = 1140 ± 210 pmol/min per milligram of protein). Alterations in MRP4-mediated RSV CLBL due to drug-drug interactions, genetic polymorphisms, or disease states may lead to changes in hepatic and systemic exposure of RSV, with implications for the safety and efficacy of this commonly used medication.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
68
|
Zou JJ, Fan HW, Chen SL, Tan J, He BS, Xie HG. Efffect of the ABCC3-211 C/Tpolymorphism on clopidogrel responsiveness in patients with percutaneous coronary intervention. Clin Exp Pharmacol Physiol 2013; 40:504-509. [DOI: 10.1111/1440-1681.12118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jian-Jun Zou
- Division of Clinical Pharmacology; Nanjing First Hospital; Nanjing Medical University
- Division of Cardiology; Department of Medicine; Nanjing First Hospital; Nanjing Medical University
| | - Hong-Wei Fan
- Division of Clinical Pharmacology; Nanjing First Hospital; Nanjing Medical University
| | - Shao-Liang Chen
- Division of Cardiology; Department of Medicine; Nanjing First Hospital; Nanjing Medical University
| | - Jie Tan
- Division of Clinical Pharmacology; Nanjing First Hospital; Nanjing Medical University
| | - Bang-Shun He
- Central Laboratory; General Clinical Research Center; Nanjing First Hospital; Nanjing Medical University
| | - Hong-Guang Xie
- Central Laboratory; General Clinical Research Center; Nanjing First Hospital; Nanjing Medical University
- Department of Pharmacology; Nanjing Medical University School of Pharmacy; Nanjing China
| |
Collapse
|
69
|
Study of Environmental and Antimicrobial Agents Impact on Features of Bacterial Growth. Cell Biochem Biophys 2013; 66:759-64. [DOI: 10.1007/s12013-013-9521-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
70
|
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
71
|
Abstract
Detailed knowledge regarding the influence of hepatic transport proteins on drug disposition has advanced at a rapid pace over the past decade. Efflux transport proteins located in the basolateral and apical (canalicular) membranes of hepatocytes play an important role in the hepatic elimination of many endogenous and exogenous compounds, including drugs and metabolites. This review focuses on the role of these efflux transporters in hepatic drug excretion. The impact of these proteins as underlying factors for disease is highlighted, and the importance of hepatic efflux proteins in the efficacy and toxicity of drugs is discussed. In addition, a brief overview of methodology to evaluate the function of hepatic efflux transport proteins is provided. Current challenges in predicting the impact of altered efflux protein function on systemic, intestinal, and hepatocyte exposure to drugs and metabolites are highlighted.
Collapse
|
72
|
Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol 2012; 26:407-21. [PMID: 22933250 DOI: 10.1002/jbt.21435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/22/2012] [Accepted: 07/21/2012] [Indexed: 12/15/2022]
Abstract
Renal xenobiotic transporters are important determinants of urinary secretion and reabsorption of chemicals. In addition to glomerular filtration, these processes are key to the overall renal clearance of a diverse array of drugs and toxins. Alterations in kidney transporter levels and function can influence the efficacy and toxicity of chemicals. Studies in experimental animals have revealed distinct patterns of renal transporter expression in response to sex hormones, pregnancy, and growth hormone. Likewise, a number of disease states including diabetes, obesity, and cholestasis alter the expression of kidney transporters. The goal of this review is to provide an overview of the major xenobiotic transporters expressed in the kidneys and an understanding of metabolic conditions and hormonal factors that regulate their expression and function.
Collapse
Affiliation(s)
- Lindsay L Yacovino
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
73
|
Stieger B, Meier PJ. Pharmacogenetics of drug transporters in the enterohepatic circulation. Pharmacogenomics 2012; 12:611-31. [PMID: 21619426 DOI: 10.2217/pgs.11.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article summarizes the impact of the pharmacogenetics of drug transporters expressed in the enterohepatic circulation on the pharmacokinetics and pharmacodynamics of drugs. The role of pharmacogenetics in the function of drug transporter proteins in vitro is now well established and evidence is rapidly accumulating from in vivo pharmacokinetic studies, which suggests that genetic variants of drug transporter proteins can translate into clinically relevant phenotypes. However, a large amount of conflicting information on the clinical relevance of drug transporter proteins has so far precluded the emergence of a clear picture regarding the role of drug transporter pharmacogenetics in medical practice. This is very well exemplified by the case of P-glycoprotein (MDR1, ABCB1). The challenge is now to develop pharmacogenetic models with sufficient predictive power to allow for translation into drug therapy. This will require a combination of pharmacogenetics of drug transporters, drug metabolism and pharmacodynamics of the respective drugs.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology & Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | |
Collapse
|
74
|
Chai J, He Y, Cai SY, Jiang Z, Wang H, Li Q, Chen L, Peng Z, He X, Wu X, Xiao T, Wang R, Boyer JL, Chen W. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway. Hepatology 2012; 55:1485-94. [PMID: 22105759 PMCID: PMC3297707 DOI: 10.1002/hep.24801] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Multidrug resistance-associated protein 3 (MRP3, ABC subfamily C [ABCC]3) plays an important role in protecting hepatocytes and other tissues by excreting an array of toxic organic anion conjugates, including bile salts. MRP3/ABCC3 expression is increased in the liver of some cholestatic patients, but the molecular mechanism of this up-regulation remains elusive. In this report, we assessed liver MRP3/ABCC3 expression in patients (n = 22) with obstructive cholestasis caused by gallstone blockage of bile ducts and noncholestatic patient controls (n = 22). MRP3/ABCC3 messenger RNA (mRNA) and protein expression were significantly increased by 3.4- and 4.6-fold, respectively, in these cholestatic patients where elevated plasma tumor necrosis factor alpha (TNFα) (4.7-fold; P < 0.01) and hepatic specificity protein 1 transcription factor (SP1) and liver receptor homolog 1 expression (3.1- and 2.1-fold at mRNA level, 3.5- and 2.5-fold at protein level, respectively) were also observed. The induction of hepatic MRP3/ABCC3 mRNA expression is significantly positively correlated with the level of plasma TNFα in these patients. In HepG2 cells, TNFα treatment induced SP1 and MRP3/ABCC3 expression in a dose- and time-dependent manner, where increased phosphorylation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) was also detected. These inductions were significantly reduced in the presence of the JNK inhibitor, SP600125. TNFα treatment enhanced HepG2 cell nuclear extract-binding activity to the MRP3/ABCC3 promoter, but was abolished by SP600125, as demonstrated by electrophoretic mobility shift assay (EMSA). An increase in nuclear protein-binding activity to the MRP3/ABCC3 promoter, consisting primarily of SP1, was also observed in liver samples from cholestatic patients, as assessed by supershift EMSA assays. CONCLUSIONS Our findings indicate that up-regulation of hepatic MRP3/ABCC3 expression in human obstructive cholestasis is likely triggered by TNFα, mediated by activation of JNK/SAPK and SP1.
Collapse
Affiliation(s)
- Jin Chai
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Zhongyong Jiang
- Department of Clinical Laboratory, General Hospital of PLA Chengdu Military Area Command, Chengdu 610083, P.R. China
| | - Huaizhi Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Qiong Li
- Laboratory and Education Center, College of Basic Medical Science,P.R. China
| | - Lei Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Zhihong Peng
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Xiaochong He
- School of Nursing, Third Military Medical University, Chongqing 400038
| | - Xiaoping Wu
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Tianli Xiao
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Rongquan Wang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - James L. Boyer
- Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Wensheng Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China,Contact Information: Wensheng Chen, M.D., Ph.D., Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China. Tel: 86-23-68765183; Fax: 86-23-65410853;
| |
Collapse
|
75
|
Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B. Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions. ACTA ACUST UNITED AC 2012; 64:1523-48. [PMID: 23058041 DOI: 10.1111/j.2042-7158.2012.01505.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations. KEY FINDINGS Current knowledge on the intestinal expression of the apical sodium-dependent bile acid transporter (ASBT), the breast cancer resistance protein (BCRP), the monocarboxylate transporters (MCT) 1, MCT3-5, the multidrug resistance associated proteins (MRP) 1-6, the organic anion transporting polypetides (OATP) 2B1, 1A2, 3A1 and 4A1, and the organic solute transporter α/β (OSTα/β) has been covered along with an overview of their substrates and inhibitors. Furthermore, the many challenges in predicting clinically relevant DDIs from in-vitro studies have been discussed with focus on intestinal transporters and the various methods for deducting in-vitro parameters for transporters (K(m) /K(i) /IC50, efflux ratio). The applicability of using a cut-off value (estimated based on the intestinal drug concentration divided by the K(i) or IC50) has also been considered. SUMMARY A re-evaluation of the current approaches for the prediction of DDIs is necessary when considering the involvement of other transporters than P-glycoprotein. Moreover, the interplay between various processes that a drug is subject to in-vivo such as translocation by several transporters and dissolution should be considered.
Collapse
Affiliation(s)
- Anne Sophie Grandvuinet
- Drug Transporters in ADME, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
76
|
Wittgen HGM, van den Heuvel JJMW, van den Broek PHH, Siissalo S, Groothuis GMM, de Graaf IAM, Koenderink JB, Russel FGM. Transport of the coumarin metabolite 7-hydroxycoumarin glucuronide is mediated via multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos 2012; 40:1076-9. [PMID: 22415933 DOI: 10.1124/dmd.111.044438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans, which revealed extensive first-pass metabolism of the compound. 7-Hydroxycoumarin (7-HC) and its glucuronide (7-HC-G) are the main metabolites formed in humans, and via this route, 80 to 90% of the absorbed coumarin is excreted into urine, mainly as 7-HC-G. Active transport processes play a role in the urinary excretion of 7-HC-G; however, until now, the transporters involved remained to be elucidated. In this study, we investigated whether the efflux transporters multidrug resistance-associated proteins (MRP)1-4, breast cancer resistance protein, or P-glycoprotein play a role in 7-HC and 7-HC-G transport. For this purpose, we measured uptake of the metabolites into membrane vesicles overexpressing these transporters. Our results showed that 7-HC is not transported by any of the efflux transporters tested, whereas 7-HC-G was a substrate of MRP3 and MRP4. These results are in line with the pharmacokinetic profile of coumarin and suggest that MRP3 and MRP4 are the main transporters involved in the excretion of the coumarin metabolite 7-HC-G from liver and kidney.
Collapse
Affiliation(s)
- Hanneke G M Wittgen
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Lee SH, Kim H, Hwang JH, Lee HS, Cho JY, Yoon YS, Han HS. Breast cancer resistance protein expression is associated with early recurrence and decreased survival in resectable pancreatic cancer patients. Pathol Int 2012; 62:167-75. [PMID: 22360504 DOI: 10.1111/j.1440-1827.2011.02772.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains dismal even after complete resection, with most recurrences occurring within 1-2 years postoperatively. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters have been demonstrated to play major roles in multidrug resistance (MDR) of cancers. In this study, we evaluated the expression statuses and the clinical significance of MDR1 (ABCB1), MDR-associated proteins (MRPs/ABCC) 1, 2 and 3, and breast cancer resistance protein (BCRP/ABCG2) in 67 surgically resected PDACs by immunohistochemistry. MDR1, MRP1, MRP2, MRP3 and BCRP were expressed in 35 (52.2%), 56 (83.6%), 61 (91.0%), 49 (73.1%) and 49 (73.1%) out of 67 cases, respectively. The expression statuses of the MDR-related proteins were positively correlated with each other (P < 0.05). Tumors expressing MRP1 (P= 0.015), MRP2 (P= 0.022) and MRP3 (P < 0.001) demonstrated more frequent perineural invasion. MDR1 expression was significantly correlated with lymphatic invasion (P= 0.047). High BCRP expression in PDAC was a significant prognostic factor for early tumor recurrence (HR = 2.43, P= 0.003) and poor survival (HR = 2.63, P= 0.001). MDR-related proteins are frequently expressed in PDAC, and high BCRP expression is a significant independent predictor for early recurrence and poor survival. Immunohistochemical analysis for BCRP expression in PDAC may be a useful test in identifying a subgroup of patients with a poor prognosis.
Collapse
Affiliation(s)
- Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | |
Collapse
|
78
|
Fardel O, Kolasa E, Le Vee M. Environmental chemicals as substrates, inhibitors or inducers of drug transporters: implication for toxicokinetics, toxicity and pharmacokinetics. Expert Opin Drug Metab Toxicol 2011; 8:29-46. [DOI: 10.1517/17425255.2012.637918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
79
|
de Waart DR, van de Wetering K, Kunne C, Duijst S, Paulusma CC, Oude Elferink RPJ. Oral Availability of Cefadroxil Depends on ABCC3 and ABCC4. Drug Metab Dispos 2011; 40:515-21. [DOI: 10.1124/dmd.111.041731] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
80
|
Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. CHINESE JOURNAL OF CANCER 2011; 31:58-72. [PMID: 22098952 PMCID: PMC3777468 DOI: 10.5732/cjc.011.10329] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.
Collapse
Affiliation(s)
- Kamlesh Sodani
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
81
|
Wang Z, Zhou Q, Kruh GD, Gallo JM. Dose-dependent disposition of methotrexate in Abcc2 and Abcc3 gene knockout murine models. Drug Metab Dispos 2011; 39:2155-61. [PMID: 21841039 DOI: 10.1124/dmd.111.041228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) is a substrate for numerous human ATP-binding cassette (ABC) efflux transporters, yet the impact of these transporters on MTX pharmacokinetics (PK) over a large dose range has not been examined. To investigate the effects of two transporters-ABC subfamily C member 2 (Abcc2; multidrug resistance protein 2) and ABC subfamily C member 3 (Abcc3; multidrug resistance protein 3)-involved in MTX hepatobiliary disposition in vivo, MTX plasma, urine, and feces concentrations were analyzed after 10, 50, and 200 mg/kg i.v. doses to groups of wild type (WT), Abcc2(-/-), and Abcc3(-/-) mice. The absence of Abcc2 caused a decrease in total clearance of MTX relative to WT mice at all dose levels yet was accompanied by compensatory increases in renal excretion and metabolism to 7-hydroxymethotrexate (7OH-MTX). In Abcc3(-/-) mice, total clearance was elevated at the two lower dose levels and was attributed to stimulation of biliary excretion and confirmed by elevated fecal excretion; however, at the high 200 mg/kg dose, clearance was severely retarded and could be attributed to hepatotoxicity because conversion to 7OH-MTX was diminished. The findings confirmed that both Abcc2 and Abcc3 significantly influenced the PK properties of MTX, and depending on the MTX dose and strain, alternate elimination pathways were elicited and saturable.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
82
|
Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011; 278:3226-45. [PMID: 21740521 DOI: 10.1111/j.1742-4658.2011.08235.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.
Collapse
Affiliation(s)
- Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA.
| | | |
Collapse
|
83
|
Wittgen HGM, van den Heuvel JJMW, van den Broek PHH, Dinter-Heidorn H, Koenderink JB, Russel FGM. Cannabinoid Type 1 Receptor Antagonists Modulate Transport Activity of Multidrug Resistance-Associated Proteins MRP1, MRP2, MRP3, and MRP4. Drug Metab Dispos 2011; 39:1294-302. [DOI: 10.1124/dmd.110.037812] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
84
|
Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011:299-323. [PMID: 21103974 DOI: 10.1007/978-3-642-14541-4_8] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nine multidrug resistance proteins (MRPs) represent the major part of the 12 members of the MRP/CFTR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters. Cloning, functional characterization, and cellular localization of most MRP subfamily members have identified them as ATP-dependent efflux pumps with a broad substrate specificity for the transport of endogenous and xenobiotic anionic substances localized in cellular plasma membranes. Prototypic substrates include glutathione conjugates such as leukotriene C(4) for MRP1, MRP2, and MRP4, bilirubin glucuronosides for MRP2 and MRP3, and cyclic AMP and cyclic GMP for MRP4, MRP5, and MRP8. Reduced glutathione (GSH), present in living cells at millimolar concentrations, modifies the substrate specificities of several MRPs, as exemplified by the cotransport of vincristine with GSH by MRP1, or by the cotransport of GSH with bile acids or of GSH with leukotriene B(4) by MRP4.The role of MRP subfamily members in pathophysiology may be illustrated by the MRP-mediated release of proinflammatory and immunomodulatory mediators such as leukotrienes and prostanoids. Pathophysiological consequences of many genetic variants leading to a lack of functional MRP protein in the plasma membrane are observed in the hereditary MRP2 deficiency associated with conjugated hyperbilirubinemia in Dubin-Johnson syndrome, in pseudoxanthoma elasticum due to mutations in the MRP6 (ABCC6) gene, or in the type of human earwax and osmidrosis determined by single nucleotide polymorphisms in the MRP8 (ABCC8) gene. The hepatobiliary and renal elimination of many drugs and their metabolites is mediated by MRP2 in the hepatocyte canalicular membrane and by MRP4 as well as MRP2 in the luminal membrane of kidney proximal tubules. Therefore, inhibition of these efflux pumps affects pharmacokinetics, unless compensated by other ATP-dependent efflux pumps with overlapping substrate specificities.
Collapse
|
85
|
Marion TL, Perry CH, St Claire RL, Yue W, Brouwer KLR. Differential disposition of chenodeoxycholic acid versus taurocholic acid in response to acute troglitazone exposure in rat hepatocytes. Toxicol Sci 2011; 120:371-80. [PMID: 21262925 DOI: 10.1093/toxsci/kfr014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhibition of bile acid (BA) transport may contribute to the hepatotoxicity of troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist. Typically, studies use taurocholic acid (TCA) as a model substrate to investigate effects of xenobiotics on BA disposition. However, TRO may differentially affect the transport of individual BAs, potentially causing hepatocyte accumulation of more cytotoxic BAs. The effects of TRO on the disposition of [(14)C]-labeled chenodeoxycholic acid ([(14)C]CDCA), an unconjugated cytotoxic BA, were determined in suspended hepatocytes and sandwich-cultured hepatocytes (SCH) from rats. (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), a multidrug resistance-associated protein (MRP) inhibitor, was included to evaluate involvement of MRPs in CDCA disposition. Accumulation in cells + bile of total [(14)C]CDCA species in SCH was sixfold greater than [(3)H]TCA and unaffected by 1 and 10μM TRO; 100μM TRO and 50μM MK571 ablated biliary excretion and significantly increased intracellular accumulation of total [(14)C]CDCA species. Results were similar in Mrp2-deficient TR(-) rat hepatocytes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that taurine- and glycine-conjugated CDCA, in addition to unconjugated CDCA, accumulated in hepatocytes during the 10-min incubation. In suspended rat hepatocytes, initial [(14)C]CDCA uptake was primarily Na(+)-independent, whereas initial [(3)H]TCA uptake was primarily Na(+)-dependent; TRO and MK571 decreased [(14)C]CDCA uptake to a lesser extent than [(3)H]TCA. Unexpectedly, MK571 inhibited Na(+)-taurocholate cotransporting polypeptide and bile salt export pump. Differential effects on uptake and efflux of individual BAs may contribute to TRO hepatotoxicity. Although TCA is the prototypic BA used to investigate the effects of xenobiotics on BA transport, it may not be reflective of other BAs.
Collapse
Affiliation(s)
- Tracy L Marion
- Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270, USA
| | | | | | | | | |
Collapse
|
86
|
Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia 2011; 12:740-7. [PMID: 20824050 DOI: 10.1593/neo.10576] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/04/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022] Open
Abstract
Gemcitabine is widely used as first-line chemotherapeutic drug in the treatment of pancreatic cancer. Our previous experimental chemotherapy studies have shown that treatment of human pancreatic carcinoma cells with 5-fluorouracil (5-FU) alters the cellular transporter expression profile and that modulation of the expression of multidrug resistance protein 5 (MRP5; ABCC5) influences the chemoresistance of these tumor cells. Here, we studied the influence of acute and chronic gemcitabine treatment on the expression of relevant uptake and export transporters in pancreatic carcinoma cells by reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunoblot analyses. The specific role of MRP5 in cellular gemcitabine sensitivity was studied by cytotoxicity assays using MRP5-overexpressing and MRP5-silenced cells. Exposure to gemcitabine (12 nM for 3 days) did not alter the messenger RNA (mRNA) expression of MRP1, MRP3, MRP5, and equilibrative nucleoside transporter 1 (ENT1), whereas high dosages of the drug (20 microM for 1 hour) elicited up-regulation of these transporters in most cell lines studied. In cells with acquired gemcitabine resistance (up to 160 nM gemcitabine), the mRNA or protein expression of the gemcitabine transporters MRP5 and ENT1 was upregulated in several cell lines. Combined treatment with 5-FU and gemcitabine caused a 5- to 40-fold increase in MRP5 and ENT1 expressions. Cytotoxicity assays using either MRP5-overexpressing (HEK and PANC-1) or MRP5-silenced (PANC1/shMRP5) cells indicated that MRP5 contributes to gemcitabine resistance. Thus, our novel data not only on drug-induced alterations of transporter expression relevant for gemcitabine uptake and export but also on the link between gemcitabine sensitivity and MRP5 expression may lead to improved strategies of future chemotherapy regimens using gemcitabine in pancreatic carcinoma patients.
Collapse
|
87
|
Hagmann W, Faissner R, Schnolzer M, Lohr M, Jesnowski R. Membrane drug transporters and chemoresistance in human pancreatic carcinoma. Cancers (Basel) 2010; 3:106-25. [PMID: 24212609 PMCID: PMC3756352 DOI: 10.3390/cancers3010106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/10/2010] [Accepted: 12/24/2010] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil.
Collapse
Affiliation(s)
- Wolfgang Hagmann
- Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; E-Mails: (R.F.); (M.L.); (R.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49 6221 424320; Fax: +49 6221 423359
| | - Ralf Faissner
- Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; E-Mails: (R.F.); (M.L.); (R.J.)
| | - Martina Schnolzer
- Functional Proteome Analysis, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; E-Mail:
| | - Matthias Lohr
- Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; E-Mails: (R.F.); (M.L.); (R.J.)
- Department of Surgical Gastroenterology, CLINTEC, K53, Karolinska Institute, SE-14186 Stockholm, Sweden
| | - Ralf Jesnowski
- Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; E-Mails: (R.F.); (M.L.); (R.J.)
- Department of Medicine II, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
88
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
89
|
Kuan CT, Wakiya K, Herndon JE, Lipp ES, Pegram CN, Riggins GJ, Rasheed A, Szafranski SE, McLendon RE, Wikstrand CJ, Bigner DD. MRP3: a molecular target for human glioblastoma multiforme immunotherapy. BMC Cancer 2010; 10:468. [PMID: 20809959 PMCID: PMC2940806 DOI: 10.1186/1471-2407-10-468] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 09/01/2010] [Indexed: 02/05/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3). Methods We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS. Results Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed MRP3 mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined MRP3-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of MRP3 RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002). Conclusions Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.
Collapse
Affiliation(s)
- Chien-Tsun Kuan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Kuan CT, Srivastava N, McLendon RE, Marasco WA, Zalutsky MR, Bigner DD. Recombinant single-chain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer 2010; 127:598-611. [PMID: 19937796 DOI: 10.1002/ijc.25062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multidrug resistance protein 3 (MRP3), a multidrug resistance protein identified by serial analysis of gene expression as a glioblastoma multiforme (GBM)-associated molecule, is highly expressed in GBM, but not in normal brain cells. Thus, MRP3 is a candidate for GBM immunotargeting, but to date, no monoclonal antibody has been isolated that can target an extracellular MRP3 epitope. By phage display, we have isolated 3 recombinant, fully human, single-chain Fv (scFv) antibodies, M25, M58 and M89, which specifically react with the extracellular N-terminus of human MRP3. In ELISA, these scFvs reacted only with the peptide used for screening and not with other MRP3-derived peptides. Flow cytometric analysis revealed that these scFv fragments bind specifically to viable human GBM cells displaying different MRP3 expression levels, but not to MRP3-null cells. Furthermore, these scFv antibodies failed to react with tumor cells overexpressing other MRP proteins, including MRP1, MRP2, MRP4 and MRP5. M25 and M58 also bound to viable neurospheres. Iodogen-labeled scFvs demonstrated a yield of 56-76%. The immunoreactive fractions of the radiolabeled M25, M58 and M89 scFvs were 32, 52 and 69%, respectively. M25 exhibited 20% internalization into D2159MG neurospheres, M58, 33% into D54MG cells and M89, 26% into D247MG. Immunohistochemical evaluation of human gliomas to determine the localization of MRP3 antigen using scFvs M25 and M58 showed a dense cytoplasmic and membranous staining pattern. These Fv-based recombinant antibodies, which possess superior tumor penetration capabilities and selectively target tumor cells that express MRP3, may potentially be used in immunotherapy and diagnosis for brain tumors and other cancers.
Collapse
Affiliation(s)
- Chien-Tsun Kuan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Yamaguchi K, Murai T, Yabuuchi H, Kurosawa T. Measurement of transport activities of bile acids in human multidrug resistance-associated protein 3 using liquid chromatography-tandem mass spectrometry. ANAL SCI 2010; 26:317-23. [PMID: 20215680 DOI: 10.2116/analsci.26.317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A method has been developed for the measurement of transport activities in membrane vesicles obtained from human multidrug resistance-associated protein 3-expressing Sf9 cells for 1beta-hydroxy-, 6alpha-hydroxy- and unsaturated bile acids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Calibration curves for the bile acids were linear over the range of 10 to 2000 pmol/mL, and the detection limit was less than 2 pmol/mL for all bile acids using selected reaction monitoring analysis. The method was applied to measurements of adenosine triphosphate-dependent transport activities of the membrane vesicles for the above-mentioned hydroxylated and unsaturated bile acids. The present study demonstrated that the human multidrug resistance-associated protein 3 vesicles accepted 1beta-, 6alpha-hydroxylated and unsaturated bile acids along with common bile acids, such as glycocholic acid and taurolithocholic acid 3-sulfate. The developed method is useful for measurements of bile acid transport activities.
Collapse
Affiliation(s)
- Kana Yamaguchi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | |
Collapse
|
92
|
Clinical implications of novel aspects of biliary pathophysiology. Dig Liver Dis 2010; 42:238-44. [PMID: 20167547 DOI: 10.1016/j.dld.2010.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 12/11/2022]
Abstract
Cholangiocytes are the epithelial cells that line the biliary tree; they are the target of chronic diseases termed cholangiopathies, which represent a daily challenge for clinicians, since definitive medical treatments are not available yet. It is generally accepted that the progression of injury in the course of cholangiopathies, and promotion and progression of cholangiocarcinoma are at least in part due to the failure of the cholangiocytes' mechanisms of adaptation to injury. Recently, several studies on the pathophysiology of the biliary epithelium have shed some light on the mechanisms that govern cholangiocyte response to injury. These studies provide novel information to help interpret some of the clinical aspects of cholangiopathies and cholangiocarcinoma; the purpose of this review is thus to describe some of these novel findings, focusing on their significance from a clinical perspective.
Collapse
|
93
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
94
|
Establishment and identification of the human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM. Mol Biol Rep 2010; 38:3075-82. [PMID: 20111907 DOI: 10.1007/s11033-010-9975-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
In this study, we aim to establish the human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM which can be grow and passaged steadily in 1 μg/ml concentration of adriamycin in appropriate medium. The human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM was established using the method of exposure to medium with adriamycin alternated between high and low concentration with gradually increasing concentration. Furthermore, QBC939 and QBC939/ADM were both treated with adriamycin, mitomycin and vindesine, and then detected by MTT assay, respectively. Growth cycle and intra-cellular concentrations of ADM within cells of each group were determined by flow cytometry. Expression levels of P-glycoprotein were detected by Western bolt and real-time PCR. Results showed that, compared with QBC939, the inhibitive rates of adriamycin, mitomycin and vindesine to QBC939/ADM were lower. Content of ADM in the QBC939/ADM was lower. Western bolt and real time PCR showed that P-glycoprotein in the QBC939/ADM group was over expressed. Therefore, QBC939/ADM was establish and identified as the multi-drug-resistant cell line, which can grow and be passaged steadily in 1 μg/ml concentration adriamycin in appropriate medium. And the multi-drug-resistant character of QBC939/ADM was indicated to be related to the over expression of P-glycoprotein induced by chemotherapeutic drugs.
Collapse
|
95
|
|
96
|
|
97
|
van de Wetering K, Feddema W, Helms JB, Brouwers JF, Borst P. Targeted metabolomics identifies glucuronides of dietary phytoestrogens as a major class of MRP3 substrates in vivo. Gastroenterology 2009; 137:1725-35. [PMID: 19577570 DOI: 10.1053/j.gastro.2009.06.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/09/2009] [Accepted: 06/25/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The physiologic function of the efflux transporter Multidrug Resistance Protein 3 (MRP3) remains poorly defined. In vitro, MRP3 transports several glucuronidated compounds, but the compounds transported under physiologic conditions are unknown. Knowledge of the compounds transported by MRP3 in vivo would greatly contribute to the elucidation of the physiologic function of this transport protein. METHODS We used targeted metabolomics to identify substrates of MRP3 in vivo. Liquid chromatography coupled to mass spectrometry was used to specifically screen in plasma and urine of mice for compounds containing a glucuronic acid moiety. RESULTS We found that several highly abundant compounds containing a glucuronic acid moiety have a much lower abundance in plasma and urine of Mrp3((-/-)) than of wild-type mice. We identified these as phytoestrogen-glucuronides, and we show that MRP3 transports these compounds at high rates and with high affinity in vitro. CONCLUSIONS We have identified the efflux transporter MRP3 as a major factor in the disposition of phytoestrogens, a class of compounds to which mammals are exposed via food of plant origin. Our targeted metabolomics approach is not restricted to MRP3 but applicable to many other transport proteins for which knockout mouse models are available. Similar screens could be developed for sulpho- and glutathione-conjugates, further increasing the potential of identifying new physiologic transporter substrates.
Collapse
Affiliation(s)
- Koen van de Wetering
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
98
|
Jiang H, Chen K, He J, Pan F, Li J, Chen J, Chen W, Liang H. Association of pregnane X receptor with multidrug resistance-related protein 3 and its role in human colon cancer chemoresistance. J Gastrointest Surg 2009; 13:1831-8. [PMID: 19593667 DOI: 10.1007/s11605-009-0964-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/22/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pregnane xenobiotic receptor (PXR), a ligand-activated transcription factor, regulates the drug metabolism and transport. Its activation can reduce the efficacy of antineoplastic agents. The aim of this study was to investigate the role of PXR and the relationship between PXR and multidrug resistance-related protein 3 (MRP3) in human colon cancer chemoresistance. RESULTS The results showed that both the mitochondrial RNA (mRNA) and protein levels of PXR and MRP3 were much higher in colon cancer tissues than that in nonneoplastic tissues by reverse transcriptase polymerase chain reaction and Western blot analysis. MRP3 mRNA was significantly correlated with PXR mRNA in cancerous (P = 0.001) and nonneoplastic (P < 0.001) colon tissues with Pearson correlation test. The expressions of PXR, SP1, and MRP3 were markedly enhanced after rifampicin treatment. On the other hand, the protein level of MRP3 decreased after stable RNA interference of PXR. It also observed that PXR, activated by rifampicin or knocked down via short hairpin RNAs, could enhance or reduce cells resistance to the chemotherapeutic agents through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. CONCLUSIONS The results suggested that PXR, associated with MRP3, may play an important role in human colon cancer resistance to chemotherapeutics and SP1 may be involved in the induction of MRP3 by PXR activation.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Oncology, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Zehnpfennig B, Urbatsch IL, Galla HJ. Functional reconstitution of human ABCC3 into proteoliposomes reveals a transport mechanism with positive cooperativity. Biochemistry 2009; 48:4423-30. [PMID: 19334674 DOI: 10.1021/bi9001908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABCC3 (MRP3) is a member of the family of multidrug resistance-associated proteins (MRP), which belong to the largest family of membrane transport proteins, namely, the ATP binding cassette (ABC) transporters. Members of this family contribute to the excretion of several organic anions from cells and play a critical role in conferring resistance against drugs used in the treatment of cancer. The overexpression of ABCC3 in the yeast Pichia pastoris and its subsequent purification made possible the study of substrate-dependent ATPase activity [Chloupkova, M., et al. (2007) Biochemistry 46, 7992-8003]. Here we describe the successful reconstitution of purified ABCC3 in proteoliposomes and ABCC3-dependent uptake of the anticancer drug methotrexate (MTX), as well as the physiological substrate leukotriene C(4) (LTC(4)). Our results show specific transport in a cell-free environment and in the absence of other proteins, revealing positive allosteric cooperativity for ABCC3-mediated substrate translocation. The ABCC3-mediated transport of MTX indicates a Hill coefficient of 2.3 +/- 1.7, a maximum transport rate (V(max)) of >2 micromol min(-1) mg(-1), and a K(M) in the millimolar range, whereas the translocation of LTC(4) into proteoliposomes displayed a Hill coefficient of 2.3 +/- 0.5 with a maximum transport rate of 4.7 +/- 0.8 nmol min(-1) mg(-1), and a K(M) in the micromolar range (1.7 +/- 0.3 microM). The transport of both substrates, MTX and LTC(4), was inhibited by etoposide, confirming a higher affinity of ABCC3 for LTC(4) than for MTX. The technical advances described in this report represent the basis for the extended and detailed kinetic characterization of ABCC3 with a wide range of implications for the investigation of other human ABC transporters.
Collapse
Affiliation(s)
- Britta Zehnpfennig
- Institute of Biochemistry, University of Munster, 48149 Munster, Germany.
| | | | | |
Collapse
|
100
|
Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM. Modulation of Oral Drug Bioavailability: From Preclinical Mechanism to Therapeutic Application. Cancer Invest 2009; 23:443-64. [PMID: 16193644 DOI: 10.1081/cnv-58823] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, more than one fourth of all anticancer drugs are developed as oral formulations, and it is expected that this number will increase substantially in the near future. To enable oral drug therapy, adequate oral bioavailability must be achieved. Factors that have proved to be important in limiting the oral bioavailability are the presence of ATP-binding cassette drug transporters (ABC transporters) and the cytochrome P450 enzymes. We discuss the tissues distribution and physiological function of the ABC transporters in the human body, their expression in tumors, currently known polymorphisms and drugs that are able to inhibit their function as transporter. Furthermore, the role of the ABC transporters and drug-metabolizing enzymes as mechanisms to modulate the pharmacokinetics of anticancer agents, will be reviewed. Finally, some clinical examples of oral drug modulation are discussed. Among these examples are the coadministration of paclitaxel with CsA, a CYP3A4 substrate with P-glycoprotein (P-gp) modulating activity, and topotecan combined with the BCRP/P-gp transport inhibitor elacridar. Both are good examples of improvement of oral drug bioavailability by temporary inhibition of drug transporters in the gut epithelium.
Collapse
Affiliation(s)
- Isa E L M Kuppens
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|