51
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
52
|
Billot A, Kiran S. Disentangling neuroplasticity mechanisms in post-stroke language recovery. BRAIN AND LANGUAGE 2024; 251:105381. [PMID: 38401381 PMCID: PMC10981555 DOI: 10.1016/j.bandl.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A major objective in post-stroke aphasia research is to gain a deeper understanding of neuroplastic mechanisms that drive language recovery, with the ultimate goal of enhancing treatment outcomes. Subsequent to recent advances in neuroimaging techniques, we now have the ability to examine more closely how neural activity patterns change after a stroke. However, the way these neural activity changes relate to language impairments and language recovery is still debated. The aim of this review is to provide a theoretical framework to better investigate and interpret neuroplasticity mechanisms underlying language recovery in post-stroke aphasia. We detail two sets of neuroplasticity mechanisms observed at the synaptic level that may explain functional neuroimaging findings in post-stroke aphasia recovery at the network level: feedback-based homeostatic plasticity and associative Hebbian plasticity. In conjunction with these plasticity mechanisms, higher-order cognitive control processes dynamically modulate neural activity in other regions to meet communication demands, despite reduced neural resources. This work provides a network-level neurobiological framework for understanding neural changes observed in post-stroke aphasia and can be used to define guidelines for personalized treatment development.
Collapse
Affiliation(s)
- Anne Billot
- Center for Brain Recovery, Boston University, Boston, USA; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, Boston, USA.
| |
Collapse
|
53
|
Baselgia S, Kasten FH, Herrmann CS, Rasch B, Paβmann S. No Benefit in Memory Performance after Nocturnal Memory Reactivation Coupled with Theta-tACS. Clocks Sleep 2024; 6:211-233. [PMID: 38651390 PMCID: PMC11036246 DOI: 10.3390/clockssleep6020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Targeted memory reactivation (TMR) is an effective technique to enhance sleep-associated memory consolidation. The successful reactivation of memories by external reminder cues is typically accompanied by an event-related increase in theta oscillations, preceding better memory recall after sleep. However, it remains unclear whether the increase in theta oscillations is a causal factor or an epiphenomenon of successful TMR. Here, we used transcranial alternating current stimulation (tACS) to examine the causal role of theta oscillations for TMR during non-rapid eye movement (non-REM) sleep. Thirty-seven healthy participants learned Dutch-German word pairs before sleep. During non-REM sleep, we applied either theta-tACS or control-tACS (23 Hz) in blocks (9 min) in a randomised order, according to a within-subject design. One group of participants received tACS coupled with TMR time-locked two seconds after the reminder cue (time-locked group). Another group received tACS in a continuous manner while TMR cues were presented (continuous group). Contrary to our predictions, we observed no frequency-specific benefit of theta-tACS coupled with TMR during sleep on memory performance, neither for continuous nor time-locked stimulation. In fact, both stimulation protocols blocked the TMR-induced memory benefits during sleep, resulting in no memory enhancement by TMR in both the theta and control conditions. No frequency-specific effect was found on the power analyses of the electroencephalogram. We conclude that tACS might have an unspecific blocking effect on memory benefits typically observed after TMR during non-REM sleep.
Collapse
Affiliation(s)
- Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Florian H. Kasten
- Centre de Recherche Cerveau & Cognition, CNRS & Université Toulouse III Paul Sabatier, 31062 Toulouse, France;
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany;
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Sven Paβmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
54
|
Wilckens KA, Mayeli A, Stepan ME, Peng CW, Habte RF, Sharma K, Janssen SA, Applegate SL, Wallace ML, Buysse DJ, Ferrarelli F. High frequency transcranial magnetic stimulation increases slow-wave activity during subsequent sleep in older adults with cognitive complaints. Brain Stimul 2024; 17:362-364. [PMID: 38490473 PMCID: PMC11215801 DOI: 10.1016/j.brs.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Kristine A Wilckens
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA.
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Michelle E Stepan
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Christine W Peng
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Rima F Habte
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Kamakashi Sharma
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Sabine A Janssen
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Savannah L Applegate
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15206, USA
| |
Collapse
|
55
|
Aksamaz S, Mölle M, Akinola EO, Gromodka E, Bazhenov M, Marshall L. Single closed-loop acoustic stimulation targeting memory consolidation suppressed hippocampal ripple and thalamo-cortical spindle activity in mice. Eur J Neurosci 2024; 59:595-612. [PMID: 37605315 PMCID: PMC11214843 DOI: 10.1111/ejn.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain rhythms of sleep reflect neuronal activity underlying sleep-associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed-loop acoustic stimulation in humans targeted to the SO Up-state successfully enhanced the slow oscillation rhythm and phase-dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation-induced hippocampo-thalamo-cortical activity and retention performance on a hippocampus-dependent object-place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3-h retention interval at the beginning of the light phase closed-loop stimulation failed to improve retention significantly over sham. However, retention during SO Up-state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second-long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo-cortical spindle activity. Importantly, dynamics of SO-coupled hippocampal ripple activity distinguished SOUp-state stimulation. Non-rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed-loop acoustic stimulation in mice to investigate the inter-regional mechanisms underlying memory consolidation.
Collapse
Affiliation(s)
- Sonat Aksamaz
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Matthias Mölle
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| | - Esther Olubukola Akinola
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Erik Gromodka
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
La Jolla, CA, USA
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| |
Collapse
|
56
|
Marriott BA, Do AD, Portet C, Thellier F, Goutagny R, Jackson J. Brain-state-dependent constraints on claustrocortical communication and function. Cell Rep 2024; 43:113620. [PMID: 38159273 DOI: 10.1016/j.celrep.2023.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Neural activity in the claustrum has been associated with a range of vigilance states, yet the activity patterns and efficacy of synaptic communication of identified claustrum neurons have not been thoroughly determined. Here, we show that claustrum neurons projecting to the retrosplenial cortex are most active during synchronized cortical states such as non-rapid eye movement (NREM) sleep and are suppressed during increased cortical desynchronization associated with arousal, movement, and REM sleep. The efficacy of claustrocortical signaling is increased during NREM and diminished during movement due in part to increased cholinergic tone. Finally, claustrum activation during NREM sleep enhances memory consolidation through the phase resetting of cortical delta waves. Therefore, claustrocortical communication is constrained to function most effectively during cognitive processes associated with synchronized cortical states, such as memory consolidation.
Collapse
Affiliation(s)
- Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Flora Thellier
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France.
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
57
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
58
|
Hashizume M, Ito R, Suge R, Hojo Y, Murakami G, Murakoshi T. Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation. Neuroscience 2024; 536:12-20. [PMID: 37944580 DOI: 10.1016/j.neuroscience.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 11/12/2023]
Abstract
The basolateral amygdaloid complex (BLA) is critically involved in emotional behaviors, such as aversive memory formation. In particular, fear memory after cued fear conditioning is strongly associated with the BLA, whereas both the BLA and hippocampus are essential for contextual fear memory formation. In the present study, we examined the effects of acute (3 h) sleep deprivation (SD) on BLA-associated fear memory in juvenile (P24-32) rats and performed in vitro electrophysiology using whole-cell patch clamping from the basolateral nucleus (BA) of the BLA. BA projection neurons exhibit the network oscillation, i.e., spontaneous oscillatory bursts of inhibitory transmission at 0.1-3 Hz, as previously reported. In the present study, SD either before or after fear conditioning (FC) disturbed the acquisition of tone-associated fear memory without significant effects on contextual fear memory. FC reduced the power of the oscillatory activity, but SD did not further reduce the oscillation power. Oscillation power was correlated with tone-associated freezing rate (FR) in SD-free fear-conditioned rats, but this relation was disrupted in SD treated group. Rhythm index (RI), the rhythmicity of the oscillation, quantified by autocorrelation analysis, also correlated with tone-associated FR in the combined data, including FC alone and FC with SD. These results suggest that slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.
Collapse
Affiliation(s)
- Miki Hashizume
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan
| | - Rie Suge
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan
| | - Gen Murakami
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan.
| |
Collapse
|
59
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
60
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
61
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
62
|
Wei J, Wang M, Guo Y, Liu Y, Dong X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med 2024; 113:397-405. [PMID: 38134714 DOI: 10.1016/j.sleep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES A meta-analysis was used to explore the characteristic changes in objective sleep structure of patients with mild cognitive impairment (MCI) compared with cognitively healthy older adults. MATERIALS AND METHODS PubMed, EMBAS, Cochrane Library, Scopus, and Web of Science were searched until November 2023. A literature quality evaluation was performed according to the Newcastle-Ottawa Scale, and a meta-analysis was performed by RevMan 5.3 software. RESULTS Fifteen studies with 771 participants were finally included. Compared with normal control groups, patients with MCI had a decreased total sleep time by 34.44 min, reduction in sleep efficiency by 7.96 %, increased waking after sleep onset by 19.61 min, and increased sleep latency by 6.97 min. Ten included studies showed that the patients with MCI had increased N1 sleep by 2.72 % and decreased N3 sleep by 0.78 %; however, there was no significant difference between the MCI and control groups in percentage of N2 sleep. Moreover, Twelve included studies reported the MCI groups had shorter REM sleep of 2.69 %. CONCLUSION Our results provide evidence of abnormal sleep architecture in patients with MCI. As a "plastic state," abnormal sleep architecture may be a promising therapeutic target for slowing cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- Jianing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanli Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaofang Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
63
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
64
|
Zhang P, Yan J, Wei J, Li Y, Sun C. Disrupted synaptic homeostasis and partial occlusion of associative long-term potentiation in the human cortex during social isolation. J Affect Disord 2024; 344:207-218. [PMID: 37832738 DOI: 10.1016/j.jad.2023.10.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Social isolation often occurs in the military mission of soldiers but has increased in the general population since the COVID-19 epidemic. Overall synaptic homeostasis along with associative plasticity for the activity-dependent refinement of transmission across single synapses represent basic neural network function and adaptive behavior mechanisms. Here, we use electrophysiological and behavioral indices to non-invasively study the net synaptic strength and long-term potentiation (LTP)-like plasticity of humans in social isolation environments. The theta activity of electroencephalography (EEG) signals and transcranial magnetic stimulation (TMS) intensity to elicit a predefined amplitude of motor-evoked potential (MEP) demonstrate the disrupted synaptic homeostasis in the human cortex during social isolation. Furthermore, the induced MEP change by paired associative stimulation (PAS) demonstrates the partial occlusion of LTP-like plasticity, further behavior performances in a word-pair task are also identified as a potential index. Our study indicates that social isolation disrupts synaptic homeostasis and occludes associative LTP-like plasticity in the human cortex, decreasing behavior performance related to declarative memory.
Collapse
Affiliation(s)
- Peng Zhang
- School of Psychology, Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Jiao Wei
- The First Affiliated Hospital of Shandong First Medical University, Neurosurgery, Jinan 250013, China
| | - Yane Li
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Chuancai Sun
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China; The First Affiliated Hospital of Shandong First Medical University, Nephrology, Jinan 250013, China.
| |
Collapse
|
65
|
Huelin Gorriz M, Takigawa M, Bendor D. The role of experience in prioritizing hippocampal replay. Nat Commun 2023; 14:8157. [PMID: 38071221 PMCID: PMC10710481 DOI: 10.1038/s41467-023-43939-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
During sleep, recent memories are replayed by the hippocampus, leading to their consolidation, with a higher priority given to salient experiences. To examine the role of replay in the selective strengthening of memories, we recorded large ensembles of hippocampal place cells while male rats ran repeated spatial trajectories on two linear tracks, differing in either their familiarity or number of laps run. We observed that during sleep, the rate of replay events for a given track increased proportionally with the number of spatial trajectories run by the animal. In contrast, the rate of sleep replay events decreased if the animal was more familiar with the track. Furthermore, we find that the cumulative number of awake replay events occurring during behavior, influenced by both the novelty and duration of an experience, predicts which memories are prioritized for sleep replay, providing a more parsimonious neural correlate for the selective strengthening of memories.
Collapse
Affiliation(s)
- Marta Huelin Gorriz
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Masahiro Takigawa
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| |
Collapse
|
66
|
Bender AC, Jaleel A, Pellerin KR, Moguilner S, Sarkis RA, Cash SS, Lam AD. Altered Sleep Microarchitecture and Cognitive Impairment in Patients With Temporal Lobe Epilepsy. Neurology 2023; 101:e2376-e2387. [PMID: 37848332 PMCID: PMC10752648 DOI: 10.1212/wnl.0000000000207942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate the spatiotemporal characteristics of sleep waveforms in temporal lobe epilepsy (TLE) and examine their association with cognition. METHODS In this retrospective, cross-sectional study, we examined overnight EEG data from adult patients with TLE and nonepilepsy comparisons (NECs) admitted to the epilepsy monitoring unit at Mass General Brigham hospitals. Automated algorithms were used to characterize sleep macroarchitecture (sleep stages) and microarchitecture (spindles, slow oscillations [SOs]) on scalp EEG and to detect hippocampal interictal epileptiform discharges (hIEDs) from foramen ovale electrodes simultaneously recorded in a subset of patients with TLE. We examined the association of sleep features and hIEDs with memory and executive function from clinical neuropsychological evaluations. RESULTS A total of 81 adult patients with TLE and 28 NEC adult patients were included with similar mean ages. There were no significant differences in sleep macroarchitecture between groups, including relative time spent in each sleep stage, sleep efficiency, and sleep fragmentation. By contrast, the spatiotemporal characteristics of sleep microarchitecture were altered in TLE compared with NEC and were associated with cognitive impairments. Specifically, we observed a ∼30% reduction in spindle density in patients with TLE compared with NEC, which was significantly associated with worse memory performance. Spindle-SO coupling strength was also reduced in TLE and, in contrast to spindles, was associated with diminished executive function. We found no significant association between sleep macroarchitectural and microarchitectural parameters and hIEDs. DISCUSSION There is a fundamental alteration of sleep microarchitecture in TLE, characterized by a reduction in spindle density and spindle-SO coupling, and these changes may contribute to neurocognitive comorbidity in this disorder.
Collapse
Affiliation(s)
- Alex C Bender
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA.
| | - Afareen Jaleel
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Kyle R Pellerin
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Sebastian Moguilner
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Rani A Sarkis
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Sydney S Cash
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Alice D Lam
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| |
Collapse
|
67
|
Yoshida K, Toyoizumi T. Computational role of sleep in memory reorganization. Curr Opin Neurobiol 2023; 83:102799. [PMID: 37844426 DOI: 10.1016/j.conb.2023.102799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Sleep is considered to play an essential role in memory reorganization. Despite its importance, classical theoretical models did not focus on some sleep characteristics. Here, we review recent theoretical approaches investigating their roles in learning and discuss the possibility that non-rapid eye movement (NREM) sleep selectively consolidates memory, and rapid eye movement (REM) sleep reorganizes the representations of memories. We first review the possibility that slow waves during NREM sleep contribute to memory selection by using sequential firing patterns and the existence of up and down states. Second, we discuss the role of dreaming during REM sleep in developing neuronal representations. We finally discuss how to develop these points further, emphasizing the connections to experimental neuroscience and machine learning.
Collapse
Affiliation(s)
- Kensuke Yoshida
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
68
|
Vickrey B, Lerner I. Overnight exposure to pink noise could jeopardize sleep-dependent insight and pattern detection. Front Hum Neurosci 2023; 17:1302836. [PMID: 38107593 PMCID: PMC10722168 DOI: 10.3389/fnhum.2023.1302836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Accumulated evidence from the past decades suggests that sleep plays a crucial role in memory consolidation and the facilitation of higher-level cognitive processes such as abstraction and gist extraction. In addition, recent studies show that applying pink noise during sleep can further enhance sleep-dependent memory consolidation, potentially by modulating sleep physiology through stochastic resonance. However, whether this enhancement extends to higher cognitive processes remains untested. In this study, we investigated how the application of open-loop pink noise during sleep influences the gain of insight into hidden patterns. Seventy-two participants were assigned to three groups: daytime-wake, silent sleep, and sleep with pink noise. Each group completed the number reduction task, an established insight paradigm known to be influenced by sleep, over two sessions with a 12-h interval. Sleep groups were monitored by the DREEM 3 headband in home settings. Contrary to our prediction, pink noise did not induce an increase in insight compared to silent sleep and was statistically more similar to the wake condition despite evidence for its typical influence on sleep physiology. Particularly, we found that pink noise limited the time spent in the initial cycle of N1 just after sleep onset, while time spent in N1 positively predicted insight. These results echo recent suggestions that the time in the initial cycle of N1 plays a critical role in insight formation. Overall, our results suggest that open-loop pink noise during sleep may be detrimental to insight formation and creativity due to the alterations it causes to normal sleep architecture.
Collapse
Affiliation(s)
- Beverly Vickrey
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Itamar Lerner
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
69
|
Zhao Q, Maci M, Miller MR, Zhou H, Zhang F, Algamal M, Lee YF, Hou SS, Perle SJ, Le H, Russ AN, Lo EH, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Sleep restoration by optogenetic targeting of GABAergic neurons reprograms microglia and ameliorates pathological phenotypes in an Alzheimer's disease model. Mol Neurodegener 2023; 18:93. [PMID: 38041158 PMCID: PMC10693059 DOI: 10.1186/s13024-023-00682-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid β (Aβ) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aβ by microglia in an AD mouse model.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Fang Zhang
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hoang Le
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eng H Lo
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
70
|
Ladenbauer J, Khakimova L, Malinowski R, Obst D, Tönnies E, Antonenko D, Obermayer K, Hanna J, Flöel A. Towards Optimization of Oscillatory Stimulation During Sleep. Neuromodulation 2023; 26:1592-1601. [PMID: 35981956 DOI: 10.1016/j.neurom.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oscillatory rhythms during sleep, such as slow oscillations (SOs) and spindles and, most importantly, their coupling, are thought to underlie processes of memory consolidation. External slow oscillatory transcranial direct current stimulation (so-tDCS) with a frequency of 0.75 Hz has been shown to improve this coupling and memory consolidation; however, effects varied quite markedly between individuals, studies, and species. In this study, we aimed to determine how precisely the frequency of stimulation must match the naturally occurring SO frequency in individuals to best improve SO-spindle coupling. Moreover, we systematically tested stimulation durations necessary to induce changes. MATERIALS AND METHODS We addressed these questions by comparing so-tDCS with individualized frequency to standardized frequency of 0.75 Hz in a within-subject design with 28 older participants during napping while stimulation train durations were systematically varied between 30 seconds, 2 minutes, and 5 minutes. RESULTS Stimulation trains as short as 30 seconds were sufficient to modulate the coupling between SOs and spindle activity. Contrary to our expectations, so-tDCS with standardized frequency indicated stronger aftereffects regarding SO-spindle coupling than individualized frequency. Angle and variance of spindle maxima occurrence during the SO cycle were similarly modulated. CONCLUSIONS In sum, short stimulation trains were sufficient to induce significant changes in sleep physiology, allowing for more trains of stimulation, which provides methodological advantages and possibly even larger behavioral effects in future studies. Regarding individualized stimulation frequency, further options of optimization need to be investigated, such as closed-loop stimulation, to calibrate stimulation frequency to the SO frequency at the time of stimulation onset. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT04714879.
Collapse
Affiliation(s)
- Julia Ladenbauer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Liliia Khakimova
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Robert Malinowski
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Daniela Obst
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Eric Tönnies
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Klaus Obermayer
- Fakultät IV and Bernstein Center for Computational Neuroscience, Technische Universität Berlin, Berlin, Germany
| | - Jeff Hanna
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany.
| |
Collapse
|
71
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. Front Neurol 2023; 14:1243575. [PMID: 38099067 PMCID: PMC10719949 DOI: 10.3389/fneur.2023.1243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
- Benjamin K. Simpson
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rohit Rangwani
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aamir Abbasi
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeffrey M. Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chrystal M. Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
72
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
73
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Memory ability and retention performance relate differentially to sleep depth and spindle type. iScience 2023; 26:108154. [PMID: 37876817 PMCID: PMC10590735 DOI: 10.1016/j.isci.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| |
Collapse
|
74
|
Liu J, Xia T, Chen D, Yao Z, Zhu M, Antony JW, Lee TMC, Hu X. Item-specific neural representations during human sleep support long-term memory. PLoS Biol 2023; 21:e3002399. [PMID: 37983253 PMCID: PMC10695382 DOI: 10.1371/journal.pbio.3002399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding how individual memories are reactivated during sleep is essential in theorizing memory consolidation. Here, we employed the targeted memory reactivation (TMR) paradigm to unobtrusively replaying auditory memory cues during human participants' slow-wave sleep (SWS). Using representational similarity analysis (RSA) on cue-elicited electroencephalogram (EEG), we found temporally segregated and functionally distinct item-specific neural representations: the early post-cue EEG activity (within 0 to 2,000 ms) contained comparable item-specific representations for memory cues and control cues, signifying effective processing of auditory cues. Critically, the later EEG activity (2,500 to 2,960 ms) showed greater item-specific representations for post-sleep remembered items than for forgotten and control cues, indicating memory reprocessing. Moreover, these later item-specific neural representations were supported by concurrently increased spindles, particularly for items that had not been tested prior to sleep. These findings elucidated how external memory cues triggered item-specific neural representations during SWS and how such representations were linked to successful long-term memory. These results will benefit future research aiming to perturb specific memory episodes during sleep.
Collapse
Affiliation(s)
- Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Tao Xia
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Danni Chen
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ziqing Yao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Minrui Zhu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - James W. Antony
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Tatia M. C. Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xiaoqing Hu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, People’s Republic of China
| |
Collapse
|
75
|
Girardeau G. [The role of sleep brain oscillations and neuronal patterns for memory]. Med Sci (Paris) 2023; 39:836-844. [PMID: 38018927 DOI: 10.1051/medsci/2023160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Sleep is crucial for the selective processing and strengthening of information encoded during wakefulness, known as memory consolidation. The different phases of sleep are characterized by specific neuronal activities associated with memory consolidation and homeostatic regulation. In the hippocampus during non-REM sleep, neural patterns called sharp-wave ripple complexes are associated with reactivations of the neural activity that occurred during wakefulness. These reactivations, through their coordinations with cortical slow oscillations and thalamocortical spindles, contribute to the consolidation of spatial memories by strengthening neuronal connections. Cortical slow waves are also a marker of synaptic homeostasis, a regulatory phenomenon maintaining networks in a functional range of firing rates. Finally, REM sleep is also important for memory, although the underlying physiology and the role of theta waves deserves to be further explored.
Collapse
|
76
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289359. [PMID: 37205348 PMCID: PMC10187327 DOI: 10.1101/2023.05.01.23289359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations(SOs) and concomitant decrease in pathological delta(δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles and their nesting) in post-stroke patients versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n=5) and healthy subjects (n=3) from an open-sourced dataset. We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles and nested spindles in one hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results indicate considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
| | - Rohit Rangwani
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| |
Collapse
|
77
|
Cumming D, Kozhemiako N, Thurm AE, Farmer CA, Purcell SW, Buckley AW. Spindle Chirp and other Sleep Oscillatory Features in Young Children with Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545095. [PMID: 37398218 PMCID: PMC10312722 DOI: 10.1101/2023.06.15.545095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Objectives To determine whether spindle chirp and other sleep oscillatory features differ in young children with and without autism. Methods Automated processing software was used to re-assess an extant set of polysomnograms representing 121 children (91 with autism [ASD], 30 typically-developing [TD]), with an age range of 1.35-8.23 years. Spindle metrics, including chirp, and slow oscillation (SO) characteristics were compared between groups. SO and fast and slow spindle (FS, SS) interactions were also investigated. Secondary analyses were performed assessing behavioural data associations, as well as exploratory cohort comparisons to children with non-autism developmental delay (DD). Results Posterior FS and SS chirp was significantly more negative in ASD than TD. Both groups had comparable intra-spindle frequency range and variance. Frontal and central SO amplitude were decreased in ASD. In contrast to previous manual findings, no differences were detected in other spindle or SO metrics. The ASD group displayed a higher parietal coupling angle. No differences were observed in phase-frequency coupling. The DD group demonstrated lower FS chirp and higher coupling angle than TD. Parietal SS chirp was positively associated with full developmental quotient. Conclusions For the first time spindle chirp was investigated in autism and was found to be significantly more negative than in TD in this large cohort of young children. This finding strengthens previous reports of spindle and SO abnormalities in ASD. Further investigation of spindle chirp in healthy and clinical populations across development will help elucidate the significance of this difference and better understand this novel metric.
Collapse
Affiliation(s)
- D Cumming
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - N Kozhemiako
- Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - AE Thurm
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - CA Farmer
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - SW Purcell
- Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - AW Buckley
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
78
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
79
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
80
|
Wamsley EJ, Arora M, Gibson H, Powell P, Collins M. Memory Consolidation during Ultra-short Offline States. J Cogn Neurosci 2023; 35:1617-1634. [PMID: 37584585 DOI: 10.1162/jocn_a_02035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Traditionally, neuroscience and psychology have studied the human brain during periods of "online" attention to the environment, while participants actively engage in processing sensory stimuli. However, emerging evidence shows that the waking brain also intermittently enters an "offline" state, during which sensory processing is inhibited and our attention shifts inward. In fact, humans may spend up to half of their waking hours offline [Wamsley, E. J., & Summer, T. Spontaneous entry into an "offline" state during wakefulness: A mechanism of memory consolidation? Journal of Cognitive Neuroscience, 32, 1714-1734, 2020; Killingsworth, M. A., & Gilbert, D. T. A wandering mind is an unhappy mind. Science, 330, 932, 2010]. The function of alternating between online and offline forms of wakefulness remains unknown. We hypothesized that rapidly switching between online and offline states enables the brain to alternate between the competing demands of encoding new information and consolidating already-encoded information. A total of 46 participants (34 female) trained on a memory task just before a 30-min retention interval, during which they completed a simple attention task while undergoing simultaneous high-density EEG and pupillometry recording. We used a data-driven method to parse this retention interval into a sequence of discrete online and offline states, with a 5-sec temporal resolution. We found evidence for three distinct states, one of which was an offline state with features well-suited to support memory consolidation, including increased EEG slow oscillation power, reduced attention to the external environment, and increased pupil diameter (a proxy for increased norepinephrine). Participants who spent more time in this offline state following encoding showed improved memory at delayed test. These observations are consistent with the hypothesis that even brief, seconds-long entry into an offline state may support the early stages of memory consolidation.
Collapse
|
81
|
Hamel A, Mary A, Rauchs G. Sleep and memory consolidation in aging: A neuroimaging perspective. Rev Neurol (Paris) 2023; 179:658-666. [PMID: 37586942 DOI: 10.1016/j.neurol.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Recently acquired information is strengthened and consolidated during sleep. For hippocampus-dependent memory, this process is assumed to occur mainly during slow wave sleep. Changes in sleep patterns in older adults can contribute to the disruption of the consolidation process during sleep and thus lead to cognitive impairment. Current findings suggest that reduced gray matter volume, particularly in frontal areas, Aβ and tau accumulation in combination with age-related changes of specific oscillations during sleep may contribute to memory deficits. This non-exhaustive review aims at providing a comprehensive picture of the associations between sleep changes and memory consolidation in aging, mainly based on neuroimaging studies. Overall, data confirm the utmost importance of sleep for healthy aging and the need to develop interventions aiming at improving sleep to reduce cognitive decline observed with advancing age.
Collapse
Affiliation(s)
- A Hamel
- Normandie Univ, UNICAEN, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Neuropresage Team, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France; UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences and UNI, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - A Mary
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences and UNI, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - G Rauchs
- Normandie Univ, UNICAEN, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Neuropresage Team, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.
| |
Collapse
|
82
|
Gu Y, Gagnon JF, Kaminska M. Sleep electroencephalography biomarkers of cognition in obstructive sleep apnea. J Sleep Res 2023; 32:e13831. [PMID: 36941194 DOI: 10.1111/jsr.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/23/2023]
Abstract
Obstructive sleep apnea has been associated with cognitive impairment and may be linked to disorders of cognitive function. These associations may be a result of intermittent hypoxaemia, sleep fragmentation and changes in sleep microstructure in obstructive sleep apnea. Current clinical metrics of obstructive sleep apnea, such as the apnea-hypopnea index, are poor predictors of cognitive outcomes in obstructive sleep apnea. Sleep microstructure features, which can be identified on sleep electroencephalography of traditional overnight polysomnography, are increasingly being characterized in obstructive sleep apnea and may better predict cognitive outcomes. Here, we summarize the literature on several major sleep electroencephalography features (slow-wave activity, sleep spindles, K-complexes, cyclic alternating patterns, rapid eye movement sleep quantitative electroencephalography, odds ratio product) identified in obstructive sleep apnea. We will review the associations between these sleep electroencephalography features and cognition in obstructive sleep apnea, and examine how treatment of obstructive sleep apnea affects these associations. Lastly, evolving technologies in sleep electroencephalography analyses will also be discussed (e.g. high-density electroencephalography, machine learning) as potential predictors of cognitive function in obstructive sleep apnea.
Collapse
Affiliation(s)
- Yusing Gu
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-François Gagnon
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
83
|
Liu X, Han M, Lv T, Li J, Zhang X. TBSS analysis of white matter fasciculus in chronic insomnia and the relationship with sleep quality and cognitive function. Sleep Biol Rhythms 2023; 21:467-470. [PMID: 38476185 PMCID: PMC10899946 DOI: 10.1007/s41105-023-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/21/2023] [Indexed: 03/14/2024]
Abstract
Eighty patients with chronic insomnia and 50 normal controls were selected. Evaluation scales included Pittsburgh Sleep Quality Index, Dysfunctional Beliefs and Attitudes about Sleep, Montreal Cognitive Assessment, Self-Rating Anxiety Scale, Self-Rating Depression Scale, Ruminative Responses Scale and Social Disability Screening Schedule. All patients and controls underwent whole-brain DTI scanning and Tract-Based Spatial Statistics (TBSS) analysis was performed. Chronic insomnia patients are mainly accompanied by white matter lesions of right posterior thalamic radiation, right sagittal tract, and right upper longitudinal tract. TBSS is helpful in the diagnosis of chronic insomnia and can reflect the changes of cognitive function.
Collapse
Affiliation(s)
- Xiaoran Liu
- School of Nursing, Binzhou Medical University, Yantai, China
| | - Mingxing Han
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tongyu Lv
- School of Nursing, Binzhou Medical University, Yantai, China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xueyan Zhang
- School of Nursing, Binzhou Medical University, Yantai, China
| |
Collapse
|
84
|
McLaren JR, Luo Y, Kwon H, Shi W, Kramer MA, Chu CJ. Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy. Ann Clin Transl Neurol 2023; 10:1513-1524. [PMID: 37363864 PMCID: PMC10502632 DOI: 10.1002/acn3.51840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: (1) spikes and spindles would be anti-correlated, (2) high-dose diazepam would increase spindles and decrease spikes, and (3) spindle response would be greater in those with cognitive improvement. METHODS Consecutive EE-SWAS patients treated with high-dose diazepam that met the criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. The cognitive response was determined from a chart review. RESULTS Spindle rate was anti-correlated with the spike rate in the channel with the maximal spike rate (p = 0.002) and averaged across all channels (p = 0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment (p ≤ 2e-5, all tests). Spindle rate, duration, and percentage (p ≤ 0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spindle rate but not changes in spike rate distinguished between groups. INTERPRETATION These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.
Collapse
Affiliation(s)
- John R. McLaren
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Yancheng Luo
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Hunki Kwon
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Wen Shi
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Mark A. Kramer
- Department of Mathematics and Statistics & Center for Systems NeuroscienceBoston UniversityBoston02215MassachusettsUSA
| | - Catherine J. Chu
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| |
Collapse
|
85
|
LaGoy AD, Kubala AG, Deering S, Germain A, Markwald RR. Dawn of a New Dawn: Advances in Sleep Health to Optimize Performance. Sleep Med Clin 2023; 18:361-371. [PMID: 37532375 DOI: 10.1016/j.jsmc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Optimal sleep health is a critical component to high-level performance. In populations such as the military, public service (eg, firefighters), and health care, achieving optimal sleep health is difficult and subsequently deficiencies in sleep health may lead to performance decrements. However, advances in sleep monitoring technologies and mitigation strategies for poor sleep health show promise for further ecological scientific investigation within these populations. The current review briefly outlines the relationship between sleep health and performance as well as current advances in behavioral and technological approaches to improving sleep health for performance.
Collapse
Affiliation(s)
- Alice D LaGoy
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Andrew G Kubala
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Sean Deering
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | | | - Rachel R Markwald
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA.
| |
Collapse
|
86
|
Lee YF, Russ AN, Zhao Q, Perle SJ, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Liu Z, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic targeting of astrocytes restores slow brain rhythm function and slows Alzheimer's disease pathology. Sci Rep 2023; 13:13075. [PMID: 37567942 PMCID: PMC10421876 DOI: 10.1038/s41598-023-40402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhuoyang Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Noah Gelwan
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhe Liu
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elena Galea
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
87
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
88
|
Potok W, van der Groen O, Sivachelvam S, Bächinger M, Fröhlich F, Kish LB, Wenderoth N. Contrast detection is enhanced by deterministic, high-frequency transcranial alternating current stimulation with triangle and sine waveform. J Neurophysiol 2023; 130:458-473. [PMID: 37465880 PMCID: PMC10625838 DOI: 10.1152/jn.00465.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Stochastic resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). When dealing with nonlinear physical systems, it has been suggested that resonance can be induced not only by adding stochastic signals (i.e., noise) but also by adding a large class of signals that are not stochastic in nature that cause "deterministic amplitude resonance" (DAR). Here, we mathematically show that high-frequency, deterministic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. We tested this prediction empirically and investigated whether nonrandom, high-frequency, transcranial alternating current stimulation (tACS) applied to the visual cortex could induce resonance-like effects and enhance the performance of a visual detection task. We demonstrated in 28 participants that applying 80-Hz triangular-waves or sine-waves with tACS reduced the visual contrast detection threshold for optimal brain stimulation intensities. The influence of tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when deterministic electrical waveforms are applied via tACS.NEW & NOTEWORTHY Our findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide the first evidence showing acute online benefits of transcranial alternating current stimulation (tACS)triangle and tACSsine targeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The "deterministic" tACS and "stochastic" high-frequency-transcranial random noise stimulation (tRNS) are equally effective in enhancing visual contrast detection.
Collapse
Affiliation(s)
- Weronika Potok
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onno van der Groen
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Sahana Sivachelvam
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neurology, University of North Carolina at Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Laszlo B Kish
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, United States
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| |
Collapse
|
89
|
Rios RL, Kafashan M, Hyche O, Lenard E, Lucey BP, Lenze EJ, Palanca BJA. Targeting Slow Wave Sleep Deficiency in Late-Life Depression: A Case Series With Propofol. Am J Geriatr Psychiatry 2023; 31:643-652. [PMID: 37105885 PMCID: PMC10544727 DOI: 10.1016/j.jagp.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Slow wave sleep (SWS), characterized by large electroencephalographic oscillations, facilitates crucial physiologic processes that maintain synaptic plasticity and overall brain health. Deficiency in older adults is associated with depression and cognitive dysfunction, such that enhancing sleep slow waves has emerged as a promising target for novel therapies. Enhancement of SWS has been noted after infusions of propofol, a commonly used anesthetic that induces electroencephalographic patterns resembling non-rapid eye movement sleep. This paper 1) reviews the scientific premise underlying the hypothesis that sleep slow waves are a novel therapeutic target for improving cognitive and psychiatric outcomes in older adults, and 2) presents a case series of two patients with late-life depression who each received two propofol infusions. One participant, a 71-year-old woman, had a mean of 2.8 minutes of evening SWS prior to infusions (0.7% of total sleep time). SWS increased on the night after each infusion, to 12.5 minutes (5.3% of total sleep time) and 24 minutes (10.6% of total sleep time), respectively. Her depression symptoms improved, reflected by a reduction in her Montgomery-Asberg Depression Rating Scale (MADRS) score from 26 to 7. In contrast, the other participant, a 77-year-old man, exhibited no SWS at baseline and only modest enhancement after the second infusion (3 minutes, 1.3% of total sleep time). His MADRS score increased from 13 to 19, indicating a lack of improvement in his depression. These cases provide proof-of-concept that propofol can enhance SWS and improve depression for some individuals, motivating an ongoing clinical trial (ClinicalTrials.gov NCT04680910).
Collapse
Affiliation(s)
- Rachel L Rios
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - MohammadMehdi Kafashan
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Orlandrea Hyche
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Emily Lenard
- Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Neurology (BPL), Washington University in St. Louis, MO
| | - Eric J Lenze
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ben Julian A Palanca
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Biomedical Engineering (BJAP), Washington University in St. Louis, St. Louis, MO; Division of Biology and Biomedical Sciences (BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO.
| |
Collapse
|
90
|
Park KS, Choi SH, Yoon H. Modulation of sleep using noninvasive stimulations during sleep. Biomed Eng Lett 2023; 13:329-341. [PMID: 37519871 PMCID: PMC10382438 DOI: 10.1007/s13534-023-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 08/01/2023] Open
Abstract
Among the various sleep modulation methods for improving sleep, three methods using noninvasive stimulation during sleep have been reviewed and summarized. The first method involves noninvasive direct brain stimulation to induce a current directly in the brain cortex. Electrically or magnetically applied stimulations trigger electrical events such as slow oscillations or sleep spindles, which can also be recorded by an electroencephalogram. The second method involves sensory stimulation during sleep, which provides stimulation through the sensory pathway to invoke equivalent brain activity like direct brain stimulation. Olfactory, vestibular, and auditory stimulation methods have been used, resulting in several sleep-modulating effects, which are characteristic and depend on the experimental paradigm. The third method is to modulate sleep by shifting the autonomic balance affecting sleep homeostasis. To strengthen parasympathetic dominance, stimulation was applied to decrease heart rate by synchronizing the heart rhythm. These noninvasive stimulation methods can strengthen slow-wave sleep, consolidate declarative or procedural memory, and modify sleep macrostructure. These stimulation methods provide evidence and possibility for sleep modulation in our daily life as an alternative method for the treatment of disturbed sleep and enhancing sleep quality and performance beyond the average level.
Collapse
Affiliation(s)
- Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080 Korea
| | - Sang Ho Choi
- School of Computer and Information Engineering, Kwangwoon University, Seoul, 01897 Korea
| | - Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, 03016 Korea
| |
Collapse
|
91
|
Wernette EMD, Fenn KM. Consolidation without intention: Sleep strengthens veridical and gist representations of information after incidental encoding. Psychon Bull Rev 2023; 30:1475-1483. [PMID: 36800068 DOI: 10.3758/s13423-023-02247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/18/2023]
Abstract
Sleep strengthens declarative memory, but research investigating the effect of sleep on memory for information that is not explicitly studied for a test is sparse. In two experiments, we investigated the effect of sleep on gist-based and veridical representations of incidentally encoded information. Participants rated words from Deese-Roediger-McDermott (DRM) lists in either a deep or shallow encoding task and completed a surprise memory test after either sleep or wake. In Experiment 1, words were presented in lists, in order of descending associativity with the unpresented critical lure. Memory for list words and critical lures in both encoding tasks was stronger after sleep than wake, suggesting that sleep consolidated gist-based memory. In Experiment 2, the same words were presented in a random order across the experiment to minimize gist-based processing. Sleep strengthened veridical memory for list words following deep, but not shallow, encoding and did not affect critical lures. These results suggest sleep consolidates gist and veridical representations of information after incidental encoding, and that sleep-dependent consolidation processes may depend on processes at encoding, such as overlapping context and the strength of veridical memory traces.
Collapse
Affiliation(s)
- Elle M D Wernette
- Department of Psychology, Michigan State University, 316 Physics Road, Room 213, East Lansing, MI, 48824, USA.
| | - Kimberly M Fenn
- Department of Psychology, Michigan State University, 316 Physics Road, Room 213, East Lansing, MI, 48824, USA
| |
Collapse
|
92
|
Zavecz Z, Shah VD, Murillo OG, Vallat R, Mander BA, Winer JR, Jagust WJ, Walker MP. NREM sleep as a novel protective cognitive reserve factor in the face of Alzheimer's disease pathology. BMC Med 2023; 21:156. [PMID: 37138290 PMCID: PMC10155344 DOI: 10.1186/s12916-023-02811-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance functions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensation against memory dysfunction otherwise caused by high AD pathology burden, remains unknown. METHODS Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pittsburgh compound B) positron emission tomography (PET) scanning for the quantification of β-amyloid (Aβ) with sleep electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning task. RESULTS We demonstrated that NREM SWA significantly moderates the effect of Aβ status on memory function. Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aβ burden, i.e., those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aβ pathological burden, and thus without the same need for cognitive reserve, did not similarly benefit from the presence of NREM SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aβ status predicting memory function was significant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve factors, such as education and physical activity (p = 0.042). CONCLUSIONS These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve function of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resilience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation of cognitive function in the face of AD pathology, both present moment and longitudinally.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vyoma D Shah
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Olivia G Murillo
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Raphael Vallat
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92617, USA
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew P Walker
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
93
|
Lee YF, Russ AN, Zhao Q, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic Targeting of Astrocytes Restores Slow Brain Rhythm Function and Slows Alzheimer's Disease Pathology. RESEARCH SQUARE 2023:rs.3.rs-2813056. [PMID: 37163040 PMCID: PMC10168443 DOI: 10.21203/rs.3.rs-2813056/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
| | - Alyssa N Russ
- Massachusetts General Hospital, Harvard Medical School
| | - Qiuchen Zhao
- Massachusetts General Hospital, Harvard Medical School
| | - Megi Maci
- Massachusetts General Hospital, Harvard Medical School
| | | | - Steven S Hou
- Massachusetts General Hospital, Harvard Medical School
| | | | - Zhuoyang Zhao
- Massachusetts General Hospital, Harvard Medical School
| | - Hanyan Li
- Massachusetts General Hospital, Harvard Medical School
| | - Noah Gelwan
- Massachusetts General Hospital, Harvard Medical School
| | | | | | - Elena Galea
- Massachusetts General Hospital, Harvard Medical School
| | | | | |
Collapse
|
94
|
McLaren JR, Luo Y, Kwon H, Shi W, Kramer MA, Chu CJ. Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537937. [PMID: 37163098 PMCID: PMC10168273 DOI: 10.1101/2023.04.22.537937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objective Epileptic encephalopathy with spike wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: 1) spikes and spindles would be anticorrelated, 2) high-dose diazepam would increase spindles and decrease spikes, and 3) spindle response would be greater in those with cognitive improvement. Methods Consecutive EE-SWAS patients treated with high-dose diazepam that met criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. Cognitive response was determined from chart review. Results Spindle rate was anticorrelated with spike rate in the channel with the maximal spike rate ( p =0.002) and averaged across all channels ( p =0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment ( p≤ 2e-5, all tests). Spindle rate, duration, and percentage ( p ≤0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spike rate did not distinguish between groups. Interpretation These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.
Collapse
Affiliation(s)
- John R McLaren
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Yancheng Luo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Mark A Kramer
- Department of Mathematics and Statistics & Center for Systems Neuroscience, Boston University, Boston, MA, USA 02215
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
95
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
96
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
97
|
Chen C, Wang K, Belkacem AN, Lu L, Yi W, Liang J, Huang Z, Ming D. A comparative analysis of sleep spindle characteristics of sleep-disordered patients and normal subjects. Front Neurosci 2023; 17:1110320. [PMID: 37065923 PMCID: PMC10098120 DOI: 10.3389/fnins.2023.1110320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 03/31/2023] Open
Abstract
Spindles differ in density, amplitude, and frequency, and these variations reflect different physiological processes. Sleep disorders are characterized by difficulty in falling asleep and maintaining sleep. In this study, we proposed a new spindle wave detection algorithm, which was more effective compared with traditional detection algorithms such as wavelet algorithm. Besides, we recorded EEG data from 20 subjects with sleep disorders and 10 normal subjects, and then we compared the spindle characteristics of sleep-disordered subjects and normal subjects (those without any sleep disorder) to assess the spindle activity during human sleep. Specifically, we scored 30 subjects on the Pittsburgh Sleep Quality Index and then analyzed the association between their sleep quality scores and spindle characteristics, reflecting the effect of sleep disorders on spindle characteristics. We found a significant correlation between the sleep quality score and spindle density (p = 1.84 × 10−8, p-value <0.05 was considered statistically significant.). We, therefore, concluded that the higher the spindle density, the better the sleep quality. The correlation analysis between the sleep quality score and mean frequency of spindles yielded a p-value of 0.667, suggesting that the spindle frequency and sleep quality score were not significantly correlated. The p-value between the sleep quality score and spindle amplitude was 1.33 × 10−4, indicating that the mean amplitude of the spindle decreases as the score increases, and the mean spindle amplitude is generally slightly higher in the normal population than in the sleep-disordered population. The normal and sleep-disordered groups did not show obvious differences in the number of spindles between symmetric channels C3/C4 and F3/F4. The difference in the density and amplitude of the spindles proposed in this paper can be a reference characteristic for the diagnosis of sleep disorders and provide valuable objective evidence for clinical diagnosis. In summary, our proposed detection method can effectively improve the accuracy of sleep spindle wave detection with stable performance. Meanwhile, our study shows that the spindle density, frequency and amplitude are different between the sleep-disordered and normal populations.
Collapse
Affiliation(s)
- Chao Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China
| | - Kun Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lin Lu
- Zhonghuan Information College Tianjin University of Technology, Tianjin, China
| | - Weibo Yi
- Beijing Machine and Equipment Institute, Beijing, China
| | - Jun Liang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- *Correspondence: Zhaoyang Huang,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Dong Ming,
| |
Collapse
|
98
|
Closed-Loop tACS Delivered during Slow-Wave Sleep Reduces Retroactive Interference on a Paired-Associates Learning Task. Brain Sci 2023; 13:brainsci13030468. [PMID: 36979277 PMCID: PMC10046133 DOI: 10.3390/brainsci13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Previous studies have found a benefit of closed-loop transcranial alternating current stimulation (CL-tACS) matched to ongoing slow-wave oscillations (SWO) during sleep on memory consolidation for words in a paired associates task (PAT). Here, we examined the effects of CL-tACS in a retroactive interference PAT (ri-PAT) paradigm, where additional stimuli were presented to increase interference and reduce memory performance. Thirty-one participants were tested on a PAT before sleep, and CL-tACS was applied over the right and left DLPFC (F3 and F4) vs. mastoids for five cycles after detection of the onset of each discrete event of SWO during sleep. Participants were awoken the following morning, learned a new PAT list, and then were tested on the original list. There was a significant effect of stimulation condition (p = 0.04297; Cohen’s d = 0.768), where verum stimulation resulted in reduced retroactive interference compared with sham and a significant interaction of encoding strength and stimulation condition (p = 0.03591). Planned simple effects testing within levels of encoding revealed a significant effect of stimulation only for low-encoders (p = 0.0066; Cohen’s d = 1.075) but not high-encoders. We demonstrate here for the first time that CL-tACS during sleep can enhance the protective benefits on retroactive interference in participants who have lower encoding aptitude.
Collapse
|
99
|
Kersanté F, Purple RJ, Jones MW. The GABA A receptor modulator zolpidem augments hippocampal-prefrontal coupling during non-REM sleep. Neuropsychopharmacology 2023; 48:594-604. [PMID: 35717464 PMCID: PMC9938179 DOI: 10.1038/s41386-022-01355-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/16/2023]
Abstract
Benzodiazepines and 'Z-drugs' (including zolpidem and zopiclone) are GABAA receptor (GABAAR) positive modulators commonly prescribed as hypnotics to treat insomnia and/or anxiety. However, alongside sedation, augmenting GABAAR function may also alter coordinated neuronal activity during sleep, thereby influencing sleep-dependent processes including memory consolidation. We used simultaneous recordings of neural population activity from the medial prelimbic cortex (PrL) and CA1 of the dorsal hippocampus (dCA1) of naturally sleeping rats to detail the effects of zolpidem on network activity during the cardinal oscillations of non-REM sleep. For comparison, we also characterized the effects of diazepam and 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP/gaboxadol), which acts predominantly at extra-synaptic GABAARs. Zolpidem and THIP significantly increased the amplitudes of slow-waves, which were attenuated by diazepam. Zolpidem increased hippocampal ripple density whereas diazepam decreased both ripple density and intrinsic frequency. While none of the drugs affected thalamocortical spindles in isolation, zolpidem augmented the temporal coordination between slow-waves and spindles. At the cellular level, analyses of spiking activity from 523 PrL and 579 dCA1 neurons revealed that zolpidem significantly enhanced synchronized pauses in cortical firing during slow-wave down states, while increasing correlated activity within and between dCA1 and PrL populations. Of the drugs compared here, zolpidem was unique in augmenting coordinated activity within and between hippocampus and neocortex during non-REM sleep. Zolpidem's enhancement of hippocampal-prefrontal coupling may reflect the cellular basis of its potential to modulate offline memory processing.
Collapse
Affiliation(s)
- Flavie Kersanté
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ross J Purple
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
100
|
Cohen H, Ephraim‐Oluwanuga OT, Akintunde OT, Gureje O, Matar MA, Todder D, Zohar J. The potential beneficial effect of sleep deprivation following traumatic events to preventing PTSD: Review of current insight regarding sleep, memory, and trauma resonating with ancient rituals-Àìsùn Oku (African) and Tsuya (Japanese). Neuropsychopharmacol Rep 2023; 43:2-11. [PMID: 36622038 PMCID: PMC10009425 DOI: 10.1002/npr2.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sleep figures in numerous ancient texts, for example, Epic of Gilgamesh, and has been a focus for countless mystical and philosophical texts. Even in the present century, sleep remains one of the most complex behaviors whose function still remains to be further explored. Current hypotheses suggest that among other functions, sleep contributes to memory processes. Memory is a core topic of study in post-traumatic stress disorder (PTSD) and other stress-related phenomena. It is widely accepted that sleep plays a major role in the consolidation of newly encoded hippocampus-dependent memories to pre-existing knowledge networks. Conversely, sleep deprivation disrupts consolidation and impairs memory retrieval. Along this line, sleep deprivation following a potentially traumatic event may interfere with the consolidation of event-related memories and, thereby, may reduce long-term post-traumatic stress-related symptoms. This review consolidates clinical and animal studies on the relationships between sleep, sleep deprivation, memory processes, and trauma exposure while introducing new contemporary insights into an ancient African tribal ritual (Àìsùn Oku) and Japanese ceremony ritual (Tsuya). We propose that these findings, focusing specifically on the effects of sleep deprivation in the immediate aftermath of traumatic events, may be explored as a possible therapeutic measure. Along with a summary of the field questions on whether sleep is performed "to remember" or "to forget" we lay the rationale for using sleep deprivation as a clinical tool. A tool that may partially prevent the long-term persistence of these traumatic events' memory and thereby, at least partly, attenuating the development of PTSD.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | | - Orunmuyi T. Akintunde
- Department of Nuclear Medicine, College of MedicineUniversity of IbadanIbadanNigeria
| | - Oye Gureje
- Department of PsychiatryCollege of Health Sciences University of AbujaAbujaNigeria
| | - Michael A. Matar
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Doron Todder
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Joseph Zohar
- Post‐Trauma Center, Sheba Medical CenterTel Aviv UniversityTel AvivIsrael
| |
Collapse
|