51
|
Hwang KB, Lee IH, Park JH, Hambuch T, Choe Y, Kim M, Lee K, Song T, Neu MB, Gupta N, Kohane IS, Green RC, Kong SW. Reducing false-positive incidental findings with ensemble genotyping and logistic regression based variant filtering methods. Hum Mutat 2014; 35:936-44. [PMID: 24829188 DOI: 10.1002/humu.22587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/29/2014] [Indexed: 12/29/2022]
Abstract
As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates.
Collapse
Affiliation(s)
- Kyu-Baek Hwang
- Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology, Boston Children's Hospital, Boston, Massachusetts; School of Computer Science and Engineering, Soongsil University, Seoul, 156-743, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry 2014; 4:e394. [PMID: 24893065 PMCID: PMC4080319 DOI: 10.1038/tp.2014.38] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The hypothetical 'AXAS' gene network model that profiles functional patterns of heterogeneous DNA variants overrepresented in autism spectrum disorder (ASD), X-linked intellectual disability, attention deficit and hyperactivity disorder and schizophrenia was used in this current study to analyze whole exome sequencing data from an Australian ASD cohort. An optimized DNA variant filtering pipeline was used to identify loss-of-function DNA variations. Inherited variants from parents with a broader autism phenotype and de novo variants were found to be significantly associated with ASD. Gene ontology analysis revealed that putative rare causal variants cluster in key neurobiological processes and are overrepresented in functions involving neuronal development, signal transduction and synapse development including the neurexin trans-synaptic complex. We also show how a complex gene network model can be used to fine map combinations of inherited and de novo variations in families with ASD that converge in the L1CAM pathway. Our results provide an important step forward in the molecular characterization of ASD with potential for developing a tool to analyze the pathogenesis of individual affected families.
Collapse
|
53
|
Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci Biobehav Rev 2014; 46 Pt 2:326-42. [PMID: 24661984 DOI: 10.1016/j.neubiorev.2014.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
The number of genes known to cause human monogenic diseases is increasing rapidly. For the extremely large, genetically and phenotypically heterogeneous group of intellectual disability (ID) disorders, more than 600 causative genes have been identified to date. However, knowledge about the molecular mechanisms and networks disrupted by these genetic aberrations is lagging behind. The fruit fly Drosophila has emerged as a powerful model organism to close this knowledge gap. This review summarizes recent achievements that have been made in this model and envisions its future contribution to our understanding of ID genetics and neuropathology. The available resources and efficiency of Drosophila place it in a position to tackle the main challenges in the field: mapping functional modules of ID genes to provide conceptually novel insights into the genetic control of cognition, tailored functional studies to improve 'next-generation' diagnostics, and identification of reversible ID phenotypes and medication. Drosophila's behavioral repertoire and powerful genetics also open up perspectives for modeling genetically complex forms of ID and neuropsychiatric disorders, which overlap in their genetic etiologies. In conclusion, Drosophila provides many opportunities to advance future medical genomics of early onset cognitive disorders.
Collapse
|
54
|
Laparoscopic resections and ENCODE-guided genomics to advance surgery and oncology. Surg Endosc 2014; 28:2244-6. [PMID: 24566746 DOI: 10.1007/s00464-014-3456-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
|
55
|
Lee H, Lin MCA, Kornblum HI, Papazian DM, Nelson SF. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet 2014; 23:3481-9. [PMID: 24501278 DOI: 10.1093/hmg/ddu056] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism.
Collapse
Affiliation(s)
- Hane Lee
- Department of Pathology and Laboratory Medicine
| | | | - Harley I Kornblum
- Department of Psychiatry, Department of Molecular and Medical Pharmacology, Department of Pediatrics
| | | | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
56
|
Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 2014; 15:133-41. [PMID: 24430941 DOI: 10.1038/nrg3585] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of the genetic components of autism spectrum disorders (ASDs) has advanced rapidly in recent years, particularly with the demonstration of de novo mutations as an important source of causality. We review these developments in light of genetic models for ASDs. We consider the number of genetic loci that underlie ASDs and the relative contributions from different mutational classes, and we discuss possible mechanisms by which these mutations might lead to dysfunction. We update the two-class risk genetic model for autism, especially in regard to children with high intelligence quotients.
Collapse
Affiliation(s)
- Michael Ronemus
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
57
|
Krumm N, O'Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 2013; 37:95-105. [PMID: 24387789 PMCID: PMC4077788 DOI: 10.1016/j.tins.2013.11.005] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/07/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with large genetic components, but identification of pathogenic genes has proceeded slowly because hundreds of loci are involved. New exome sequencing technology has identified novel rare variants and has found that sporadic cases of ASD/ID are enriched for disruptive de novo mutations. Targeted large-scale resequencing studies have confirmed the significance of specific loci, including chromodomain helicase DNA binding protein 8 (CHD8), sodium channel, voltage-gated, type II, alpha subunit (SCN2A), dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), and catenin (cadherin-associated protein), beta 1, 88 kDa (CTNNB1, beta-catenin). We review recent studies and suggest that they have led to a convergence on three functional pathways: (i) chromatin remodeling; (ii) wnt signaling during development; and (iii) synaptic function. These pathways and genes significantly expand the neurobiological targets for study, and suggest a path for future genetic and functional studies.
Collapse
Affiliation(s)
- Niklas Krumm
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brian J O'Roak
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
58
|
Palmer E, Speirs H, Taylor PJ, Mullan G, Turner G, Einfeld S, Tonge B, Mowat D. Changing interpretation of chromosomal microarray over time in a community cohort with intellectual disability. Am J Med Genet A 2013; 164A:377-85. [PMID: 24311194 DOI: 10.1002/ajmg.a.36279] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/12/2013] [Indexed: 01/20/2023]
Abstract
Chromosomal microarray (CMA) is the first-line diagnostic test for individuals with intellectual disability, autism, or multiple congenital anomalies, with a 10-20% diagnostic yield. An ongoing challenge for the clinician and laboratory scientist is the interpretation of variants of uncertain significance (VOUS)-usually rare, unreported genetic variants. Laboratories differ in their threshold for reporting VOUS, and clinical practice varies in how this information is conveyed to the family and what follow-up is arranged. Workflows, websites, and databases are constantly being updated to aid the interpretation of VOUS. There is a growing literature reporting new microdeletion and duplication syndromes, susceptibility, and modifier copy number variants (CNVs). Diagnostic methods are also evolving with new array platforms and genome builds. In 2010, high-resolution arrays (Affymetrix 2.7 M Oligo and SNP, 50 kB resolution) were performed on a community cohort of 67 individuals with intellectual disability of unknown aetiology. Three hundred and one CNVs were detected and analyzed using contemporary resources and a simple scoring system. Thirteen (19%) of the arrays were assessed as potentially pathogenic, 4 (6%) as benign and 50 (75%) of uncertain clinical significance. The CNV data were re-analyzed in 2012 using the contemporary interpretative resources. There was a statistically significant difference in the assessment of individual CNVs (P < 0.0001). An additional eight patients were reassessed as having a potentially pathogenic array (n = 21, 31%) and several additional susceptibility or modifier CNVs were identified. This study highlights the complexity involved in the interpretation of CMA and uniquely demonstrates how, even on the same array platform, it can be subject to change over time.
Collapse
Affiliation(s)
- Emma Palmer
- Department of Medical Genetics, Sydney Children's Hospital, NSW, Australia; School of Women's and Children's Health, The University of NSW, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Facio FM, Lee K, O'Daniel JM. A genetic counselor's guide to using next-generation sequencing in clinical practice. J Genet Couns 2013; 23:455-62. [PMID: 24151055 DOI: 10.1007/s10897-013-9662-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/27/2013] [Indexed: 01/24/2023]
Abstract
Advances in next-generation sequencing (NGS) and rapid reductions in cost have increased the use of such technologies in research and clinical practice. However, many barriers exist to translating NGS for routine clinical use, including issues related to the interpretation of results, and the potential to find results that are secondary or incidental to the specific application of NGS. Nonetheless, NGS has become sufficiently affordable to be offered by several clinical laboratories, and increasingly it is becoming an attractive and viable option for clinicians and patients. This article reviews current NGS technologies, highlighting the information genetic counselors need to know to make informed-decisions about utilizing NGS in the clinic, and underscoring the impact of this new testing modality on the practice of genetic counseling.
Collapse
|
60
|
Worthey EA. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. CURRENT PROTOCOLS IN HUMAN GENETICS 2013; 79:9.24.1-9.24.24. [PMID: 24510652 DOI: 10.1002/0471142905.hg0924s79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last several years, next-generation sequencing (NGS) has transformed genomic research through substantial advances in technology and reduction in the cost of sequencing, and also in the systems required for analysis of these large volumes of data. This technology is now being used as a standard molecular diagnostic test under particular circumstances in some clinical settings. The advances in sequencing have come so rapidly that the major bottleneck in identification of causal variants is no longer the sequencing but rather the analysis and interpretation. Interpretation of genetic findings in a clinical setting is scarcely a new challenge, but the task is increasingly complex in clinical genome-wide sequencing given the dramatic increase in dataset size and complexity. This increase requires the development of novel or repositioned analysis tools, methodologies, and processes. This unit provides an overview of these items. Specific challenges related to implementation in a clinical setting are discussed.
Collapse
Affiliation(s)
- Elizabeth A Worthey
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.,The Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Computer Science, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
61
|
Tuchman R, Hirtz D, Mamounas LA. NINDS epilepsy and autism spectrum disorders workshop report. Neurology 2013; 81:1630-6. [PMID: 24089385 DOI: 10.1212/wnl.0b013e3182a9f482] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The association of epilepsy and autism spectrum disorders (ASD), although well-recognized, is poorly understood. The purpose of this report is to summarize the discussion of a workshop sponsored by the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Human Development, Autism Speaks, and Citizens United for Research in Epilepsy, that took place in Bethesda, Maryland, on May 29 and 30, 2012. The goals of this workshop were to highlight the clinical and biological relationships between ASD and epilepsy, to determine both short- and long-term goals that address research and treatment conundrums in individuals with both ASD and epilepsy, and to identify resources that can further both clinical and basic research. Topics discussed included epidemiology, genetics, environmental factors, common mechanisms, neuroimaging, neuropathology, neurophysiology, treatment, and research gaps and challenges in this unique population.
Collapse
Affiliation(s)
- Roberto Tuchman
- From the Department of Neurology (R.T.), Miami Children's Hospital Dan Marino Center, Weston, FL; and National Institute of Neurological Disorders and Stroke (D.H., L.A.M.), National Institutes of Health, Bethesda, MD
| | | | | |
Collapse
|
62
|
Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM, Jakielski KJ, Dimmock DP, Strand EA, Shriberg LD. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord 2013; 5:29. [PMID: 24083349 PMCID: PMC3851280 DOI: 10.1186/1866-1955-5-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Background Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. Methods As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker’s speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Results Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Conclusions Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.
Collapse
Affiliation(s)
- Elizabeth A Worthey
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Laparoscopic total gastrectomy and gastric cancer genome architecture: lessons, cautions, and promises. Surg Endosc 2013; 27:3945-7. [DOI: 10.1007/s00464-013-2988-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/18/2013] [Indexed: 01/12/2023]
|
64
|
Jouan L, Gauthier J, Dion PA, Rouleau GA. Rare variants in complex traits: novel identification strategies and the role of de novo mutations. Hum Hered 2013; 74:215-25. [PMID: 23594499 DOI: 10.1159/000346478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Following the limited success of linkage and association studies aimed at identifying the genetic causes of common neurodevelopmental syndromes like autism and schizophrenia, complex traits such as these have recently been considered under the 'common disease-rare variant' hypothesis. Prior to this hypothesis, the study of candidate genes has enabled the discovery of rare variants in complex disorders, and in turn some of these variants have highlighted the genetic contribution of de novo variants. De novo variants belong to a subcategory of spontaneous rare variants that are largely associated with sporadic diseases, which include some complex psychiatric disorders where the affected individuals do not transmit the genetic defects they carry because of their reduced reproductive fitness. Interestingly, recent studies have demonstrated the rate of germline de novo mutations to be higher in individuals with complex psychiatric disorders by comparison to what is seen in unaffected control individuals; moreover, de novo mutations carried by affected individuals have generally been more deleterious than those observed in control individuals. Advanced sequencing technologies have recently enabled the undertaking of massive parallel sequencing projects that can cover the entire coding sequences (exome) or genome of several individuals at once. Such advances have thus fostered the emergence of novel genetic hypotheses and ideas to investigate disease-causative genetic variations. The genetic underpinnings of a number of sporadic complex diseases is now becoming partly explained and more major breakthroughs for complex traits genomics should be expected in the near future.
Collapse
Affiliation(s)
- Loubna Jouan
- Center of Excellence in Neuroscience and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
65
|
Next-generation sequencing diagnostics for neurological diseases/disorders: from a clinical perspective. Hum Genet 2013; 132:721-34. [PMID: 23525706 DOI: 10.1007/s00439-013-1287-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/02/2013] [Indexed: 12/13/2022]
Abstract
Neurological diseases encompass a broad, heterogeneous group of disorders ranging from pediatric neurodevelopmental diseases to late-onset neurodegenerative diseases, most of which are poorly understood and few of which are curable. Most of these diseases have a genetic basis and thus are expected to be amenable to genetic or genomic analysis by next-generation sequencing (NGS). While the advancement of contemporary technologies (such as NGS) is exciting, translating this tool into actual benefit for patients and clinicians can be challenging. In a clinical setting, a sequencing test that is fast, non-invasive, cheap and with perfect specificity would be ideal. However, in practice, there are several hurdles and caveats to consider even before a NGS diagnostic testing can be optimally applied. Proper definition of clinical phenotype, selection of the most appropriate subjects and the clinical setting, optimization of both sensitivity and specificity of the test, evaluation of the availability of the infrastructure and expertise, and consideration of economic, ethical and legal issues are vital in the final application of NGS diagnostic screening in the clinics.
Collapse
|
66
|
Fam HK. Caught in the AKT: identification of ade novopathway in MCAP and MPPH and its therapeutic implications. Clin Genet 2012; 82:521-2. [DOI: 10.1111/cge.12003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|