51
|
Hanna M, Sahito RGA, Rateb M, Kachiwal AB, Seddiek HA, Bhutto B, Hescheler J. Generation of transgene-free induced pluripotent stem cells from cardiac fibroblasts of goat embryos. J Stem Cells Regen Med 2020; 16:34-43. [PMID: 33414579 DOI: 10.46582/jsrm.1602007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 11/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold a great potential for therapeutic regenerative medicine. The aim of this study was to generate induced pluripotent stem cells from goat embryonic cardiac tissue derived fibroblasts. The isolated cardiac fibroblasts from the cardiac tissue of goat embryos were positive for alfa smooth muscle actin, vimentin and discoidin domain receptor2. From these cells, we generated transgene free iPSCs using piggyBac transposons / transposase using five transcription factors (Oct4, Sox2, Klf, Myc and Lin 28). The generated iPSCs were SSEA1, SSEA4 and Oct4 positive. They were cultured on neofeeders using 20% Serum replacement - IMDM with bFGF. They could form cystic and compact embryoid bodies that showed differentiated ectodermal and mesodermal like cells when cultured using 20% FBS-IMDM without bFGF. The iPSCs, generated in the frame of this approach were produced without the use of integrating virus and the reprogramming transgenes were removed at the end of the process. Though there were limitations in the approach used, a substantial sign of reprogramming was obtained.
Collapse
Affiliation(s)
- Mira Hanna
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany.,Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | | | - Moshira Rateb
- Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | - Allah Bux Kachiwal
- Department of Veterinary Physiology and Biochemistry, Sindh Agriculture University Tandojam, Pakistan
| | - Hanan A Seddiek
- Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | - Bachal Bhutto
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Pakistan
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany
| |
Collapse
|
52
|
Galiakberova AA, Dashinimaev EB. Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2020; 8:815. [PMID: 33117792 PMCID: PMC7578226 DOI: 10.3389/fcell.2020.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.
Collapse
Affiliation(s)
- Adelya A Galiakberova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
53
|
Weber M, Fech A, Jäger L, Steinle H, Bühler L, Perl RM, Martirosian P, Mehling R, Sonanini D, Aicher WK, Nikolaou K, Schlensak C, Enderle MD, Wendel HP, Linzenbold W, Avci-Adali M. Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Sci Rep 2020; 10:16787. [PMID: 33033281 PMCID: PMC7546722 DOI: 10.1038/s41598-020-73693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
The reprogramming of patient´s somatic cells into induced pluripotent stem cells (iPSCs) and the consecutive differentiation into cardiomyocytes enables new options for the treatment of infarcted myocardium. In this study, the applicability of a hydrojet-based method to deliver footprint-free iPSC-derived cardiomyocytes into the myocardium was analyzed. A new hydrojet system enabling a rapid and accurate change between high tissue penetration pressures and low cell injection pressures was developed. Iron oxide-coated microparticles were ex vivo injected into porcine hearts to establish the application parameters and the distribution was analyzed using magnetic resonance imaging. The influence of different hydrojet pressure settings on the viability of cardiomyocytes was analyzed. Subsequently, cardiomyocytes were delivered into the porcine myocardium and analyzed by an in vivo imaging system. The delivery of microparticles or cardiomyocytes into porcine myocardium resulted in a widespread three-dimensional distribution. In vitro, 7 days post-injection, only cardiomyocytes applied with a hydrojet pressure setting of E20 (79.57 ± 1.44%) showed a significantly reduced cell viability in comparison to the cells applied with 27G needle (98.35 ± 5.15%). Furthermore, significantly less undesired distribution of the cells via blood vessels was detected compared to 27G needle injection. This study demonstrated the applicability of the hydrojet-based method for the intramyocardial delivery of iPSC-derived cardiomyocytes. The efficient delivery of cardiomyocytes into infarcted myocardium could significantly improve the regeneration.
Collapse
Affiliation(s)
- Marbod Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Andreas Fech
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Luise Jäger
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Louisa Bühler
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Regine Mariette Perl
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Petros Martirosian
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Roman Mehling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Dominik Sonanini
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, ZMF, University Hospital Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Markus D Enderle
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Walter Linzenbold
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany.
| |
Collapse
|
54
|
Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell Death Dis 2020; 11:793. [PMID: 32968042 PMCID: PMC7511341 DOI: 10.1038/s41419-020-02955-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Retinal degeneration (RD) is one of the dominant causes of irreversible vision impairment and blindness worldwide. However, the current effective therapeutics for RD in the ophthalmologic clinic are unclear and controversial. In recent years, extensively investigated stem/progenitor cells-including retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs)-with proliferation and multidirectional differentiation potential have presented opportunities to revolutionise the ultimate clinical management of RD. Herein, we provide a comprehensive overview on the progression of clinical trials for RD treatment using four types of stem/progenitor cell-based transplantation to replace degenerative retinal cells and/or to supplement trophic factors from the aspects of safety, effectiveness and their respective advantages and disadvantages. In addition, we also discuss the emerging role of stem cells in the secretion of multifunctional nanoscale exosomes by which stem cells could be further exploited as a potential RD therapy. This review will facilitate the understanding of scientists and clinicians of the enormous promise of stem/progenitor cell-based transplantation for RD treatment, and provide incentive for superior employment of such strategies that may be suitable for treatment of other diseases, such as stroke and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| |
Collapse
|
55
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
56
|
Qiao Y, Agboola OS, Hu X, Wu Y, Lei L. Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem Cell Rev Rep 2020; 16:1049-1061. [PMID: 32939647 PMCID: PMC7494249 DOI: 10.1007/s12015-020-10042-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are mainly characterized by their unlimited proliferation abilities and potential to develop into almost any cell type. The creation of this technology has been of great interest to many scientific fields, especially regenerative biology. However, concerns about the safety of iPSC application in transplantation have arisen due to the tumorigenic and immunogenic properties of iPSCs. This review will briefly introduce the developing history of somatic reprogramming and applications of iPSC technology in regenerative medicine. In addition, the review will highlight two challenges to the efficient usage of iPSCs and the underlying mechanisms of these challenges. Finally, the review will discuss the expanding application of iPSC technology in cancer immunotherapy as a potential cancer vaccine and its advantages in auxiliary treatment compared with oncofetal antigen-based and embryonic stem cell (ESC)-based vaccines.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Oluwafemi Solomon Agboola
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China.
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
57
|
Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21155467. [PMID: 32751747 PMCID: PMC7432218 DOI: 10.3390/ijms21155467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.
Collapse
|
58
|
Jiang X, Yang Z, Dong M. Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2020; 11:297. [PMID: 32680540 PMCID: PMC7368795 DOI: 10.1186/s13287-020-01811-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/14/2023] Open
Abstract
Background Cellular replacement strategies using human induced pluripotent stem cells (iPSCs) and their cardiac derivatives are emerging as novel treatments for post-myocardial infarction (MI) heart failure (HF); however, the mechanism of recovery of heart function is not very clear. The purpose of this study was to investigate the efficiency of using highly purified human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) for myocardial repair in a mouse model of MI and to clarify the mechanism of recovery of heart function. Methods Animals modelling MI were randomly assigned to receive direct intramyocardial injection of culture medium (MI group) or 4 × 105 iPS-CMs (cell group) at the infarct border zone. Left ventricle (LV) performance was assessed with serial cardiac electrophysiology and was measured 1, 2 and 4 weeks post-MI. Invasive LV pressure measurement was measured at 4 weeks and was followed by sacrifice for histological examination. Results Compared to the MI group, the left ventricle ejection fraction (LVEF), left ventricular internal diameter in end-diastole (LVIDd) and end-systole (LVIDs) and maximal positive and negative pressure derivative (±dP/dt) were significantly improved in the iPS-CM group at 4 weeks post-MI. Histological examination revealed a very limited number of iPS-CMs 4 weeks after transplantation. Nonetheless, there was a significant enhancement of angiogenesis and a reduction in apoptosis of native cardiomyocyte after iPS-CM transplantation. Conclusions Our results demonstrate that transplantation of human iPS-CMs can improve heart function via paracrine action in a mouse model of myocardial infarction.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Ziyi Yang
- Bioisland Laboratory, Biomedical Equipment Department, Building 3, No.188 KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China
| | - Ming Dong
- Bioisland Laboratory, Biomedical Equipment Department, Building 3, No.188 KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China.
| |
Collapse
|
59
|
Generation of HIV-1-infected patients' gene-edited induced pluripotent stem cells using feeder-free culture conditions. AIDS 2020; 34:1127-1139. [PMID: 32501846 DOI: 10.1097/qad.0000000000002535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The discovery of induced pluripotent stem cells (iPSC) has brought promise to regenerative medicine as it breaks the ethical barrier of using embryonic stem cells. Such cell culture-derived patient-specific autologous stem cells are needed for transplantation. Here we report deriving HIV-1-infected patients' iPSC lines under transgene-free methods and under feeder-free and xeno-free culture conditions to meet the requirement for clinical application. METHODS AND RESULTS We have reprogrammed patients' peripheral blood mononuclear cells with EBNA1/OriP episomal vectors, or a defective and persistent Sendai virus vector (SeVdp) to ensure a nonintegrating iPSC generation. Both single picked and pooled iPSC lines demonstrated high pluripotency and were able to differentiate into various lineage cells in vivo. The established cell lines could be modified by genetic editing using the TALENs or CRISPR/Cas 9 technology to have a bi-allelic CCR5Δ32 mutations seamlessly. All generated iPSC lines and modified cell lines had no evidence of HIV integration and maintained normal karyotype after expansion. CONCLUSIONS This study provides a reproducible simple procedure for generating therapeutic grade iPSCs from HIV-infected patients and for engineering these cells to possess a naturally occurring genotype for resistance to HIV-1 infection when differentiated into immune cells.
Collapse
|
60
|
Sato S, Kikuchi T, Nishimura Y, Yugami Y, Sakuraoka M, Kita Y, Fukuda T, Kobayashi M. Generation of mouse iPS cells using an inducible expression of transgenes via the cumate gene-switch. Anal Biochem 2020; 599:113748. [PMID: 32333903 DOI: 10.1016/j.ab.2020.113748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/18/2020] [Indexed: 11/19/2022]
Abstract
We applied an inducible gene expression system that utilizes the p-cmt operon, the cumate gene-switch, to generate mouse induced pluripotent stem (iPS) cells. Mouse embryonic fibroblast (MEF) E6E7-MEF cells were transfected with a single cumate gene-switch vector enabling concomitant expression of Oct4, Sox2, c-Myc, Klf4, and Gfp. Then, the cells were cultured with cumate, a monoterpene. An increase in colonies positive for alkaline phosphatase activity was observed dose-dependently with cumate. In the absence of cumate, the expression of GFP, a marker for transgene expression, was undetectable in tightly aggregated iPS cell-like colonies with endogenous expression of NANOG and OCT4. From primary MEFs using the cumate gene-switch, we also isolated iPS cells expressing endogenous NANOG, OCT4, SOX2, KLF4, and SSEA1 with hypo-methylated genomic promoter regions of endogenous Nanog and Oct4. In embryoid bodies with the progression of differentiation, expression of markers for all three germ layers was detected, and contracting cardiomyocytes were observed. Overall, we suggest that the cumate gene-switch is applicable for the generation of mouse iPS cells. The cumate gene-switch in combination with other inducible systems, such as the tet system, may provide useful approaches for analyzing the roles of transgenes underlying the establishment of iPS cells.
Collapse
Affiliation(s)
- Suguru Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Takahiro Kikuchi
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yuka Nishimura
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yoshimi Yugami
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Mizuki Sakuraoka
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yuto Kita
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan.
| |
Collapse
|
61
|
Pernia C, Tobe BTD, O'Donnell R, Snyder EY. The Evolution of Stem Cells, Disease Modeling, and Drug Discovery for Neurological Disorders. Stem Cells Dev 2020; 29:1131-1141. [PMID: 32024446 DOI: 10.1089/scd.2019.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human neurological disorders are among the most challenging areas of translational research. The difficulty of acquiring human neural samples or specific representative animal models has necessitated a multifaceted approach to understanding disease pathology and drug discovery. The dedifferentiation of somatic cells to human induced pluripotent stem cells (hiPSCs) for the generation of neural derivatives has broadened the capability of biomedical research to study human cell types in neurological disorders. The initial zeal for the potential of hiPSCs for immediate biomedical breakthroughs has evolved to more reasonable expectations. Over the past decade, hiPSC technology has demonstrated the capacity to successfully establish "disease in a dish" models of complex neurological disorders and to identify possible novel therapeutics. However, as hiPSCs are used more broadly, an increased understanding of the limitations of hiPSC studies is becoming more evident. In this study, we review the challenges of studying neurological disorders, the current limitations of stem cell-based disease modeling, and the degrees to which hiPSC studies to date have demonstrated the capacity to fill essential gaps in neurological research.
Collapse
Affiliation(s)
- Cameron Pernia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian T D Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, California, USA
| | - Ryan O'Donnell
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| |
Collapse
|
62
|
Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 2020; 9:121-136. [PMID: 32368414 PMCID: PMC7194323 DOI: 10.1089/biores.2019.0046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated mature cells is one of the most promising technologies in the field of regenerative medicine. The ability to generate patient-specific iPSCs offers an invaluable reservoir of pluripotent cells, which could be genetically engineered and differentiated into target cells to treat various genetic and degenerative diseases once transplanted, hence counteracting the risk of graft versus host disease. In this context, we review the scientific research streams that lead to the emergence of iPSCs, the roles of reprogramming factors in reprogramming to pluripotency, and the reprogramming strategies. As iPSCs serve tremendous correction potentials for various diseases, we highlight the successes and challenges of iPSCs in cell replacement therapy and the synergy of iPSCs and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing tools in therapeutics research.
Collapse
Affiliation(s)
- Akram Al Abbar
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Nadine Nograles
- Newcastle University Medicine Malaysia, Educity, Iskandar Puteri, Johor, Malaysia
| | - Suleiman Yusuf Alhaji
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
63
|
Zheng J, Yun W, Park J, Kang PJ, Lee G, Song G, Kim IY, You S. Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. J Biomed Sci 2020; 27:56. [PMID: 32312260 PMCID: PMC7171822 DOI: 10.1186/s12929-020-00642-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. Methods Induced keratinocyte-like cells (iKCs) were directly reprogrammed from human urine cells by retroviral transduction of two lineage-specific transcription factors BMI1 and △NP63α (BN). Expression of keratinocyte stem cell or their differentiation markers were assessed by PCR, immunofluorescence and RNA-Sequencing. Regeneration capacity of iKCs were assessed by reconstitution of a human skin equivalent under air-interface condition. Results BN-driven iKCs were similar to primary keratinocytes (pKCs) in terms of their morphology, protein expression, differentiation potential, and global gene expression. Moreover, BN-iKCs self-assembled to form stratified skin equivalents in vitro. Conclusions This study demonstrated an approach to generate human iKCs that could be directly reprogrammed from human somatic cells and extensively expanded in serum- and feeder cell-free systems, which will facilitate their broad applicability in an efficient and patient-specific manner.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junghyun Park
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Phil Jun Kang
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gilju Lee
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. .,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
64
|
Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials 2020; 247:119985. [PMID: 32272301 DOI: 10.1016/j.biomaterials.2020.119985] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022]
Abstract
Exosome has been considered as an instructive supplement between complicated cell therapy and single gene/protein drug treatment in the field of regenerative medicine due to its excellent biocompatibility, efficient cellular internalization and large loading capacity. Nevertheless, one major issue that extremely restricts the potential application as gene/drug vehicles is the low yield of nanoscale exosome. Moreover, the intravenous injection of targeted exosomes may cause the obstruction of blood-rich organs. Thus, herein we fabricated a specific exosome-mimetics (EMs) that could come true mass and fast production exhibited the similar size, morphology and membrane protein markers in comparison with conventional exosomes. To bypass the risk of intravenous injection and improve the efficiency of topical therapy, we simultaneously applied the engineered EMs to design a gene-activated matrix (GAM) that could be locally released by encapsulating the plasmid of vascular endothelial growth factor (VEGF) and flexibly binding onto a core-shell nanofiber film. Our findings showed that the well-designed engineered EMs-mediated GAM was able to sustainably deliver VEGF gene and significantly enhance the vascularized osteogenesis in vivo. The current work can not only consolidate the applied foundation of EMs through the breakthrough of high yield, but also provide a local and effective delivery of engineered EMs for the in-situ therapy.
Collapse
|
65
|
All roads lead to Rome: the many ways to pluripotency. J Assist Reprod Genet 2020; 37:1029-1036. [PMID: 32198717 DOI: 10.1007/s10815-020-01744-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Cell pluripotency, spatial restriction, and development are spatially and temporally controlled by epigenetic regulatory mechanisms that occur without any permanent loss or alteration of genetic material, but rather through modifications "on top of it." These changes modulate the accessibility to transcription factors, either allowing or repressing their activity, thus shaping cell phenotype. Several studies have demonstrated the possibility to interact with these processes, reactivating silenced genes and inducing a high plasticity state, via an active demethylating effect, driven by ten-eleven translocation (TET) enzymes and an overall decrease of global methylation. In agreement with this, TET activities have been shown to be indispensable for mesenchymal to epithelial transition of somatic cells into iPSCs and for small molecule-driven epigenetic erasure. Beside the epigenetic mechanisms, growing evidences highlight the importance of mechanical forces in supporting cell pluripotency, which is strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, through the activation of specific mechanosensing-related pathways. In this review, we discuss and provide an overview of small molecule ability to modulate cell plasticity and define cell fate through the activation of direct demethylating effects. In addition, we describe the contribution of the Hippo signaling mechanotransduction pathway as one of the mechanisms involved in the maintenance of pluripotency during embryo development and its induction in somatic cells.
Collapse
|
66
|
Reinhardt A, Kagawa H, Woltjen K. N-Terminal Amino Acids Determine KLF4 Protein Stability in 2A Peptide-Linked Polycistronic Reprogramming Constructs. Stem Cell Reports 2020; 14:520-527. [PMID: 32109368 PMCID: PMC7066363 DOI: 10.1016/j.stemcr.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/26/2023] Open
Abstract
A common strategy for multi-protein expression is to link genes by self-cleaving 2A peptide sequences. Yet, little is known how the 2A peptide-derived N-terminal proline or adjacent non-native residues introduced during cDNA cloning affects protein stoichiometry. Polycistronic reprogramming constructs with altered KLF4 protein stoichiometry can influence induced pluripotent stem cell (iPSC) generation. We studied the impact of N-terminal 2A peptide-adjacent residues on the protein stability of two KLF4 isoforms, and assayed their capacity to generate iPSCs. Here, we show that the N-terminal proline remnant of the 2A peptide, alone or in combination with leucine, introduced during polycistronic cloning, destabilizes KLF4 resulting in increased protein degradation, which hinders reprogramming. Interestingly, the addition of charged and hydrophilic amino acids, such as glutamate or lysine stabilizes KLF4, enhancing reprogramming phenotypes. These findings raise awareness that N-terminal modification with 2A peptide-derived proline or additional cloning conventions may affect protein stability within polycistronic constructs. 2A peptide-derived N-terminal adjacent non-native residues affect KLF4 stability KLF4 stability is related with amino acid charge and hydrophobicity at the N-terminus Reprogramming phenotypes are highly associated with KLF4 stability
Collapse
Affiliation(s)
- Anika Reinhardt
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Harunobu Kagawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
67
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
68
|
Panda A, Gurusamy N, Rajasingh S, Carter HK, Thomas EL, Rajasingh J. Non-viral reprogramming and induced pluripotent stem cells for cardiovascular therapy. Differentiation 2020; 112:58-66. [PMID: 31954271 DOI: 10.1016/j.diff.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Despite significant effort devoted to developing new treatments and procedures, cardiac disease is still one of the leading causes of death in the world. The loss of myocytes due to ischemic injury remains a major therapeutic challenge. However, cell-based therapy to repair the injured heart has shown significant promise in basic and translation research and in clinical trials. Embryonic stem cells have been successfully used to improve cardiac outcomes. Unfortunately, treatment with these cells is complicated by ethical and legal issues. Recent progress in developing induced pluripotent stem cells (iPSCs) using non-viral vectors has made it possible to derive cardiomyocytes for therapy. This review will focus on these non-integration-based approaches for reprogramming and their therapeutic advantages for cardiovascular medicine.
Collapse
Affiliation(s)
- Arunima Panda
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hannah-Kaye Carter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Edwin L Thomas
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
69
|
Nielsen JJJ, Lillethorup TP, Glud AN, Sørensen JCH, Orlowski D. The application of iPSCs in Parkinson’s disease. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
70
|
Caiazza MC, Lang C, Wade-Martins R. What we can learn from iPSC-derived cellular models of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 252:3-25. [PMID: 32247368 DOI: 10.1016/bs.pbr.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder with no known cure. In order to better understand the pathological mechanisms which lead to neuronal cell death and to accelerate the process of drug discovery, a reliable in vitro model is required. Unfortunately, research into PD and neurodegeneration in general has long suffered from a lack of adequate in vitro models, mainly due to the inaccessibility of live neurons from vulnerable areas of the human brain. Recent reprogramming technologies have recently made it possible to reliably derive human induced pluripotent stem cells (iPSCs) from patients and healthy subjects to generate specific, difficult to obtain, cellular sub-types. These iPSC-derived cells can be employed to model disease to better understand pathological mechanisms and underlying cellular vulnerability. Therefore, in this chapter, we will discuss the techniques involved in the reprogramming of somatic cells into iPSCs, the evolution of iPSC differentiation methods and their application in neurodegenerative disease modeling.
Collapse
Affiliation(s)
- Maria Claudia Caiazza
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Charmaine Lang
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
71
|
Hamada A, Akagi E, Yamasaki S, Nakatao H, Obayashi F, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell Dev Biol Anim 2019; 56:85-95. [PMID: 31768763 PMCID: PMC6989583 DOI: 10.1007/s11626-019-00412-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have shown great potential toward practical and scientific applications. We previously reported the generation of human dental pulp stem cells using non-integrating replication-defective Sendai virus (SeVdp) vector in feeder-free culture with serum-free medium hESF9. This study describes the generation of hiPSCs from peripheral blood mononuclear cells to increase the donor population, while reducing biopsy invasiveness. From 6-d-old primary culture of peripheral blood mononuclear cells (PBMCs) with IL-2, hiPSCs were established using SeVdp(KOSM)302L with recombinant Laminin-511 E8 fragments under serum-free condition. The established PBMC-derived hiPSCs showed pluripotency and differentiation ability both in vivo and in vitro. In addition, we evaluated microarray data from PBMC- and dental pulp–derived hiPSCs. These hiPSCs will be beneficial for characterizing the molecular mechanisms of cellular differentiation and may provide useful substrates for developing cellular therapeutics.
Collapse
Affiliation(s)
- Atsuko Hamada
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Eri Akagi
- Department of Oral Maxillofacial Surgery, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Hirotaka Nakatao
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Fumitaka Obayashi
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okamoto
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan. .,Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
72
|
Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, Hsieh PCH. Human iPSC banking: barriers and opportunities. J Biomed Sci 2019; 26:87. [PMID: 31660969 PMCID: PMC6819403 DOI: 10.1186/s12929-019-0578-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development. We also introduce the technical challenges and offer future perspectives pertaining to the establishment and management of iPSC banks.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yueh-Ting Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Cardiovascular Surgery Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
73
|
Abbey D, Singh G, Verma I, Derebail S, Kolkundkar U, Chandrashekar DS, Acharya KK, Vemuri MC, Seshagiri PB. Successful Derivation of an Induced Pluripotent Stem Cell Line from a Genetically Nonpermissive Enhanced Green Fluorescent Protein-Transgenic FVB/N Mouse Strain. Cell Reprogram 2019; 21:270-284. [PMID: 31596624 DOI: 10.1089/cell.2019.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The embryonic stem cell line derivation from nonpermissive mouse strains is a challenging and highly inefficient process. The cellular reprogramming strategy provides an alternative route for generating pluripotent stem cell (PSC) lines from such strains. In this study, we successfully derived an enhanced green fluorescent protein (EGFP)-transgenic "N9" induced pluripotent stem cell (iPS cell, iPSC) line from the FVB/N strain-derived mouse embryonic fibroblasts (MEFs). The exposure of MEFs to human OCT4, SOX2, KLF4, and c-MYC (OSKM) transgenes via lentiviral transduction resulted in complete reprogramming. The N9 iPS cell line demonstrated all the criteria of a typical mouse PSC line, including normal colony morphology and karyotype (40,XY), high replication and propagation efficiencies, expression of the pluripotency-associated genes, spontaneous differentiation to three germ lineage-derived cell types, and robust potential of chimeric blastocyst formation. Taken together, using human OSKM genes for transduction, we report, for the first time, the successful derivation of an EGFP-expressing iPS cell line from a genetically nonpermissive transgenic FVB/N mouse. This cell line could provide opportunities for designing protocols for efficient derivation of PSC lines from other nonpermissive strains and developing mouse models of human diseases.
Collapse
Affiliation(s)
- Deepti Abbey
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gurbind Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.,Present address: Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore, India
| | - Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
74
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
75
|
Wang X, Shi J, Cai G, Zheng E, Liu D, Wu Z, Li Z. Overexpression of MBD3 Improves Reprogramming of Cloned Pig Embryos. Cell Reprogram 2019; 21:221-228. [PMID: 31393170 DOI: 10.1089/cell.2019.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Methyl-CpG-binding domain protein 3 (MBD3) is a core component of the nucleosome remodeling and deacetylase (NuRD) complex, which is crucial for pluripotent stem cell differentiation and embryonic development. MBD3 was shown to play important roles in transcription factor-induced somatic cell reprogramming. Expression level of MBD3 was demonstrated to be higher in somatic cell nuclear transfer-generated cloned pig embryos than in fertilization-derived porcine embryos. However, the functions of MBD3 in nuclear transfer-mediated somatic cell reprogramming are unknown. In this study, MBD3 was overexpressed in cloned pig embryos, and the effects of MBD3 overexpression on gene transcription, DNA methylation, and in vitro developmental competence of cloned pig embryos were analyzed. Results indicated that overexpression of MBD3 in cloned pig embryos not only increased blastocyst rate and number of cells per blastocyst but also upregulated mRNA expression levels and decreased the DNA methylation of NANOG, OCT4, and LINE1 genes to the levels close to those in in vivo fertilization-produced pig embryos. These findings suggest that overexpression of MBD3 improves reprogramming of cloned pig embryos.
Collapse
Affiliation(s)
- Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wen's Breeding Swine Company, Yunfu, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
76
|
Schertzer MD, Thulson E, Braceros KCA, Lee DM, Hinkle ER, Murphy RM, Kim SO, Vitucci ECM, Calabrese JM. A piggyBac-based toolkit for inducible genome editing in mammalian cells. RNA (NEW YORK, N.Y.) 2019; 25:1047-1058. [PMID: 31101683 PMCID: PMC6633203 DOI: 10.1261/rna.068932.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/15/2019] [Indexed: 05/30/2023]
Abstract
We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery.
Collapse
Affiliation(s)
- Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Keean C A Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - David M Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Emma R Hinkle
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Susan O Kim
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Eva C M Vitucci
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- U.S. Environmental Protection Agency, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
77
|
Steinle H, Weber M, Behring A, Mau-Holzmann U, von Ohle C, Popov AF, Schlensak C, Wendel HP, Avci-Adali M. Reprogramming of Urine-Derived Renal Epithelial Cells into iPSCs Using srRNA and Consecutive Differentiation into Beating Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:907-921. [PMID: 31476669 PMCID: PMC6723182 DOI: 10.1016/j.omtn.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from patient’s somatic cells and the subsequent differentiation into desired cell types opens up numerous possibilities in regenerative medicine and tissue engineering. Adult cardiomyocytes have limited self-renewal capacity; thus, the efficient, safe, and clinically applicable generation of autologous cardiomyocytes is of great interest for the treatment of damaged myocardium. In this study, footprint-free iPSCs were successfully generated from urine-derived renal epithelial cells through a single application of self-replicating RNA (srRNA). The expression of pluripotency markers and the in vitro as well as in vivo trilineage differentiation were demonstrated. Furthermore, the resulting iPSCs contained no residual srRNA, and the karyotyping analysis demonstrated no detectable anomalies. The cardiac differentiation of these iPSCs resulted in autologous contracting cardiomyocytes after 10 days. We anticipate that the use of urine as a non-invasive cell source to obtain patient cells and the use of srRNA for reprogramming into iPSCs will greatly improve the future production of clinically applicable cardiomyocytes and other cell types. This could allow the regeneration of tissues by generating sufficient quantities of autologous cells without the risk of immune rejection.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Marbod Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Andreas Behring
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Ulrike Mau-Holzmann
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Christiane von Ohle
- Department of Conservative Dentistry and Periodontology, Centre of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Osianderstraße 2-8, 72076 Tübingen, Germany
| | - Aron-Frederik Popov
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
78
|
Rodriguez-Polo I, Stauske M, Becker A, Bartels I, Dressel R, Behr R. Baboon induced pluripotent stem cell generation by piggyBac transposition of reprogramming factors. Primate Biol 2019; 6:75-86. [PMID: 32110718 PMCID: PMC7041535 DOI: 10.5194/pb-6-75-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clinical application of regenerative therapies using embryonic or induced pluripotent stem cells is within reach. Progress made during recent years has encouraged researchers to address remaining open questions in order to finally translate experimental cell replacement therapies into application in patients. To achieve this, studies in translationally relevant animal models are required to make the final step to the clinic. In this context, the baboon (Papio anubis) may represent a valuable nonhuman primate (NHP) model to test cell replacement therapies because of its close evolutionary relationship to humans and its large body size. In this study, we describe the reprogramming of adult baboon skin fibroblasts using the piggyBac transposon system. Via transposon-mediated overexpression of six reprogramming factors, we generated five baboon induced pluripotent stem cell (iPSC) lines. The iPSC lines were characterized with respect to alkaline phosphatase activity, pluripotency factor expression analysis, teratoma formation potential, and karyotype. Furthermore, after initial cocultivation with mouse embryonic fibroblasts, we were able to adapt iPSC lines to feeder-free conditions. In conclusion, we established a robust and efficient protocol for iPSC generation from adult baboon fibroblasts.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Polo
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
| | - Michael Stauske
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
- current address: BlueRock Therapeutics, 101 College St, PMCRT 14-301,
Toronto, ON M5G 1L7, Canada
| | - Alexander Becker
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
| | - Iris Bartels
- Institute of Human Genetics, University Medical Center Göttingen,
Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ralf Dressel
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
- Institute of Cellular and Molecular Immunology, University Medical
Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
| |
Collapse
|
79
|
In Vivo Piggybac-Based Gene Delivery towards Murine Pancreatic Parenchyma Confers Sustained Expression of Gene of Interest. Int J Mol Sci 2019; 20:ijms20133116. [PMID: 31247905 PMCID: PMC6651600 DOI: 10.3390/ijms20133116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
The pancreas is a glandular organ that functions in the digestive system and endocrine system of vertebrates. The most common disorders involving the pancreas are diabetes, pancreatitis, and pancreatic cancer. In vivo gene delivery targeting the pancreas is important for preventing or curing such diseases and for exploring the biological function of genes involved in the pathogenesis of these diseases. Our previous experiments demonstrated that adult murine pancreatic cells can be efficiently transfected by exogenous plasmid DNA following intraparenchymal injection and subsequent in vivo electroporation using tweezer-type electrodes. Unfortunately, the induced gene expression was transient. Transposon-based gene delivery, such as that facilitated by piggyBac (PB), is known to confer stable integration of a gene of interest (GOI) into host chromosomes, resulting in sustained expression of the GOI. In this study, we investigated the use of the PB transposon system to achieve stable gene expression when transferred into murine pancreatic cells using the above-mentioned technique. Expression of the GOI (coding for fluorescent protein) continued for at least 1.5 months post-gene delivery. Splinkerette-PCR-based analysis revealed the presence of the consensus sequence TTAA at the junctional portion between host chromosomes and the transgenes; however, this was not observed in all samples. This plasmid-based PB transposon system enables constitutive expression of the GOI in pancreas for potential therapeutic and biological applications.
Collapse
|
80
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
81
|
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers-mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- R Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Zahrawi Street, Riyadh 11211, Saudi Arabia
| | - N Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - S Ferber
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
82
|
Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopaedics. J Orthop Translat 2019; 17:73-81. [PMID: 31194067 PMCID: PMC6551359 DOI: 10.1016/j.jot.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has revolutionized biomedicine. Although the potential of iPSCs for tissue regeneration, disease modeling and drug screening has been largely recognized, findings of iPSC research to date are mostly focused on neurology, cardiology and haematology. For orthopaedics, growing interest in the unique cell type has prompted more researchers to get involved in iPSC research. In this article, we introduce the brief history of cellular reprogramming and different reprogramming methods that have been developed, discuss the biology of iPSCs and review previously reported findings of iPSC studies in orthopaedics. The Translational potential of this article Stem cell therapies hold great promise for treating orthopaedic diseases, manifested in recent study findings and results of clinical trials. iPSCs are a unique stem cell type derived from a patient’s own cells while still possessing the embryonic stem cell-featured pluripotency for generation of all tissues in the body. The distinctive properties make iPSCs much desirable to fulfill the promise of regenerative medicine for clinical orthopaedics.
Collapse
Affiliation(s)
- Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - Hongli Jiao
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| | - Brian E Walczak
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
83
|
Kagawa H, Shimamoto R, Kim SI, Oceguera-Yanez F, Yamamoto T, Schroeder T, Woltjen K. OVOL1 Influences the Determination and Expansion of iPSC Reprogramming Intermediates. Stem Cell Reports 2019; 12:319-332. [PMID: 30639212 PMCID: PMC6372973 DOI: 10.1016/j.stemcr.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/24/2023] Open
Abstract
During somatic cell reprogramming to induced pluripotent stem cells (iPSCs), fibroblasts undergo dynamic molecular changes, including a mesenchymal-to-epithelial transition (MET) and gain of pluripotency; processes that are influenced by Yamanaka factor stoichiometry. For example, in early reprogramming, high KLF4 levels are correlated with the induction of functionally undefined, transiently expressed MET genes. Here, we identified the cell-surface protein TROP2 as a marker for cells with transient MET induction in the high-KLF4 condition. We observed the emergence of cells expressing the pluripotency marker SSEA-1+ mainly from within the TROP2+ fraction. Using TROP2 as a marker in CRISPR/Cas9-mediated candidate screening of MET genes, we identified the transcription factor OVOL1 as a potential regulator of an alternative epithelial cell fate characterized by the expression of non-iPSC MET genes and low cell proliferation. Our study sheds light on how reprogramming factor stoichiometry alters the spectrum of intermediate cell fates, ultimately influencing reprogramming outcomes.
Collapse
Affiliation(s)
- Harunobu Kagawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ren Shimamoto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Shin-Il Kim
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fabian Oceguera-Yanez
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
84
|
Lee CH, Ingrole RSJ, Gill HS. Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165405. [PMID: 30753882 DOI: 10.1016/j.bbadis.2019.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells using different approaches; however, a major restriction of reprogramming methods is the use of viral vectors, which have the risk of causing genome-integration of viral DNA. Here, without a viral vector, we generated iPSCs from mouse fibroblasts using an elastin-like polypeptide (ELP)-based transfection method. Our findings support the possible use of ELPs for delivery of the reprogramming genes in to somatic cells for generation of iPSCs. Results of gel retardation assay demonstrated efficient complexation of ELPs with a plasmid containing the four Yamanaka stem cell factors, Oct-4, Klf4, c-myc, and Sox2. After transfection, the iPSCs showed embryonic stem cell-like characteristics, including expression of endogenous pluripotency genes, differentiation into three germ layer lineages, and formation of teratomas in vivo. Our results demonstrate that ELP-based gene delivery may provide a safe method for use in generation of virus-free and exogenous DNA-free iPSCs, which will be crucial for future applications in stem cell-based therapies.
Collapse
Affiliation(s)
- Chang Hyun Lee
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, United States
| | - Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, United States.
| |
Collapse
|
85
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
86
|
Ji SL, Tang SB. Differentiation of retinal ganglion cells from induced pluripotent stem cells: a review. Int J Ophthalmol 2019; 12:152-160. [PMID: 30662854 DOI: 10.18240/ijo.2019.01.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/06/2018] [Indexed: 01/06/2023] Open
Abstract
Glaucoma is a common optic neuropathy that is characterized by the progressive degeneration of axons and the loss of retinal ganglion cells (RGCs). Glaucoma is one of the leading causes of irreversible blindness worldwide. Current glaucoma treatments only slow the progression of RGCs loss. Induced pluripotent stem cells (iPSCs) are capable of differentiating into all three germ layer cell lineages. iPSCs can be patient-specific, making iPSC-derived RGCs a promising candidate for cell replacement. In this review, we focus on discussing the detailed approaches used to differentiate iPSCs into RGCs.
Collapse
Affiliation(s)
- Shang-Li Ji
- Aier Eye Institute, Changsha 410015, Hunan Province, China
| | - Shi-Bo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan Province, China
| |
Collapse
|
87
|
Abstract
The availability of noninvasive high-resolution imaging technology, the immune-suppressive nature of the subretinal space, and the existence of surgical techniques that permit transplantation surgery to be a safe procedure all render the eye an ideal organ in which to begin cell-based therapy in the central nervous system. A number of early stage clinical trials are underway to assess the safety and feasibility of cell-based therapy for retinal blindness. Cell-based therapy using embryonic stem cell-derived differentiated cells (e.g., retinal pigment epithelium (RPE)), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells has demonstrated successful rescue and/or replacement in preclinical models of human retinal degenerative disease. Additional research is needed to identify the mechanisms that control synapse formation/disjunction (to improve photoreceptor transplant efficacy), to identify factors that limit RPE survival in areas of geographic atrophy (to improve RPE transplant efficacy in eyes with age-related macular degeneration), and to identify factors that regulate immune surveillance of the subretinal space (to improve long-term photoreceptor and RPE transplant survival).
Collapse
Affiliation(s)
- Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
88
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
89
|
McCaughey-Chapman A, Connor B. Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Advances. Stem Cells Dev 2018; 27:1674-1692. [DOI: 10.1089/scd.2018.0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
90
|
Wang X, Han Z, Yu Y, Xu Z, Cai B, Yuan Y. Potential Applications of Induced Pluripotent Stem Cells for Cardiovascular Diseases. Curr Drug Targets 2018; 20:763-774. [PMID: 30539693 DOI: 10.2174/1389450120666181211164147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Owning the high incidence and disability rate in the past decades, to be expected, cardiovascular diseases (CVDs) have become one of the leading death causes worldwide. Currently, induced pluripotent stem cells (iPSCs), with the potential to form fresh myocardium and improve the functions of damaged hearts, have been studied widely in experimental CVD therapy. Moreover, iPSC-derived cardiomyocytes (CMs), as novel disease models, play a significant role in drug screening, drug safety assessment, along with the exploration of pathological mechanisms of diseases. Furthermore, a lot of studies have been carried out to clarify the biological basis of iPSCs and its derived cells in the treatment of CVDs. Their molecular mechanisms were associated with release of paracrine factors, regulation of miRNAs, mechanical support of new tissues, activation of specific pathways and specific enzymes, etc. In addition, a few small chemical molecules and suitable biological scaffolds play positive roles in enhancing the efficiency of iPSC transplantation. This article reviews the development and limitations of iPSCs in CVD therapy, and summarizes the latest research achievements regarding the application of iPSCs in CVDs.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhenbo Han
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ying Yu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zihang Xu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Benzhi Cai
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
91
|
Li D, Secher J, Hyttel P, Ivask M, Kolko M, Hall VJ, Freude KK. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle 2018; 17:2547-2563. [PMID: 30457474 DOI: 10.1080/15384101.2018.1548790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Physiologically and anatomically, humans and pigs share many similarities, which make porcine induced pluripotent stem cells (piPSCs) very attractive for modeling human cell therapy as well as for testing safety of iPSC based cell replacement therapies. To date, several integrative and non-integrative strategies have been reported to successfully generate piPSCs, but all resulting piPSCs had integration of transgenes. The use of integrative methods has the disadvantage of potential lack of silencing or inappropriate re-activation of these genes during differentiation, as well as uncertainty regarding disruption of important genomic regions caused by integration. In our study, we performed a non-integrative vector based reprogramming approach using porcine fetal fibroblasts. The resulting four piPSC lines were positive for pluripotency marker and when subjected to in vitro and in vivo differentiation assays, all four lines formed embryoid bodies, capable to differentiate into all three germ layers, and three out of the four cell lines formed teratomas. PCR analysis on genomic and plasmid DNA revealed that the episomal vectors were undetectable in six out of eight subclones derived from one of the piPSC lines (piPSC1) above passage 20. These piPSCs could potentially be ideal cell lines for the generation of porcine in vitro and in vivo models. Furthermore, subsequent analyses of our new transgene independent piPSCs could provide novel insights on the genetic and epigenetic necessities to achieve and maintain piPSCs.
Collapse
Affiliation(s)
- Dong Li
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Jan Secher
- b Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Taastrup , Denmark
| | - Poul Hyttel
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Marilin Ivask
- c Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia.,d Institute of Veterinary Medicine and Animal Sciences , Estonian University of Life Sciences , Tartu , Estonia
| | - Miriam Kolko
- e Department of Drug Design and Pharmacology , University of Copenhagen , Copenhagen O , Denmark.,f Department of Ophthalmology , Rigshospital-Glostrup , Glostrup , Denmark
| | - Vanessa Jane Hall
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Kristine K Freude
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| |
Collapse
|
92
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
93
|
Koh YH, Tan LY, Ng SY. Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Front Cell Neurosci 2018; 12:413. [PMID: 30483063 PMCID: PMC6240766 DOI: 10.3389/fncel.2018.00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is an age-associated, progressive neurodegenerative disorder characterized by motor impairment and in some cases cognitive decline. Central to the disease pathogenesis of PD is a small, presynaptic neuronal protein known as alpha synuclein (a-syn), which tends to accumulate and aggregate in PD brains as Lewy bodies or Lewy neurites. Numerous in vitro and in vivo studies confirm that a-syn aggregates can be propagated from diseased to healthy cells, and it has been suggested that preventing the spread of pathogenic a-syn species can slow PD progression. In this review, we summarize the works of recent literature elucidating mechanisms of a-syn propagation, and discussed the advantages in using patient-derived induced pluripotent stem cells (iPSCs) and/or induced neurons to study a-syn transmission.
Collapse
Affiliation(s)
- Yong Hui Koh
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yi Tan
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore.,The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
94
|
Intravenous Delivery of piggyBac Transposons as a Useful Tool for Liver-Specific Gene-Switching. Int J Mol Sci 2018; 19:ijms19113452. [PMID: 30400245 PMCID: PMC6274756 DOI: 10.3390/ijms19113452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Hydrodynamics-based gene delivery (HGD) is an efficient method for transfecting plasmid DNA into hepatocytes in vivo. However, the resulting gene expression is transient, and occurs in a non-tissue specific manner. The piggyBac (PB) transposon system allows chromosomal integration of a transgene in vitro. This study aimed to achieve long-term in vivo expression of a transgene by performing hepatocyte-specific chromosomal integration of the transgene using PB and HGD. Using this approach, we generated a novel mouse model for a hepatic disorder. A distinct signal from the reporter plasmid DNA was discernible in the murine liver approximately two months after the administration of PB transposons carrying a reporter gene. Then, to induce the hepatic disorder, we first administered mice with a PB transposon carrying a CETD unit (loxP-flanked stop cassette, diphtheria toxin-A chain gene, and poly(A) sites), and then with a plasmid expressing the Cre recombinase under the control of a liver-specific promoter. We showed that this system can be used for in situ manipulation and analysis of hepatocyte function in vivo in non-transgenic (Tg) animals.
Collapse
|
95
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
96
|
NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells. Stem Cell Reports 2018; 11:1272-1286. [PMID: 30318291 PMCID: PMC6235669 DOI: 10.1016/j.stemcr.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/16/2023] Open
Abstract
Somatic reprogramming, which was first identified in rodents, remains poorly described in non-mammalian species. Here, we generated avian reprogrammed cells by reprogramming of chicken and duck primary embryonic fibroblasts. The efficient generation of long-term proliferating cells depends on the method of delivery of reprogramming factors and the addition of NANOG and LIN28 to the canonical OCT4, SOX2, KLF4, and c-MYC gene combination. The reprogrammed cells were positive for several key pluripotency-associated markers including alkaline phosphatase activity, telomerase activity, SSEA1 expression, and specific cell cycle and epigenetic markers. Upregulated endogenous pluripotency-associated genes included POU5F3 (POUV) and KLF4, whereas cells failed to upregulate NANOG and LIN28A. However, cells showed a tumorigenic propensity when injected into recipient embryos. In conclusion, although the somatic reprogramming process is active in avian primary cells, it needs to be optimized to obtain fully reprogrammed cells with similar properties to those of chicken embryonic stem cells. NANOG is required for avian somatic reprogramming NANOG is necessary for long-term establishment of avian reprogrammed cells Avian reprogrammed cells express pluripotency markers Avian cells are only partially reprogrammed
Collapse
|
97
|
Dastidar S, Ardui S, Singh K, Majumdar D, Nair N, Fu Y, Reyon D, Samara E, Gerli MF, Klein AF, De Schrijver W, Tipanee J, Seneca S, Tulalamba W, Wang H, Chai Y, In’t Veld P, Furling D, Tedesco F, Vermeesch JR, Joung JK, Chuah MK, VandenDriessche T. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res 2018; 46:8275-8298. [PMID: 29947794 PMCID: PMC6144820 DOI: 10.1093/nar/gky548] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Simon Ardui
- Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Yanfang Fu
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ermira Samara
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London WC1E6DE, UK
| | - Arnaud F Klein
- Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France
| | - Wito De Schrijver
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Sara Seneca
- Research Group Reproduction and Genetics (REGE), Center for Medical Genetics, UZ Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Hui Wang
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Yoke Chin Chai
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Peter In’t Veld
- Department of Pathology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Denis Furling
- Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France
| | | | - Joris R Vermeesch
- Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
98
|
Jara Avaca M, Gruh I. Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:117-146. [PMID: 29218360 DOI: 10.1007/10_2017_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineered cardiac tissue might enable novel therapeutic strategies for the human heart in a number of acquired and congenital diseases. With recent advances in stem cell technologies, namely the availability of pluripotent stem cells, the generation of potentially autologous tissue grafts has become a realistic option. Nevertheless, a number of limitations still have to be addressed before clinical application of engineered cardiac tissue based on human stem cells can be realized. We summarize current progress and pending challenges regarding the optimal cell source, cardiomyogenic lineage specification, purification, safety of genetic cell engineering, and genomic stability. Cardiac cells should be combined with clinical grade scaffold materials for generation of functional myocardial tissue in vitro. Scale-up to clinically relevant dimensions is mandatory, and tissue vascularization is most probably required both for preclinical in vivo testing in suitable large animal models and for clinical application. Graphical Abstract.
Collapse
Affiliation(s)
- Monica Jara Avaca
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Vascular and Transplantation Surgery (HTTG), Hannover Medical School (MHH) & Cluster of Excellence REBIRTH, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Vascular and Transplantation Surgery (HTTG), Hannover Medical School (MHH) & Cluster of Excellence REBIRTH, Hannover, Germany.
| |
Collapse
|
99
|
Tsifaki M, Kelaini S, Caines R, Yang C, Margariti A. Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future. Front Cardiovasc Med 2018; 5:109. [PMID: 30177971 PMCID: PMC6109758 DOI: 10.3389/fcvm.2018.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD), despite the advances of the medical field, remains one of the leading causes of mortality worldwide. Discovering novel treatments based on cell therapy or drugs is critical, and induced pluripotent stem cells (iPS Cells) technology has made it possible to design extensive disease-specific in vitro models. Elucidating the differentiation process challenged our previous knowledge of cell plasticity and capabilities and allows the concept of cell reprogramming technology to be established, which has inspired the creation of both in vitro and in vivo techniques. Patient-specific cell lines provide the opportunity of studying their pathophysiology in vitro, which can lead to novel drug development. At the same time, in vivo models have been designed where in situ transdifferentiation of cell populations into cardiomyocytes or endothelial cells (ECs) give hope toward effective cell therapies. Unfortunately, the efficiency as well as the concerns about the safety of all these methods make it exceedingly difficult to pass to the clinical trial phase. It is our opinion that creating an ex vivo model out of patient-specific cells will be one of the most important goals in the future to help surpass all these hindrances. Thus, in this review we aim to present the current state of research in reprogramming toward the cardiovascular system's regeneration, and showcase how the development and study of a multicellular 3D ex vivo model will improve our fighting chances.
Collapse
Affiliation(s)
- Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chunbo Yang
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
100
|
Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol 2018; 1722:261-302. [PMID: 29264811 DOI: 10.1007/978-1-4939-7553-2_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Use of experimentally derived induced pluripotent stem cells (iPSCs) has led to the development of cell models for differentiation, drug testing and understanding disease pathogenesis. For these models to be informative, reprogrammed cell lines need to be adequately characterized and shown to preserve all of the critical characteristics of pluripotency and differentiation. Here, we report a detailed protocol for the generation of iPSCs from human fibroblasts containing mutations in COL3A1 using a Sendai virus mediated integration-free reprogramming approach. We describe how to characterize the putative iPSCs in vivo and in vitro to ensure potency and differentiation potential. As an example of how these mutations may affect cell surface and extracellular matrix (ECM) interactions, we provide protocols for the differentiation of these cells into smooth muscle cells to illustrate how different cell types may display cell autonomous differences in collagen receptors that may affect their phenotype. These cells, when applied to mechanical model systems (see Chapter 18 by Bose et al.) facilitate an assessment of stiffness and stress-strain relationships useful for understanding how extracellular matrix dysfunction and its interactions with surface proteins contribute to disease processes.
Collapse
|